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Abstract. We present a characterization for the continuous, isotropic, and
positive definite kernels on a product of spheres along the lines of a classi-
cal result of Schoenberg on positive definiteness on a single sphere. We also
discuss a few issues regarding the characterization, including topics for future
investigation.

1. Introduction

We consider the problem of characterizing positive definite kernels on a product
of spheres. Our focus will be on continuous and isotropic kernels, keeping the
setting originally adopted by Schoenberg in his influential work published in 1942
(see [20]).

As usual, let Sm denote the unit sphere in the (m+1)-dimensional space Rm+1,
and let S∞ denote the unit sphere in the usual real `2 space (here denoted by R∞

for convenience). Throughout the present article, we will be dealing with real,
continuous, and isotropic kernels on the product Sm × SM , m,M = 1, 2, . . . ,∞.
When speaking of continuity, we will assume that each sphere is endowed with
its usual geodesic distance. The isotropy (zonality) of a kernel K on Sm × SM

refers to the fact that

K
(
(x, z), (y, w)

)
= f(x · y, z · w), x, y ∈ Sm, z, w ∈ SM ,
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for some real function f on [−1, 1]2, where “·” stands for the inner product of
both Rm+1 and RM+1. In particular, the concept introduced above demands the
usual notion of isotropy on each sphere involved. In many places, we will refer to
f as the isotropic part of K.

Recall that if X is a nonempty set, a kernel K is positive definite on X if
n∑

µ,ν=1

cµcνK(xµ, xν) ≥ 0,

for n ≥ 1, distinct points x1, x2, . . . , xn on X, and real scalars c1, c2, . . . , cn. In
other words, for any n ≥ 1 and any distinct points x1, x2, . . . , xn on X, the
n × n matrix with entries K(xµ, xν) is nonnegative definite. In this paper, we
will present a characterization for the positive definiteness of a continuous and
isotropic kernel on X = Sm × SM based upon Fourier expansions.

Isotropy and positive definiteness for kernels on a single sphere were first con-
sidered by Schoenberg in [20]. He showed that a continuous and isotropic kernel
K on Sm is positive definite if and only if K(x, y) = g(x · y), x, y ∈ Sm, in which
the isotropic part g of K has a series representation in the form

g(t) =
∞∑
k=0

amk P
m
k (t), t ∈ [−1, 1],

where amk ≥ 0, k ∈ Z+, and
∑∞

k=0 akP
m
k (1) < ∞. The symbol Pm

k stands for the
usual Gegenbauer polynomial of degree k associated with the rational (m− 1)/2,
as discussed in [21]. This outstanding result of Schoenberg is far-reaching and has
ramifications in distance geometry, statistics, spherical designs, approximation
theory, and so on. In approximation theory, positive definite kernels are used in
interpolation of scattered data over the sphere (see [8]). The importance of this
problem in many areas of science and engineering is reflected in the literature,
where different methods to solve such a problem have been proposed. Given n
distinct data points x1, x2, . . . , xn on Sm and a target function h : Sm → R, the
interpolation problem itself requires the finding of a continuous function s : Sm →
R of the form

s(x) =
n∑

j=1

λjg(x · xj), x ∈ Sm, λ1, λ2, . . . , λn ∈ R,

so that s(xi) = h(xi), i = 1, 2, . . . , n. If we choose the prescribed function g to be
the isotropic part of a convenient positive definite kernelK, then the interpolation
problem has a unique solution for any n and any n data points.

Potential applications of an extension of Schoenberg’s result to a product of
spheres is still pending at this time. So far, we were unable to find any practical
problem where such a characterization could enter in a decisive manner. How-
ever, we have to point out that characterizations similar to the one presented
here (e.g., positive definiteness on a product of a sphere and a compact group)
are useful in probability theory and stochastic processes, namely, in the under-
standing of certain space-time covariance functions (see [5], [12]). The bounding
of codes in products of manifolds may be a branch of mathematics where positive
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definiteness—in the way we consider here—could have some applications (see [3]
and references therein).

