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Introduction

This paper deals with generalizations of the following problem, which was given
as one (No. 7) of 25 research problems in [1].

“If f,(z) and f,(z) are two entire functions of lower order less than one and
if f,(2) and f,(z) have the same zeros, is f,(z)/f,(z) a constant?”’

The solution of the research problem is that the quotient f,(2)/f,(z) need not
be a constant. The proof is given in [8] by the present author. The same result
can also be obtained as a direct consequence of Theorem 6.1 or 6.2 or 7.1 of
this paper.

In Chapter I of this paper we give the definitions of some set functions suit-
able for function theoretic applications. Of special interest is the set function u(4)
of Definition 1.2. This set function was originally introduced (in [9]) by the pre-
sent author.
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A. HYLLENGREN, On the lower order of f(z) ¥

In Chapter II there are given results analogous to the following: For every
entire function f(z) it holds true that the lower order of the product

f(z) e

is at least equal to + 1, except for a nullset of a-values. The main part of this
paper is an investigation of this nullset.

In Chapter IIT we try to give results converse to those in Chapter II. One
special result (cf. Theorem 6.2) is that the quotient f;(z)/f,(z) in the original
research problem [1] can be any entire function without zeros.

In Chapter IV we deal with various problems, which are in some way con-
nected with the earlier parts of this paper. Especially the result in Section 9 in-
dicates that the (very small) nullsets A?(f) are by no means ““almost countable’.

Chapter 1. Set functions

In this chapter the definitions of three set functions are given. Each one of
the three definitions contains an auxiliary function which is continuous and mono-
tonic. These set functions are used for classifying noncountable nullsets in the
complex plane.

1. The set function m(A)

Let A be a set of complex numbers. The sequence {d,}y-; of real numbers is
called a majorizing sequence for the set A if there exists some sequence {a,}n-1
of complex numbers such that the inequality

la—a,|<d,
holds for an infinity of values of » whenever a€ 4.

Definition 1.1. Let A be a set of complex numbers and g(x) a monotonic decreasing
real function, defined for x>0, which satisfies

. gle+e)
) ‘”

for every &> 0.
The measure m(A)=m(g(x), A) is then defined as the lower bound of real numbers
1/k>0 for which {g(kn)}-1 is a majorizing sequence for the set A.

The set function m(A) is subadditive ([9], Satz 3). For the special case that
g@)=0%, 0<O<1

the set function m(g(x), 4) is denoted u(4). Notice that changes in 6 are in-

essential, since they do not affect the value of u(4). In particular, for f=¢!

the definition of u(4) can be written:
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Definition 1.2. For a set A of complex numbers, u(A) is defined as the lower
tound of positive numbers 1/k for which

__pkn
dy=e " n=1,2,...

13 a majorizing sequence for the set A.

2. The Hausdorff measure h*(A)

In the following the real function %A(f) is any continuous and monotonic in-
creasing function, defined for ¢>0, and with lim¢_.,A({)=0.

Definition 2.1. Let A be a set of complex numbers. The value h* (A)=h" (k(t), 4)
of the Hausdorff measure of A is defined as

h*(4) = lim (inf S h(d,))

d—=0 \ (2 i=1

where d; denotes the radius of the circle C;, and the infimum is taken over all cov-
erings

ics

CioA4; d;<é. (2)

-

This definition is due to Hausdorff [6]. We now deduce a relation between the
set functions m(4) and &*(4). '

Proposition 2.2. Let m(g(x), 4) < oo
and S g < e,
then ¥ (A(t), A)=0.

Proof. The meaning of m(g(x), A) < oo

is that. there exists some %k, 0 <k < co, such that the sequence

{g(kem)}3-s

is a majorizing sequence for the set 4.
The functions A(f) and g(x) are monotonic, and therefore, it follows from

M3
L

h(g(n)) < o0

o

that > hlg(kn) < oo.

n=

435



A. HYLLENGREN, On the lower order of f(z) ¢"®

For an arbitrary £>0, let the number N(g) satisfy

oo

> h(g(kn)) <e.

n=N(&

From the fact that {g(kn)}¥., is a majorizing sequence for the set 4, it follows
that the corresponding sequence of circles C,, for n= N(¢), can give a covering
of the set 4. This implies

Rh), A)< S hgkn)) <e.

n=~N()

Since £>0 is arbitrary, the proof is complete.

