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Subbharmonic functions in a eircle

By Urr HeLLsTEN, Bo KJELLBERG and ForLkE NORSTAD

1. Iniroduction

Let u(z) be a subharmonic function of a complex variable z, defined in a circular
region |z| <R. Let

m(r) = inf u(z), M{r)= llzn%x u(z), M(R) =|s|u}1)%u(z).

lzl=r 2|
A condition of the type m(r) < cos mAM (), (1)

where 1 is a number in the interval 0 <A<1, has been found to give consequences
concerning the variation of M(r)/rt. If u(z) is subharmonic in the entire plane and if
(1) holds for all »>0, then M(r)/r? has a positive limit when r->co (see [1, 2, 4, 6]).
An essential part of the proof of this is to show that, with a given value of M(R)/R%,
the quotient M(r)/r* must be bounded for 0<r<R. We shall here make a closer
study of this problem.

The special case =% has long been known, this being the Milloux-Schmidt in-
equality (see, for example [5], p. 108-109):

M(r)<U,(r), where Up(r)= Mi(R) arctan V% 2)

One consequence of (2) is that
M) _4 H(E) ;
Vi % VR ®

In the general case 0<A<1, we prove the following.

Theorem

Suppose that u(z) ts subkarmonic for |z| <R and that 0<M(R)<oco. Let A be a
fized number in the interval 0<A<1 and suppose that condition (1) is satisfied for
0<r<R. Then there is an extremal subharmonic function,

2M(R) 7 z/Rt/'l—l__tl—A
= =y g — < 4
U(z) Re{ ——tan Rl dty, largz|<m, (4)
for which (1) holds with equality and such that
M(r)<U(r). (5)
* Manuscript partly rewritten, final shape 5 June 1969.
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The inequality {3) corresponds to

M(r) mlle(R)
r < nh R’ (6)
2

where the constant is best possible.

Condition (1) is trivially satisfied if M(R) < 0; hence it is only in the case M(R) >0
that consequences of (1) can be proved.

Notice that we must have %(0) <0, because, if #(0)=lim sup,o u(z) =a, it follows
from (1) and (2} that the same lim sup must be less than or equal to acos 74, which
implies that a <0.

In the first version of the manuscript of this paper (by Hellsten and Kjellberg)
only estimates of U(r) and of the constant in (6) were given. The explicit formula
(4) and the exact value of the constant (see section 7) are a later contribution by
Norstad.

2. An asseciated funection

In many problems on analytic functions, it is often advantageous to form an auxi-
liary function by making a circular projection of the zero points upon a certain radius.
The new function takes its minimum on this radius and its maximum on the opposite
radius. Here, we shall make the analogous transformation from u(z) to an associated
subharmonic funetion #*(z). A subharmonic function which is bounded above for
|2] <R can be written in the form (concerning this section, see, for example [7],
IV.10):

u(z) = uy(2) +ug(2), (7)
where

% (2) =ff log
IZI<B

The functions u({) and »(Re'?) correspond to positive mass-distributions over |z| <R
and |z] =R, respectively; u,(z) is harmonic for |z| <R.
We now construct an associated subharmonic function

R(z &) +a R2—|z|

'dlu'(C): u2( ) -M(R)_ o f—” I-R i lz v(Re”’).

w*(2) = u3(2) + uz(2), (8)
where

ui(z) = ff log
Bl<R

The potential function uj(z) has its whole mass concentrated on the segment — E <
2<0, while u3(z) has its mass at the point z= —R. On |z| =R, z# — R, we have
ui(z) =0 and u3(z) = M(R). The function %*(z) is harmonic in the region D, which is
obtained by cutting |z| <R along (- R, 0). For |z| =r, 0<r<R, we have u*(—r) <
u*(2) Su*(r).

l R —|z|?
du(Z), ’u;( y=M(R)— IR+| ILJ dy (Reie)_
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3. The connections between u(z) and u*(z)
From the definition of u*(z) it follows that for 0<r<R
w(—-r)<mr)SM{r)<u*(ry<M(R), 9)