This paper is outlined as follows. In Section 2, we present several technical
results that culminate with a characterization for the continuous, isotropic, and
positive definite kernels on Sm × SM , m,M < ∞. In Section 3, we complete
this circle of ideas by reaching a similar characterization in the cases in which at
least one of the spheres involved is the real Hilbert sphere S∞. Finally, Section 4
contains a few relevant remarks along with the description of future lines of
investigation on the subject.

2. Positive definiteness on Sm × SM , m,M < ∞

The results in this section will converge to an extension of Schoenberg’s theorem
to a product of spheres Sm×SM in the case when bothm andM are finite. During
the completion of this paper, we learned that such a characterization can be
obtained from extensions of Bochner’s work on positive definiteness, for instance,
like that described in [2] (see Theorem 4.11). The proof we offer here is quite
more down-to-earth and extrapolates some of Schoenberg’s original arguments to
the product Sm × SM . In particular, it exposes the real difficulties one has going
from positive definiteness on a single sphere to positive definiteness on a product
of spheres.

We will need a series of well-known results involving Gegenbauer polynomials
and also a few facts from the analysis on the sphere. We suggest the classical
reference [21] for the first topic and [9], [18] for the other.

The orthogonality relation for Gegenbauer polynomials reads as follows (see [9,
p. 10]): ∫ 1

−1

Pm
n (t)Pm

k (t)(1− t2)(m−2)/2 dt =
τm+1

τm

m− 1

2n+m− 1
Pm
n (1)δn,k,

in which τm+1 is the surface area of Sm; that is,

τm+1 :=
2π(m+1)/2

Γ((m+ 1)/2)
.

Since Schoenberg’s characterization for positive definiteness on Sm is based
upon Fourier expansions with respect to the orthogonal family {Pm

n : n =
0, 1, . . .}, it is quite natural to expect that a similar characterization for posi-
tive definiteness on Sm × SM will require expansions with respect to the tensor
family {

(t, s) ∈ [−1, 1]2 → Pm
k (t)PM

l (s) : k, l = 0, 1, . . .
}
.

The first important fact to be noted about the functions in the family above is
this.

Lemma 2.1. If k, l ∈ Z+, then (t, s) ∈ [−1, 1]2 → Pm
k (t)PM

l (s) is the isotropic
part of a positive definite kernel on Sm × SM .

Proof. This follows from the definition of positive definiteness, Schoenberg’s orig-
inal characterization for positive definite kernels, and the Schur product theorem
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(see [13, p. 458]). The latter asserts that the entrywise product of two nonnegative
definite matrices of the same order is itself a nonnegative definite matrix. �

The tensor family is orthogonal on [−1, 1]2 with respect to the weight function

wm,M(t, s) = (1− t2)(m−2)/2(1− s2)(M−2)/2, t, s ∈ [−1, 1].

The (k, l)-Fourier coefficient of a function f : [−1, 1]2 → R from the usual space
L1([−1, 1]2, wm,M) of integrable functions in [−1, 1]2 with respect to wm,M , is

f̂k,l :=
1

τmk τMl

∫
[−1,1]2

f(t, s)Pm
k (t)PM

l (s) dwm,M(t, s), k, l ∈ Z+,

in which

τmk :=
τm+1

τm

m− 1

2k +m− 1
Pm
k (1), k ∈ Z+.

The next lemma describes an alternative way for computing these Fourier coeffi-
cients. The symbol σm will denote the surface measure on Sm.

Lemma 2.2. If f belongs to L1([−1, 1]2, wm,M), then the Fourier coefficient f̂k,l
is a positive multiple of∫
Sm×SM

∫
Sm×SM

f(x · y, z · w)Pm
k (x · y)PM

l (z · w) dσm(y) dσM(w) dσm(x) dσM(z).

Proof. If m,M ≥ 2, it suffices to employ the Funk–Hecke formula (see [9, p. 11])
in the expression defining the Fourier coefficient. The Funk–Hecke formula states
that ∫

SM

g(z · w)PM
l (z · w) dσM(w)

= τM−1

∫ 1

−1

g(s)PM
l (s)(1− s2)(M−2)/2 ds, z ∈ SM ,

whenever l ∈ Z+ and g ∈ L2([−1, 1], wM). Using the formula with

g(s) =

∫ 1

−1

f(t, s)Pm
k (t)(1− t2)(m−2)/2 dt, s ∈ [−1, 1],

it is promptly seen that f̂k,l is a positive multiple of∫
SM

∫ 1

−1

f(t, z · w)Pm
k (t)(1− t2)(m−2)/2 dtPM

l (z · w) dσM(w).