3. The generalized capacity C(A)

For a survey on capacities and Hausdorff measures we refer to Taylor, [10].
In Definition 3.1 below the real function ®(t) is continuous and strictly de-
creasing for ¢>0, and
lim @) = + oo.

t—0

Definition 3.1. (Frostman [5]). Let A be a bounded Borel set and let v denote a
positive mass distribution with

Then C(A)=C(D(t), A) ts defined by
(@), 4) =0 (inf sup f @(Iz—cl)dv(c)). (3)
y 2 A

Here @' denotes the inverse function, and ®~'(+ o0)=0.

In (3) the supremum is taken over all complex numbers z, and the infimum
is taken over all positive mass distributions v with »(4)=1. The value of the
set function C(4)=C(D(t), A) is called the generalized capacity of the set 4 with
respect to the kernel function @(¢).

When the kernel function ®(f) and the mass distribution » are given, the po-
tential u(z) is defined as

u(2)=f®(|2— L]y dn(@).

For a given set A4, the relation C(4)>0 is equivalent to the existence of some
positive mass distribution », with »(4)>0 such that

u(z) = f(D([z—— Zydv(g) <k<oo.

In order to establish a relation between m(4) and C(4), we prove the following
. proposition:
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Proposition 3.2. Let A be a given Borel set of complex numbers, and let O(t) be
a given positive kernel function. If

m(g(x), 4) < oo

and also % D(g(n)) < oo,
n=1
then C(d@(1), A4) =0.

Proof. The agsumption m(g(z), 4) < co implies that there exists some positive
number k, such that {d,=g(kn)}7-; is a majorizing sequence for the set A (cf.
Definition 1.1).

Hence there exists some sequence {a,}7.; of complex numbers such that the
circles

O,L:{z“z—anl<g(im)ﬂdn}

cover the set 4 in the sence that

for every N.
Let v be an arbitrary non-negative mass distribution with

Ldv(g“) > 0.

Denote V= j av(().
Cn

Then, for every N >0 we have the inequality

z\18

Yy = f dv(Z)>fdv(C)>0
4

U Cp

n=N

oo

and therefore D Vp= + o0,

n=1

The kernel function ®(t) is monotonic and positive and » is non-negative, and
therefore u(a,) is easy to estimate (cf. Frostman [5] p. 89). In fact

w(an) = f;b(lan — ¢y @)
> [ aa—zh o)
> plglin))- f d(£) = Bg(kn) - vy

Cr
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This estimate of the potential u(a,) gives
> w(@,) Pglim) > 3 vo= + oo

n=1

The functions ®(f) and g(x) are monotonic, and therefore
2 D)< oo

implies iltl)(g(lm))’1 < oo,

The upper bound for the potential u(z) therefore turns out to be
sup u(z) = sup u(a,) = + o

and this upper bound is independent of », if {,d»({)>0. The capacity of the
set 4 is therefore zero,

O(D(t), 4)=0.

This completes the proof of Proposition 3.2.

Chapter II. Coverings of the set E.(f)

The main aim of this chapter is to prove and interpret a general result re-
garding coverings of the set E.(f) (Theorem 5.3).

We first define the generalized lower order of an entire function. This gen-
eralization gives new classes of small sets A7 (F(r), f(z)) of complex numbers. It
is an open question which set function (e.g. which function g(z) in Definition 1.1)
is best suited for characterizing these sets Af(F(r), f(z)) for general F(r).

4. The generalized lower order

The function F(r) is continuous and strictly increasing from — oo to + oo
for rg<r< +oo (ry> — o). F(r) also satisfies

lim (F(2r) — F(r)) =0 (4)
and lim (#(r) — F(log r)) = + co. (5)

The inverse function is denoted by F~(z). By M(r) we denote maxy,-,|f(2)|.

Detinition 4.1. The generalized lower order of the function f(z) with respect to F(r)
s denoted by

A= Mf(z)) = AF(r), {(2)).
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It is defined by lim inf (F(log M(r)) — F(r)) =log A.

r—>00

If the limit equals — oo, then 4A=0.