(see an analogous derivation in [5], for example).
As is usual in such cases, we require here a further relation, namely

w*(—7) +ut(r) <m(r)+M(r), (10)
for 0 <r<R. We begin by showing that
w*(—r) +uX(r) <u(—2z) +u(2), (11)

for any z on |z| =r. Let us put z=re'”. We prove the relation by dividing up u and u*
according to (7) and (8) and deriving separate inequalities, which together give (11).
We consider first

uy(—2) +y(2) —ui(—7) —ui(r)

- f f {1og R - 0%
<Rk

where the inequality follows from a well-known elementary property of the mapping
function w(z)=[p(z—a)]/(¢*—2a). Next

R2(r2 _ !CIZ)

OB

} au(2) >0,

Ug( — 2) + uy(2) —uz(— 1) —uz(r)

B f ” ! —~ ! (R >0
7 Jon (RE+12E—4RY®  (R*+1%)®—4R**cos (6 — @) -

The proof of (11) is then complete. Since u( —2z) can be made sufficiently near m(r) by
suitable choice of z and u(2) < M(r), (10) follows.
Finally, it is seen from (9) and (10) that

w*(—r) —cos wAu(r) = w*(—r) +u*(r) — (1 +cos wA)u*(r)

<m(r)+M(r)— (1 +cos wA) M(r) = m(r) —cos wAM(r) <O, (12)

by (1).
Observe that, just as (1) implies that %(0) <0, (12) implies that »*(0) <0.

4. Representation formulae

We now require representation formulae in the simple case of harmonic functions
which are bounded from above and are representable as integrals of their boundary
values. Let H(z) be such a harmonic function in the half-disc |z| <R, Im 2>0.
Its value for z =1r is (see, for example [3], p. 2)

11

H(ir)=f+EK(7’, ) H(t) dt+f 8(r, ) H(Re'") dg
-R

0

T

=fBK(r, 1) {H(t)-%—H(*t)}dt—{-f S(r, p) H(R€?) d, (13)
0 0
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Dx
A
-2 [3 2 =
Fig. 1
r| 1 R?
where Kir, "‘;{W‘Wﬁ}

o) 2Rr(R®—1®)sing
9)= 7o(R* +r* 4 2R%* cos 2¢)

and S(

Consider next, the region Dj consisting of the circle |z] <R cut along (— R, 0).
In what follows, we shall only be interested in the symmetric case when H(z)=H(3).
In particular H(z) then has the same limit H(—¢) whether z approaches the cut
(—R, 0) from above or below. By means of a simple square root transformation, we
obtain from (13):

H(r)= f RQ(r, t) H(—t) dan T(r, o) HRE?) d, (14)
0 -
Ve [ 1 R
h AN I S
where Q1) = t{t+r Rz+rtJl

VRr (R —7) cos (¢[2)

n(R®+ 18 — 2Rr cos p)’

We shall also require a further representation formula for H(z) in Dp. This is obtained
by first applying the counterpart of (13) in the half-dise |z| <R, Re z>0.

+n/2

and T(r,p)=

H(r)=2fRK(r, 7) H(it) d‘z'-l—f S(r, w+g) H(Re™) dy. (15)
o

-2

Then r is replaced by 7 in the formula (13) and the resulting expansion for H(ir)
is inserted in (15). This gives

H(r)= f : L, t)y {H@)+ H(—t)} dt

+ 72

+ f :N(r, ) H(Re"®) dp + f S (r, p+ g) H(Re"™) dy, (16)

~7/2
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R
where Lir,t)= 2f K(r,7) K(z,t) dr
0

and Nr,g)=2 f " K, 1) S(, 9) dr.
]

We observe that the functions K, S, @, 7', L and N above are non-negative.