Applying a similar argument in the internal integral reveals that f̂k,l is a positive
multiple of ∫

SM

∫
Sm

f(x · y, z · w)Pm
k (x · y)PM

l (z · w) dσm(y) dσM(w).

Integration with respect to the remaining variables concludes the proof. In the
cases in which either m = 1 or M = 1, the arguments demand the replacement
of the Funk–Hecke formula with direct computation. �
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An interesting point to be observed is that the multiple constant in the state-
ment of the preceding lemma does not depend upon k and l.

Lemma 2.3. If f is the continuous and isotropic part of a positive definite kernel
on Sm × SM , then∫

Sm×SM

[∫
Sm×SM

f(x · y, z · w) dσm(x) dσM(z)
]
dσm(y) dσM(w) ≥ 0.

Proof. It suffices to write the double integral I in the statement of the theorem
as a double limit of Riemann sums. Indeed, we can select a sequence {Pn : n =
0, 1, . . .} of partitions of Sm × SM in such a way that Pn = {Qn

1 , Q
n
2 , . . . , Q

n
α(n)},

the sequence {α(n)} increases to ∞, and the sequences of diameters {diam(Qn
j )}

satisfy limn→∞ diam(Qn
j ) = 0. Picking points (xn

j , z
n
j ) ∈ Qn

j , we can write

I = lim
N→∞

α(N)∑
J=1

[∫
Sm×SM

f(x · xN
J , z · zNJ ) dσm(x) dσM(z)

]
vol(QN

J ).

Repeating the procedure with the resulting integral leads to

I = lim
N→∞

α(N)∑
J=1

[
lim
n→∞

α(n)∑
j=1

f(xn
j · xN

J , z
n
j · zNJ ) vol(Qn

j )
]
vol(QN

J )

= lim
N→∞

lim
n→∞

α(N)∑
J=1

α(n)∑
j=1

vol(Qn
j ) vol(Q

N
J )f(x

n
j · xN

J , z
n
j · zNJ ).

Since the double limit above exists, it follows that

I = lim
n→∞

α(n)∑
j,J=1

vol(Qn
j ) vol(Q

n
J)f(x

n
j · xn

J , z
n
j · znJ ).

If f is the isotropic part of a positive definite kernel on Sm × SM , then each
double sum in the last expression above is clearly nonnegative. In particular, the
limit itself is nonnegative as well. �

We now combine the three lemmas above in order to obtain the following result.

Lemma 2.4. If f is the continuous and isotropic part of a positive definite kernel
on Sm × SM , then f̂k,l ≥ 0, k, l ∈ Z+.

Proof. Let us fix k and l. Lemma 2.1 and the Schur product theorem guarantee
that the function

(t, s) ∈ [−1, 1]2 → f(t, s)Pm
k (t)PM

l (s)

is the continuous and isotropic part of a positive definite kernel on Sm×SM . Tak-
ing into account this information and that provided by Lemma 2.2, an application
of Lemma 2.3 concludes the proof. �

Next, we recall one of the several generating formulas for the Gegenbauer poly-
nomials, the Poisson identity (see [9, p. 419]).
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Lemma 2.5. If r ∈ [0, 1), then

1− r2

(1− 2tr + r2)(m+1)/2
=

∞∑
k=0

2k +m− 1

m− 1
Pm
k (t)rk, t ∈ [−1, 1].

If r0 ∈ [0, 1) is fixed, then the convergence of the series is absolute and uniform
for (r, t) ∈ [0, r0]× [−1, 1].

We are ready to prove the following auxiliary result.

Lemma 2.6. Let f be the continuous and isotropic part of a kernel on Sm×SM .
If r, ρ ∈ [0, 1), then the double series

∞∑
k,l=0

f̂k,lP
m
k (1)PM

l (1)rkρl

converges. As a matter of fact, there exists a positive constant C, that depends
upon f only, so that∣∣∣ ∞∑

k,l=0

f̂k,lP
m
k (1)PM

l (1)rkρl
∣∣∣ ≤ C, r, ρ ∈ [0, 1).