The same 4 can be obtained as the lower bound of positive numbers ¢ for
which the inequality

log M(r)< F~1(F(r)+logt)

is valid for an unbounded set of r-values.
Here F~'(F(r)+logt) plays the role of 7!, We denote

glr, ty=F 1 (F(r) +log )
and this function satisfies the following functional equation

g(g(r: tl), t2) 29(7“, tl : t2) (6)

(Proof of (6): Apply F to both sides of (6)).
The usual definition of lower order is obtained for g(r,?) =7, ie. F(r)=
log log r -+ const.

Definition 4.2. When F(r), f(z) and t are given, the set Ey(f)=E,(F(r), {(z)) is de-
fined as

E,(f)={p() | 9(0)=0, lim inf (¥(log M, (r)) = F(r)) <logt}

where M, (r) = max |f(z) e
|2]|=r

i.e. the set of entire functions @(z) for which the generalized lower order, with respect
to F(r), of the product f(z)e"® is less than i, and ¢(0)=0.

5. A covering theorem

In this section we shall obtain a covering of the set E,(f) of entire functions.
We therefore need a distance function (say D) in the space of all entire func-
tions.

Definition 5.1. Let ¢(z) and (z) be two entire functions. For each r>0 we define
the following distance function D.

1 2n ) .
D(r,p,yp)= yos fo [Re (¢(r €'®) — (0) — (r €°) + y(0)) | d6.
Let M, (r) denote the following maximum modulus
M, (r) = max [f(z) €|
l2f=r
where f(z) is the entire function for which the set E,(F(r), f(2)) is to be examined.
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We first prove a lemma.
Lemma 5.2. Let f(z), ¢(z) and y(z) be given entire functions with
f0)=1, @(0)=0, u(0)=0.
Then, for every r>0 it holds true that
log M, (r) < D(r, ¢, y) = log M, (r) > Dir, ¢, y). (7)

Proof of lemma 5.2. Let z=r-€® The following inequality is obtained from
Jensen’s formula and Definition 5.1.

2
f max (log |f(z) ¢"?|, log |(z) e*®[) dO
0

27 2
-3 f log |f(2) € - f2) 7| d + 3 j |Re (¢(2) — p(c) | d6

0 0

> nlog | f2(0) e#@*¥O| + 27 D(r, @, ) = 27 D(r, @, p). (8)
Now, assume that (7) is not true. Then we have
log My (r) < D(r, @, )
and log M, (r) < D(r, ¢, ).
These inequalities applied to (8) give

log | {(2) €#| < D(r, @, p)

and log | f(z) ¢"®| = D(r, @, v)

for |z|=r.
Using ¢(0)=w(0) in the Jensen formula we obtain

2.

T 2n
2 D(r, @, ) = f log |f(z) e¥®|df = f log |{(z) e7®| d0 < 27 D(r, @, p)-
1]

0

This is a contradiction which proves the lemma.
We now proceed to the covering theorem.

Theorem 5.3. Let f(z) be an enlire function which is not a constant. Let the num-
bers ,>1, n=1,2,..., be given such that

m—1
Ym= 112, has limy,= + co.
n=1 m—»e
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Take a number ry such that F(r))> — oo and then let

=g, y,), n=2,3,....

Let t>0. Then there exists some sequence of entire functions @,(z) so that the func-
tion sets S, defined by

8= {(P(z) I D(rn, P (pn) <g{tn, Tn t)} 9

cover the set E,(F(r), {(z)) in the sense thai

o o0

Ei(F(r).f2)= N U S, (10)

m=1n=m
F, g and E; are defined in Section 4, D in Definition 5.1.

To get a “strong” result in this theorem, we must let the choice of the num-
bers {x,}5>; depend on the given g(r,¢).

Proof of Theorem 5.3. The function F(r) satisfies

lim (F(2r) — F(r)) =0. (4)

T—>00

The entire functions f(z) and k-z"-f(z) have the same lower order with respect
to F(r) since it follows from (4) that

lim (F(log | k| +n log r + log M(r)) — F log M(r)) =0

when f(z) is not a constant. In the sequel we assume that
f(0)y=1, @0)=0, @, 0)=0.
When the sequence {r,}3°; is given, we define the functions sets B, by
B, ={p() | p(0) =0, Flog M, (r)) — F(r) <logt for some 7 in 7, <7r<r,.s}. (11)

Then it follows from the Definition (4.2) of E,(f) that {B,}s:1 cover the set
E,(f) in the sense that

E()< N. U B.

m=1n=m
This is because #,— + oo, which follows from
F(r,)=F(r) +logy,—~ + oo.