5. Integral inequalities for u* (r)

We now return to our consideration of the function u*(z), which is subharmonic
for |z| <R and bounded above by M(R). It is harmonic in Dy and has a constant
value, M(R), on |z| =R except for the point z= — R. By (12), w*( —t) < cos wAu*(t).
On combining this with (14), we obtain the integral inequality

u*(r) < cos n}.fRQ(r, &) u*(t) dt + h(r), (17)
0
where R(r) = fﬂt 4M(E) V;
(r)=M(R) . T(r, ) dep= - arctan B

We also need an integral inequality in which cos 74 is replaced by a factor which is
positive in the whole interval 0 <A<1. For this we use (16) instead of (14) and we

obtain
R

u*(r) < (1 +cos nﬂ.)f Lr, t) u*(t) dt + k(r), (18)
0

+7/2

where k(r)= M(R)fonN(r, @) do + M(R)f 8 (’r, p+ g) dy.
72

6. Two integral equations

Let us consider the integral equation which corresponds to (17) i.e.
R
Ulr) = cos n&f Q(r, t) U(E) dé + h(r). (19)
0

As is clear from the definition in (14}, Q(r, t) has a singularity at ¢ =0. In spite of this,
the usual method of solution by successive approximation works well here. We
perform this step by step.

(a) Either by direct calculation or by setting H(z) =1 in (14), it is seen that

R
f Qr,t)dt<1 (20)
0
for any r in the interval 0<r <R,

(b) Let ¢(r) be continuous and bounded, |¢(r)] <C for 0<r<R. The integral
operator

R
fo Q(r, t) @(t) dt = g, (7)
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gives a function ¢,(r) with the same properties. The continuity requires no comment
and |@,(r)] <C follows from (20) and the fact that Q(r, t)>0. If one wishes to have
continuity in the closed interval 0 <r< R one must define ¢,(0) =¢(0) and ¢,(B)=0,
since

R R
Iim | Q(r,t)dt=1, lim f Q(r,t)dt =0
r—0 r—0 J4d

0

for each 8, 0 <d <R, and further

lim | Qer,t)dt=0.

>R JO

(c) Denote by @@, @®, ..., @™, ... the successive kernels:

Q(l) (r,t)= Q(T, t)

QP (r,t)y= fRQ‘"”” (r,7) Qx,t)dz, n=2,3,....
0

(d) Set cos A=y and consider the series
R R
U(f)=h(r)+,uf Q(r ) h(t)dt + ... +y"f QP (r, tyht)dt+.... (21)
) 0

By (b) and the definition of A(r) in (17), the terms in this series are continuous and
have values smaller than the terms of the series

M(R)+M(R)|| + M(B)|u|*+... + M(R)|u|"+ ..

which converges for |u| <1 with sum M(R)/(1— |u|). The series (21) therefore con-
verges uniformly in r for each u such that |u| <I.

Thus, for each g in |u]| <1, U(r) is defined and continuous in 0 <r< R, with
U(0)=h(0)/(1 — u)=0 and U(R)=M(R).

(¢) By inserting the series (21) into (19) in which we may then integrate term by
term, we see that U(r), defined by (21), satisfies the integral equation (19). In the
usual way (the difference between two solutions satisfies (19) and (21) with A(r)=0)
it is seen that the solution is unique within the class of bounded continuous functions.

Finally, we write down the integral equation corresponding to the inequality (18),
namely

R
U(r)=(1+ cosmd) f L(r, 8) Ut) dt + k(7). (22)

0

The existence of a unique solution can be shown in a way analogous to that used
with (19). However, this working does not need to be performed here; what is required
in what follows is to show that the same function U(r) which satisfies (19) also
satisfies (22).

190



ARKIV FOR MATEMATIK. Bd 8 nr 19

7. Use of Fourier transforms

By the transformations r=Re™", t=Re™* the integral equation (19) takes the
form

o) = f:{Ko(w—s>—Ko<x+s>}¢<s>ds+g(x>, (23)

where p(x) = U(Re™") is to be determined and

cos 7 1
Kolw) = 7 2 cosh u/2’

g{x) =é@ arctan e™ %%,

We now extend the definition of p(x) and g(x) to negative values of x by pre-
scribing them to be odd functions. The origin turns out to be a point of discontinu-
ity. By analogy with the case for equations of the Wiener-Hopf type the equation
(23) then can be written

@(x) = j_w Ky(x —s) p(s) ds + g(). (24)