Proof. Let ar,ρk,l denote the general term of the series in the statement of the lemma.
It is promptly seen that

ar,ρk,l = C1

∫ 1

−1

∫ 1

−1

f(t, s)
2k +m− 1

m− 1
Pm
k (t)rk

2l +M − 1

M − 1
PM
l (s)ρl dwm,M(t, s),

in which

C1 =
τmτM

τm+1τM+1

.

On the other hand, Lemma 2.5 implies that

∞∑
k=0

∞∑
l=0

ar,ρk,l ≤ C

∫ 1

−1

∫ 1

−1

(1− r2)(1− ρ2)

(1− 2rt+ r2)(m+1)/2(1− 2ρs+ s2)(M+1)/2
dwm,M(t, s),

whenever r, ρ ∈ [0, 1), in which C := C1max{|f(t, s)| : −1 ≤ t, s ≤ 1}. It remains
to verify that the double integral∫

[−1,1]2

1− r2

(1− 2rt+ r2)(m+1)/2

1− ρ2

(1− 2ρs+ s2)(M+1)/2

× (1− t2)(m−2)/2(1− s2)(M−2)/2 dt ds

is finite. But this follows from the well-known property of the Poisson kernels (see
[18, p. 47]) ∫ 1

−1

1− r2

(1− 2rt+ r2)(m+1)/2
(1− t2)(m−2)/2 dt =

τm+1

τm
.

The proof is complete. �
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Proposition 2.7. If f is the continuous and isotropic part of a positive definite
kernel on Sm × SM , then the double series

∞∑
k,l=0

f̂k,lP
m
k (t)PM

l (s)

converges absolutely and uniformly for (t, s) ∈ [−1, 1]2.

Proof. Let f be the continuous and isotropic part of a positive definite kernel on
Sm × SM . Due to Lemma 2.4, we know already that all the Fourier coefficients
f̂k,l are nonnegative. In particular, the double sequence {sp,q} of partial sums of
the double series

∞∑
k,l=0

f̂k,lP
m
k (1)PM

l (1)

is monotonically increasing; that is, sp,q ≤ sµ,ν when p ≤ µ and q ≤ ν. On the
other hand, the preceding lemma produces the inequality

p∑
k=0

q∑
l=0

f̂k,lP
m
k (1)PM

l (1)rkρl ≤ C, p, q ∈ Z+, r, ρ ∈ [0, 1),

for some C > 0. By taking a double limit when r, ρ → 1+, we deduce that the
double sequence of partial sums {sp,q} is bounded above. A classical result from
the theory of double sequences (see [11, p. 373]) implies that {sp,q} converges. An
application of the Weierstrass M-test adapted to double series of functions leads
to the convergence quoted in the statement of the proposition. �

The main result in this section is the following.

Theorem 2.8. Let K be a continuous and isotropic kernel on Sm × SM . It is
positive definite on Sm×SM if and only if its isotropic part f has a representation
in the form

f(t, s) =
∞∑

k,l=0

ak,lP
m
k (t)PM

l (s), t, s ∈ [−1, 1],

in which ak,l ≥ 0, k, l ∈ Z+, and
∑∞

k,l=0 ak,lP
m
k (1)PM

l (1) < ∞.

Proof. If the isotropic part f of K has the representation announced in the the-
orem, the series appearing there is uniformly and absolutely convergent. In par-
ticular, Lemma 2.1 implies that f is a pointwise double limit of functions which
are isotropic parts of positive definite kernels on Sm×SM . Consequently, K itself
is positive definite on Sm × SM . Conversely, assume that K is positive definite
on Sm × SM , and write f to denote its isotropic part. Lemma 2.4, along with
Proposition 2.7 and its proof, supplies a function

g(s, t) =
∞∑

k,l=0

f̂k,lP
m
k (t)PM

l (s), t, s ∈ [−1, 1],

for which f̂k,l ≥ 0, k, l ∈ Z+, and
∑∞

k,l=0 f̂k,lP
m
k (1)PM

l (1) < ∞. In particular, since

the series representing g is uniformly convergent in [−1, 1]2, g is continuous in
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[−1, 1]2. The orthogonality on [−1, 1]2 of the tensor family quoted in Lemma 2.1
with respect to wm,M implies that

f̂k,l − ĝk,l = 0, k, l ∈ Z+.