To prove (10) it is now sufficient to prove that it is possible to choose the centre
@n(z) of 8, so that

B, 8, (12)
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For the special case that the set B, is empty, there is nothing to prove. If the

function set B, is not empty, let @(z) and y(z) denote arbitrary elements in
B,. Let r and p denote corresponding r-values (cf. (11)). i.e.

log M (r)<g(r,t), log M,(0)<g(o,?).

The notations can be chosen so that g<r, i.e.
T SOST<Tpy1. (13)

If we can now prove the inequality

-D(rn, (pa 1/)) < g(rm xnt)) (14)
then we have proved Theorem 5.3, and we have also proved that any element

(z) in B, can be chosen as the centre of the sphere S, in (9).
The proof of (14) is indirect. We assume

D(ry, , 9) > glrn, @n). (1)

The Lemma 5.2 is applied to the inequality

log M, (r,) <log M, (0) <g(e,t) <g{rn+1, ) =9(ry, Yn+1t) = §(r1, ¥n¥nt} =
=g(rn, 2,1) < D(ry, @, ),
and we obtain
log M, (rn) > D(ra; @, 9)-
The final estimate becomes
g(r, £) > log My (r) > log My (ra) = D(ra, @, ) = 9, 2nt) =g (rn1, £)

and =Ty

This contradicts (13), and the assumption (15) therefore was false. Hence (14)
is proved, and the proof of Theorem 5.3 is complete.

Definition 5.4. Let f(z) be an entire function, t a real number and p a natural
number. The set AP(f)=AP(F(r), {(2)) is defined as the set of complex numbers a
for which

lim inf (F(log M5(r)) — F(r)) <logt

T—>00

where M2(r) = max | f(2) - ).
lz|=7
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Thus, A?(f) is the set of complex numbers @, for which the generalized lower
order of f(z):¢*’ with respect to F(r) is less than &.

Interpretation of Theorem 5.3. Let p be a given natural number. We intro-
duce the assumption that all functions denoted ¢@(z), ¢, (z) and y(z) are of the
form z?-constant. Under this assumption we could once again formulate and
prove (the old proof works) Theorem 5.3.

However, for the present situation, we can actually compute the distance
function D, as follows.

27 . 1
D(r,az”,bz")=if |Re(a-r"- e —b-17- €0 |do==1"|a—b|.
4n 0 7T

For a given b, b2” =g, (z), the sphere 8, in (9) corresponds to a circle for the
a-values. The sphere of functions az” for which

Dlr, az?, b2¥) < g{ry, 2, t)

holds, corresponds to the following circle for the a-values:
1'r“’izz—b[<g(¢ Znt)
7 n ny Vn

or la—bl<m: 1,7 glra, xat) =dy.
We now define the numbers z, by
120 g(ry, 2o (t+e))=1

for some arbitrary &> 0.
For the special case g(r,t)=r" (F(r)=loglogr) it then follows that all the z,
are equal:

=1

From Theorem 5.3 we recall that

— — n~1y _ xf_l
= g(rla yn) - 9(7'1, 5) ) - 7.1

which gives Tpe1 =T
. 1 .
Together with —dy =77
7
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. 1 1 1
this becomes —dp1={—d,) . (16)
7 7
We notice that r;>1 (F(r)) > — o) implies

n
dn=n-r18 10

as n— oo,
As a consequence of (16) there exists a number N >0 such that

p logz;

dpsy<e i=¢e , n>0.

The sequence {d,}3-; is a majorizing sequence for the set A?(f) and it now
follows from the definition of majorizing sequences, in Section 1, that

_en-logzl =
e n=1

is also such a majorizing sequence for the set A7(f). From Definition 1.2 it then
follows

p -1
w42 () < (log z,) ' = (log H—g) .

Since ¢ is arbitrary, it follows that
p -1
uww#mﬁ.
This result can be formulated as a theorem.