Introducing Fourier transforms we obtain

P(8) = Bo(t) $(t) + 4(8) (25)
The formal solution
o(z) :_1_ fw '—ﬂt)* et dt (26)
278 J -0 1 — Ky(t)

gives us in this case the desired solution. In fact

_2iM(R)

gty ===

1 cos A
- = < <1.
(1 cosh nt) » Roft coshrt = 0 i

To evaluate the integral by means of residue calculus for >0, an interval on
the real axis is completed by a half-circle in the lower half-plane. The denominator
1 — K,() has two sequences of zeros there, {(1 —2n)i}3%; and {( —2—2n)7}7~o. The

result is
— o —z(d+2n) 00 —-z(=A+2n)
plo)= LB L —cosmh [ ¢ -3¢ } 27)
7 sinzgd  |poo A+2n 21 —A+2n
This gives
2M(R)1 —cosmA [ & (r[RY*"F 2 (r/R)z""‘}
= S - 28
v 7 sin 7zA {n‘;‘o 2n+24 a2 2n—4 ) (29)
_2M(R), mA [TR{ g 29
or U(r) =——tan7 L Tt (29)
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The result can also be written

_2M(R) nﬂ 3 TIR tl—l__t1+l }
Uir)= - tan = {(r’/li‘)’1 /Ifo =g dt}. (30)

The integral of the right-hand side is never negative, i.e. we have the inequality

2 M(R
g’(l—”sj—atanf;—él—). (31)

8. An extremal subharmonic function

The result (29) of the preceding section suggests a study of the function

2M(R), _md (FR -
7 t“nzfo 1= %

w(z) =

which is analytic in D, In fact, a straight-forward computation shows that
Re w( —r) = cos zA Re w(r) and that the variation of w(z) on the arc|z|=R,z+ — R
is purely imaginary, i.e. Re w(z) is constant on the arc. Hence the function U(z) =
Re w(z) is harmonic in Dy, has constant boundary value M(R) on |z|=R,z+ —R,
as w(R) = M(R), and satisfies U( —r) = cos zAU(r). Furthermore, substitute H(z) for
U(z) in (16) of section 4 and there results (22), i.e. U(r) satisfies (22) as well as (19).

We shall now show that U(r) majorizes u*(r), which in turn majorizes M(r),
by (9). We use the formulae containing the positive factor 1+ cos mA. On subtracting
(18) from (22), we obtain

U(r) — u*(r) = (1 + cos A) f RL(r, £) {U(t) —u*(t)} db. (32)
0

The function p(r) = U(r) —u*(r) is not necessarily continuous for 0 <r <R, since it
can happen that w*(0) = — co. However, it is lower semi-continuous and consequently
takes a minimum value, m, in the interval. Further (0) >0 and y(R)=0. The mini-
murn m cannot be negative; for assume this were the case. Let ry, 0 <r,<R, be the
value of r which gives the minimum. Substifution in (32) then gives

R

m > (1 + cos x}.)J‘

0

R

Ly, t) p(t) dt > m(1 + cos n.l)f L(ry, t) dt. (33)
)

However, by setting H(z)=1 in (16), we see that

R R
2f L{rg, t)dt <1, ie. f L(rg, t)ydt < 4.

0 0
This contradicts the assumption that m <0 in (33). Hence
U(r)—u*(r) =0, ie. wu*(r)<U(r).
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Since M (r) <u*(r), we have proved that
M(r) < U(r), (5)

and recalling (31), we obtain (6).

It remains to show that U(z) is subharmonic for |z|< R. Since U(z) is harmonic
in Dy, it remains only to consider U(z) locally on the segment —R<2z<0. A cal-
culation shows that at each point of the segment its inner normal derivatives in
both upward and down-ward directions are positive (and of course equal because
of the symmetry of U(z)). Continuation of U(z) from above the segment gives, in a
dise |z+r|< 6, a harmonic function which is less than U(z) in the lower half of the
dise. Thus a local condition for subharmonicity of U(z) is satisfied at z= —r. A
check shows that the mean of U(z) on a circle centred at the origin is positive.
Since U(0)=0, a local condition for subharmonicity is satisfied also at the origin.

We have thus found an extremal solution U(z) to the problem, given in the in-
troduction, of finding the maximum value of M(r).
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