Thus, f = g and, consequently, f has the representation in the statement of the
theorem with ak,l = f̂k,l, k, l ∈ Z+. �

3. Positive definiteness on S∞ × SM

In this section, we extend Theorem 2.8 to the cases in which either m = ∞ or
M = ∞.

Every sphere Sm can be isometrically embedded in S∞. In particular, a positive
definite kernel on S∞ × SM is positive definite on Sm × SM , for m = 1, 2, . . . .
Likewise, if f is the continuous and isotropic part of a positive definite kernel on
S∞×SM , then it is the continuous and isotropic part of a positive definite kernel
on Sm × SM , for m = 1, 2, . . . . Hence, for every m ≥ 1, we have a representation
for f in the form

f(t, s) =
∞∑

k,l=0

f̂m,M
k,l Pm

k (t)PM
l (s), t, s ∈ [−1, 1],

in which

f̂m,M
k,l =

1

τmk τMl

∫
[−1,1]2

f(t, s)Pm
k (t)PM

l (s) dwm,M(t, s) ≥ 0, k, l ∈ Z+,

and
∑∞

k=0

∑∞
l=0 f̂

m,M
k,l Pm−1

k (1)PM−1
l (1) < ∞. Below, we will normalize the above

expressions by writing

Rm
k =

Pm
k

Pm
k (1)

, k ∈ Z+,

and

f(t, s) =
∞∑

k,l=0

f̌m,M
k,l Rm

k (t)R
M
l (s), t, s ∈ [−1, 1],

where

f̌m,M
k,l := Pm

k (1)PM
l (1)f̂m,M

k,l , k, l ∈ Z+.

The notation and remarks above enter in the statement and proof of the next
lemma.

Lemma 3.1. Let f be the continuous and isotropic part of a positive kernel on
S∞ × SM . If k and l are fixed, then the sequence {f̌ 2m,M

k,l : m = 1, 2, . . .} is
convergent.

Proof. Using the following recurrence relation for Gegenbauer polynomials (see
[21, p. 84]),

(1− t2)Pm+2
k (t) =

(k +m− 1)(k +m)

(m− 1)(2k +m+ 1)
Pm
k (t)− (k + 1)(k + 2)

(m− 1)(2k +m+ 1)
Pm
k+2(t),



EXTENSION OF A THEOREM OF SCHOENBERG 679

it is easy to deduce that

f̌m+2,M
k,l =

(k +m− 1)(k +m)

m(2k +m− 1)
f̌m,M
k,l − (k + 1)(k + 2)

m(2k +m+ 3)
f̌m,M
k+2,l, m ≥ 1.

Consequently,

|f̌m+2,M
k,l − f̌m,M

k,l | =
∣∣∣ k(k − 1)

m(2k +m− 1)
f̌m,M
k,l − (k + 1)(k + 2)

m(2k +m+ 3)
f̌m,M
k+2,l

∣∣∣
≤

[ k(k − 1)

m(2k +m− 1)
+

(k + 1)(k + 2)

m(2k +m+ 3)

]
f(1, 1), m ≥ 1.

As an obvious consequence, {f̌ 2m,M
k,l } is a Cauchy sequence of real numbers and

therefore convergent. �

Lemma 3.2. If f is the continuous and isotropic part of a positive definite kernel
on S∞ × SM , then the double series

∞∑
k,l=0

f̌m,M
k,l tkRM

l (s)

converges for (t, s) ∈ (−1, 1)2, uniformly in m.

Proof. In order to see that the series converges in (−1, 1)2 for a fixed m, it suffices

to show that
∑∞

k=0

∑∞
l=0 f̌

m,M
k,l |t|k converges. Recalling Tonelli’s theorem for con-

vergence of double series (see [11, p. 384]), that will follow as long as
∑∞

l=0 f̌
m,M
k,l

converges for all k and the iterated series
∑∞

k=0(
∑∞

l=0 f̌
m,M
k,l )|t|k converges. But

both assertions follow from the inequalities

∞∑
l=0

f̌m,M
k,l ≤

∞∑
µ,l=0

f̌m,M
µ,l = f(1, 1), k = 0, 1, . . . ,

and
∞∑
k=0

( ∞∑
l=0

f̌m,M
k,l

)
|t|k ≤ f(1, 1)

∞∑
k=0

|t|k = f(1, 1)

1− |t|
, t ∈ (−1, 1).