Theorem 5.5. Let f(z) be an entire function, and let p >0 be a given integer. The
set AL (f) of a-values for which the entire function

f(z) e

s of lower order less than t (0<t<p) satisfies

P\
uiap < (1og%) a7)
[ ts the set function of Definition 1.2.

The phrase “lower order” is here used in its ordinary sense.

Chapter ITI. Subsets of the set E;(f)

In Section 6 of this chapter we prove that any given countable set {¢, (2)}r-1
of entire functions can be contained in a set E,(F(r), f(z)). This statement (Theo-
rem 6.1) holds true for every admissible F(r).
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The result in Section 7 concerns the special case F(r)=loglogr (i.e the lower

" order has the usual meaning). The sets of a-values for which az”€ E,(f) are in-
vestigated, and this gives a theorem (Theorem 7.1) converse to Theorem 5.5.

6. Countable subsets of E,(f)

The function F(r) satisfies the assumptions in Section 4.

lim (F(2r)— F(r)) =0 4
lim (F(r) — F(log 7)) = + co. (5)

Theorem 6.1. For an arbitrary countable set {p,(z)}w-1 of entire functions there
exists some corresponding entire function f(z) with

HE(®), f(z) - €74) =0
for every n.

This means that

lim inf (F(log M, (7)) — F(r)) = — oo, (18)
where M, (r)= mlax If(z) - e#|.
lzl=7

The proof of Theorem 6.1 makes use of the following theorem.

Theorem 6.2. Let {p,(2)}7-1 be a given sequence of entire functions, and let h(r)
be a monotonic function with

lim A(r) = + oo,
Tr—00

Then there exists an entire function f(z) such that for every n>0,

log max | f(z) - e™®|

. . [el=r — 19
hf’ifff h(r) -logr 0. 19

Proof of Theorem 6.2. Without loss of generality we may assume that every

element of the sequence {g,(2)}?-; occurs an infinity of times in this sequence.
Denote

k(r)= I/ITT) -log 7.

To prove Theorem 6.2 it is now sufficient to define an entire function f(z) which
satisfies

log Inllax |£(2) €| < K(ry) (20)

=Tn
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for some sequence {r,}i.; with
lim r, = + oo,

n— o0

We now give the notations needed for the definition of the function f(z). Let

N
Then we denote Pn (N, 2)= 2 a, 7.

=0
P,(2) is the following polynomial

1 P M N n (L, 2D\
P"‘z)‘(” i, ) (1 L, )

where M, and L, are defined as follows.
To begin with, let re=1, Ly=1, M;=1.
To obtain a recursive definition, assume that the 3n numbers

707 L07 Ml’ Ty Ll’ cees Tn1, Ln~1; Mn

are already known.
We then choose a number 7, which satisfies both

+ Pn (M, 2)

1 1,

n-1
log [T|P,(2)|+ M, - log
=1

< 3k(ra) 1)

for |z| =7, and r,>2r,_;.
The natural number L, is then chosen, so that for |z|=rm<rn Ism<mn),
s= 11 there holds, both for y=n and y=n+1

. Ln
10g (1 8 %(Ln, Z)) RN O) 2m—n43k(rm). (22)
L,
Finally M, is defined as M, ,1=0L,.
We now consider a function f(z) defined by
)= T1 Pa(o) (23)

The inequality (22) shows that the infinite product is convergent. For |z|=ry,
we then estimate log |f(z) e*®|. Formula (21) gives:

@Pm(Mm, 2)
M

m

m—1
longP,,(z)I-l—Mm'log 1+ S 3h(ry). (24)
p=1
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Now write P,(z)=¢e %®.P,(z):e™® for n>m, in (23). First, let s=1 and »=

n=zm in (22),
Ln
IOg (1_¢n(Ln; z)) _eqyn(z\ <2m—n—3k(rm) (25)

L,

for |z| =rp.
Then, let s= —1 and y=n+1>m, i.e. M, =L, in (22). For ]z] =r, we then get

(1 + %fﬁ))%. o B

log < 272 h(r,,). (26)

The sum of (24), and (25) for all n>m, and (26) for all »>m, gives (20). Because
r,= 2" the condition

lim7z,=+
n—oe

of (20) is satisfied, and the proof of Theorem 6.2 is complete.