As for the uniform convergence in m, it suffices to observe that

∞∑
k,l=0

f̌m,M
k,l tkRM

l (s) ≤ f(1, 1)
∞∑
k=0

|t|k, t, s ∈ (−1, 1).

The proof is complete. �

The next lemma is a technical result that can be found proved in [20, (4.4)].

Lemma 3.3. For t ∈ (−1, 1) fixed, the sequence {Rm
k (t)} converges to tk as

m → ∞, uniformly in k.
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Theorem 3.4. Let K be a continuous and isotropic kernel on S∞ × SM . It is
positive definite on S∞×SM if and only if its isotropic part f has a representation
in the form

f(t, s) =
∞∑

k,l=0

aMk,lt
kRM

l (s),

in which aMk,l ≥ 0, k, l ∈ Z+, and
∑∞

k,l=0 a
M
k,l < ∞.

Proof. For each k and l, the function (t, s) ∈ [−1, 1]2 → tkRM
l (s) is the isotropic

part of a positive definite kernel on S∞ × SM . Hence, if f has the representation
described in the statement of the theorem, then K is a pointwise limit of positive
definite kernels. In particular, it is positive definite itself. Conversely, assume that
K is positive definite. Without loss of generality, we can assume thatK is nonzero.
Hence, we can also assume that its isotropic part f satisfies f(1, 1) > 0. Since f is
the isotropic part of a positive definite kernel on each product Sm×SM , then for
each pair (k, l), we may consider the sequence of normalized Fourier coefficients

{f̌m,M
k,l }. Lemma 3.1 authenticates the definition

f̌M
k,l := lim

m→∞
f̌ 2m,M
k,l , k, l = 0, 1, . . . ,

while Lemma 3.2 guarantees that

lim
m→∞

∞∑
k,l=0

f̌ 2m,M
k,l tkRM

l (s) =
∞∑

k,l=0

f̌M
k,lt

kRM
l (s), t, s ∈ (−1, 1).

To proceed, we fix (t, s) ∈ (−1, 1)2 and ε > 0. From the previous limit, we can
select m0 so that∣∣∣ ∞∑

k,l=0

f̌ 2m,M
k,l tkRM

l (s)−
∞∑

k,l=0

f̌M
k,lt

kRM
l (s)

∣∣∣ < ε

2
, m ≥ m0.

By Lemma 3.3, we can select m1 so that∣∣R2m
k (t)− tk

∣∣ < ε

2f(1, 1)
, k = 0, 1, . . . ,m ≥ m1.

It is now clear that∣∣∣ ∞∑
k,l=0

f̌ 2m,M
k,l R2m

k (t)RM
l (s)−

∞∑
k,l=0

f̌ 2m,M
k,l tkRM

l (s)
∣∣∣ < ε

2f(1, 1)

∞∑
k,l=0

f̌ 2m,M
k,l

≤ ε

2
, m ≥ m1.

Thus, with the help of an arbitrarily large m, we can use both implications above
to deduce that

0 ≤
∣∣∣f(t, s)− ∞∑

k,l=0

f̌M
k,lt

kRM
l (s)

∣∣∣ < ε.
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Hence,

f(t, s) =
∞∑

k,l=0

f̌M
k,lt

kRM
l (s), t, s ∈ (−1, 1).

The coefficients f̌M
k,l are obviously nonnegative. If

∑∞
k,l=0 f̌

M
k,l were not convergent,

we could select a positive integer N so that

N∑
k,l=0

f̌M
k,l ≥ 2f(1, 1).

Picking a τ ∈ (0, 1) so that τN > 1/2, we would reach

f(τ, 1) =
∞∑

k,l=0

f̌M
k,lτ

k ≥
N∑

k,l=0

f̌M
k,lτ

k > f(1, 1),

a contradiction with the positive definiteness of f . Having guaranteed the uniform
convergence of the series in the representation for f above and invoking the
continuity of f in [−1, 1]2, we now can let t, s → 1− and t, s → −1+ in the
representation formula, in order to conclude that it holds in [−1, 1]2. Thus, f
has the representation announced in the statement of the theorem, in which
aMk,l := f̌M

k,l , k, l ∈ Z+. �

An adaptation of the arguments used in the proof of the preceding theorem is
all that is needed in order to deduce the following complement.

Theorem 3.5. Let K be a continuous and isotropic kernel on S∞ × S∞. It is
positive definite on S∞×S∞ if and only if its isotropic part f has a representation
in the form

f(t, s) =
∞∑

k,l=0

ak,lt
ksl,

in which ak,l ≥ 0, k, l ∈ Z+, and
∑∞

k,l=0 ak,l < ∞.

4. Final remarks

In view of the characterization for the continuous, isotropic, and positive defi-
nite kernels on a product of the form Sm×SM obtained in the previous sections,
one may ask what are the other relevant questions regarding that class of kernels.
We will mention a few of them in this final section of the paper along with some
additional results.

Let us begin with the strictly positive definite kernels. A continuous, isotropic,
and positive definite kernel K on Sm × SM is strictly positive definite of order n
on Sm × SM if its isotropic part f satisfies

n∑
µ=1

n∑
ν=1

cµcνf(xµ · xν , wµ · wν) > 0

whenever the n points (x1, w1), (x2, w2), . . . , (xn, wn) of S
m×SM are distinct and

the scalars cµ are not all zero. So, for a fixed n, an interesting question would be
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to characterize, via the main theorems proved here, the continuous, isotropic, and
strictly positive definite kernels of order n on Sm×SM . This is a challenging prob-
lem even on a single sphere, as one can see in [15]. To characterize the continuous,
isotropic, and strictly positive definite kernels of all orders on Sm × SM seems
quite more promising, since a similar characterization on single spheres is found
in [7], [14], [16], and [19]. Since the achievement of such a characterization on a
product of spheres would demand additional techniques, these characterization
problems will be considered elsewhere.

Positive definiteness on a product of spheres allows an intermediate notion of
strict positive definiteness. A continuous, isotropic, and positive definite kernel
K on Sm×SM is DC-strictly positive definite of order n on Sm×SM (DC stands
for “distinct components”) if its isotropic part f satisfies

n∑
µ=1

n∑
ν=1

cµcνf(xµ · xν , wµ · wν) > 0

whenever the n points x1, x2, . . . , xn of S
m are distinct, the n points w1, w2, . . . , wn

of SM are distinct, and the scalars cµ are not all zero. Obviously, a strictly positive
definite kernel of order n on Sm×SM is DC-strictly positive definite of order n on
Sm×SM , but not conversely (unless n = 1). Thus, to characterize the continuous,
isotropic, and positive definite kernels on Sm×SM which are DC-strictly positive
definite of order n on Sm × SM would be an interesting problem as well. The
same remark applies to DC-strict positive definiteness of all orders. Likewise, we
do not intend to consider this problem here.

As for consistent methods to construct continuous, isotropic, and (strictly)
positive definite kernels on Sm×SM , one may think of methods based on the use
of known classes of continuous, isotropic, and (strictly) positive definite kernels
on a single sphere. Here is a simple one, a generalization of Lemma 2.1.

Proposition 4.1. If f is the continuous and isotropic part of a positive definite
kernel on Sm and g is the continuous and isotropic part of a positive definite
kernel on SM , then the function h given by the formula

h(t, s) = f(t)g(s), t, s ∈ [−1, 1],

is the isotropic part of a positive definite kernel on Sm × SM . Further, if f is the
isotropic part of a strictly positive definite kernel of order n on Sm (resp., g is the
isotropic part of a strictly positive definite kernel of order n on SM) and g(1) > 0
(resp., f(1) > 0), then h is the isotropic part of a strictly positive definite kernel
of order n on Sm × SM .