Proof of Theorem 6.1. The function F(r) is given and we intend to define a
function A(r) (h(r)+ oo, and k(r) depends on F(r)) so that (19) of Theorem 6.2
implies (18) of Theorem 6.1. When this is done, Theorem 6.1 follows from Theo-
rem 6.2.

The problem is now reduced to that of defining k(r) from F(r) so that

lim inf (F(log M,, (1))~ F(r)) = — o (27)

7> 00

log M,
whenever lim inf M =
1o h(r)-logr

or even when lifri glf Vi;)&—;% < + o0, (28)
Let the function k(r) be defined by

F(Vh(r)-logr) =1+ F(logr). (29)
By repeated use of (4) we obtain, for each fixed =

lim (F(2" z) — F(z)) = 0. 4')

r—> 0

It follows from (4') and (29) that lim inf A(r) > 2", i.e.

F—>00

lim A(r) = + oo,

Tr—>0o0

From (28) and (4') it follows that
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lim inf (F(log M, (r)) — F(Vh(r) -log 1)) <0 (30)

but we also have: L
lim (F(Vh(r)-log ) — F(log 1)) =1 (29')
and lim (Flogr)—F(r))= — o=. (6"

The sum of (30), (29°) and (5') gives (27) and the proof of Theorem 6.1 is com-
plete.
7. Subsets of the set A7 (f)

Our aim in this section is to show that the constant (log p/t)~* in Theorem 5.5
cannot be replaced by any smaller real number. The question that will remain
unsolved is whether we can replace the inequality by strict inequality in (17) or
vice versa for (31).

As before, u denotes the set function of Definition 1.2.

Theorem 7.1. Let t be a given real number, and p a given natural number,
O0<t<p. A denotes a set of complex numbers. In order that there exist an entire
function f(z) with

A <= 47(f(2)),

a necessary condition ts (Theorem 5.5)

P -1
M(A%’(f))<(logt—) ) (17)
and a sufficient condition is

()< (log %’)Ql. (31)

The sufficiency condition remains to be proved. We first give the proof for
the case p=1.

Because 4 and ¢ are given, the strict inequality in (31) implies the existence
of x such that

~1 -1
)< (log }c) =%< (log %) . (32)

We shall now try to find an entire function f(z) such that, whenever a € 4, the
lower order of

f(z) e
is less than ¢. For this purpose we define four sequences, with elements
dy, Th, @, and c,.
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Let the first two sequences be
dy=e* "=e pn=1,2..
v, =d, D,

We notice that Ppi1 =1, dyiy=di® and d,=rZ71.

As a consequence of u(A4)<(1/k) in (32) and Definition 1.2 there exist sequences
of complex numbers

{an};o =1
such that every ¢ €4 satisfies
la—a,|<e " =d,

for an infinity of values of n. We take one such sequence to be our third se-
quence. An other sequence of this kind is

{Cn};:l

. n
where cn=ay, if Ian'<bn:1‘6

. n
and c, =0 if ]an|>bn=-1~6.

This is because those » for which
la—a,|<d,

but not la—c,)|<d,

holds, constitute a finite set. Thus for every a€ A4 the inequality
Ia — cnl <d,

holds for an infinity of values of n. We take {c,}7-1 as our fourth sequence.
We now introduce the following notation for MacLaurin polynomials of e*

5 (2"

e(N, cpz)= 2 € — § M (33)

m=0 I_’”_’L m=N+1 117’&

If N is not an integer, the first sum is to be taken over 0 <m < N. The func-
tion f(z) is then defined by

)= 11 P.@)
where P, (2) =e(nry, cu2)e((R+1) Tni1, — Cu2).

The convergence of the infinite product follows from the estimate of |1 — P,(z)]
on page 451.
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It now remains to give an estimate of the lower order of f(z)¢* for an arbi-
trary a€A. This a€ 4 is kept constant from now on. Let n>2 be one of those
infinitely many natural numbers for which

|a—cq| < dn

For |z|=7,.1 we estimate log |f(z) e*|. The expression for f(z) ¢* is divided into
five factors.