Proof. The first assertion of the theorem is a consequence of the Schur product
theorem. As for the second one, it follows from Oppenheim’s inequality (see [13,
p. 480]). �

If the intention is to obtain a deeper example, one may employ completely
monotonic functions in two variables. A continuous function g : [0,∞)2 → R is
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completely monotonic on (0,∞)2 if it is C∞ in (0,∞)2 and

(−1)n1+n2
∂n1+n2g

∂un1 ∂vn2
(u, v) ≥ 0, u, v > 0, n1, n2 ∈ Z+.

It is known that a function g as above can be represented in the form

g(u, v) =

∫
[0,∞)2

e−tu−sv dρ(t, s), u, v > 0,

in which ρ is a σ-additive and nonnegative measure on [0,∞)2 satisfying 0 <
ρ((0,∞)2) ≤ ρ([0,∞)2) ≤ ∞ (see [6, p. 87]).

A positive scalar multiple of a completely monotonic function on (0,∞)2 is
itself completely monotonic on (0,∞)2. Likewise, the sum and product of two
completely monotonic functions on (0,∞)2 are completely monotonic on (0,∞)2.
If g, h : [0,∞) → R are usual completely monotonic functions on (0,∞), then
F (u, v) = g(u)h(v) is completely monotonic on (0,∞)2. In particular, (u, v) ∈
[0,∞)2 → exp(−u) exp(−v) and (u, v) ∈ [0,∞)2 → 1/(1 + u)α(1 + v)β, α, β ≥ 0,
are completely monotonic on (0,∞)2. Additional examples can be found in [17].

For actual examples of positive definite kernels on Sm×SM based on completely
monotonic functions, here is a concise method to produce them.

Proposition 4.2. If g is completely monotonic on (0,∞)2, then

f(t, s) := g(arccos t, arccos s)

is the isotropic part of a positive definite kernel on Sm × SM . Further, if g is
nonconstant, then f is the isotropic part of a strictly positive definite kernel of
all orders on Sm × SM .

Proof. If x1, . . . , xn ∈ Sm, w1, . . . , wn ∈ SM , and c1, . . . , cn are real scalars, the
integral representation for g previously described implies that

n∑
µ,ν=1

cµcνf(xµ · xν , wµ · wν) =

∫
[0,∞)2

n∑
µ,ν=1

cµcνe
−t arccos(xµ·xν)−s arccos(wµ·wν) dρ(t, s),

that is,
n∑

µ,ν=1

cµcνf(xµ · xν , wµ · wν) =

∫
[0,∞)2

n∑
µ,ν=1

cµcνe
−tdm(xµ·xν)−sdM (wµ·wν) dρ(t, s),

in which dm and dM are the usual geodesic distances on Sm and SM , respectively.
A result proved in [1, pp. 9–10] reveals that dm and dM are kernels of negative type.
Consequently, the matrices with entries −tdm(xµ, xν) − sdM(wµ, wν) are almost
nonnegative definite (see [10, p. 135]). A classical result from the theory of positive
definite kernels (see [4, p. 74]) now implies that exp(−tdm − sdM) is a positive
definite kernel on Sm × SM . Thus, the initial quadratic form is nonnegative and
the first assertion of the proposition is proved. As for the second one, it suffices
to observe that if the points (xµ, wµ) are distinct, then the matrix with entries
−tdm(xµ, xν) − sdM(wµ, wν) has no pair of identical rows when t, s > 0. In that
case, the kernel (x, z, y, w) ∈ (Sm × SM)2 → exp[−tdm(x, y) − sdM(z, w)] is, in
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fact, strictly positive definite on Sm × SM . If g is nonconstant, then the original
quadratic form is always positive, unless all the cµ are zero. �

If one decides to go the other way around in the search for positive definiteness
on a single sphere from positive definiteness on a product of spheres, two simple
results are as follows.

Proposition 4.3. If f is the continuous and isotropic part of a (strictly) positive
definite kernel on Sm × SM , then t → f(t, 1) and s → f(1, s) are the isotropic
parts of (strictly) positive definite kernels on Sm and SM , respectively.

Proposition 4.4. If f is the continuous and isotropic part of a DC-strictly posi-
tive definite kernel on Sm×SM , then t → f(t, t) is the isotropic part of a strictly
positive definite kernel on Sm∧M , in which m ∧M = min{m,M}.

We found it hard to think of additional examples.
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