Q1(z) =P1(2)" Py(2) " ... - Pr1(2)
Qs (2) = e(nry, cn2)
Qy(z) = e - o=cn2
Qu(2) =€ e((n+1) rn 11, = Ca2)
Q5(2) = Pns1(2) * Pra(?) - -
For the estimate of @ (z), let
1<Sm<n—1 and |z|=7p..
log | Py (2)| =log |e(mrp, cm2) - e((m+ 1) 711, — cm2)|
< 2-loge(nry, niry 1)

<2-log ((nry +1)"™) = 2nr, log (7, 41).
For @,(z) this becomes

log |@, ()| < 2n(n ~ 1) r, log (nry 11).
The same estimate for @,(z) gives
log | @;(2)| < nry log (nry 41).
For Q,(z) we use la=cq| <dn=rii1
which gives log | Qs (2)| =|a—¢a] i1 <Thsr.

With N=(n+1)r,.1+1, @,(2) becomes

1= § o

m=N

The inequalities |m > (m/3)", m> N >10b, ., |2|> 10 |cq2| give:

N LA |
,II_Q4(z)l<ebnr,.+1.2(b”_‘“ﬁi<2(6110 _.) <3

and it follows log | Q,(2)|<1.
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For Q;(z), let m>n. The second part of (33) gives

Po(z)= (1 — pCm2 § (sz)k) (1 _ gom § (— cmz)")

k=mrm+1 |10 k=m+D7Tpt1+1 Iic

S (/O L mr. w3 \™m -
—_— . pbmtn+1 _(_.._"in_+1_ . pbmfm, _nﬂ' o]l — <0 m_
1-Pn(z)|<3-¢ a3 i <B-¢ ( o ) (Wm) 62

For m>n>2 it follows, for [z] =1,
[log | Pn(z)|[<12-277
and log | Q5 (2)] < 2.
The final estimate of f(z)e* for |z|=r,,1, n>2, and |a—c,|<d, becomes
log [(z) €| < (2n(n— 1) +n) r,log (nry 1) + 1541 + 1+ 2 =120,

Therefore it follows from limr,= + o0

n—>00

that the lower order of f(z)e* is at most equal to z.
Since a €4 was arbitrarily chosen, it follows that

A<= Aif)

and this proves Theorem 7.1 for the case p=1.
For p>1, put t=1p, 0<tr<1. Let 4 be a given set with

wd)< (log -_})_1 = (log i—o)_l.
We have just proved that there exists an entire function f(z) with
4 < A (f(z).
The function f(z*) gives the final solution, and this is because
A < A3 (f(2)) = A(f(2"))

which follows from the definition of lower order. The proof of Theorem 7.1 is
now complete.
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Chapter IV. Miscellaneous results

8. Strong subadditivity

The strong subadditivity is a property of certain set functions. A set function
(denoted m) is said to be strongly subadditive, if the inequality

m(4 U B)+m(4 n B) <m(4)+m(B)

holds for arbitrary sets 4 und B.
We first mention an example of a strongly subadditive set function. Let 0(4)
denote the capacity (Definition 3.1). The G-capacity is then defined by

G-cap (4) = D(C(A)) ™

(cf. [4] Def. 12 p. 43). Then the G-capacity is strongly subadditive ([4] Theo-
rem 8 p. 47), for certain kernel functions @(t).

The result of this section concerns the subadditive ([9] Satz 3) set function
m(g(z), A) of Definition 1.1, which turns out not to be strongly subadditive.

Proposition 8.1. Let m be the set function of Definition 1.1. Then there exist sets
A, and B, of complex numbers with

m(4; N By) =m(4,) =m(B,) = }
and m(4, U By)=1.

Proof of Proposition 8.1. We now use the same construction as in the proof
of Hilfssatz 2, [9]. The constant k in Hilfssats 2 is here k=1. The set 4 is de-
fined by means of a sequence of circles C,, and we here list all important prop-
erties of these sets.

1. {dnzg(n)};‘ll is a majorizing sequence for the set A.
(This implies m(g(z), 4)<1).
2. mig(z), 4)=m(4)=1.
3. The circles C, uniquely define the set 4 by means of the following covering:

A:a Gon.

m=1 n=m

The radius of the circle C, is g(n).
The center a, of C, is a real number, and the set 4 is thus restricted to
the real axis.
4. For the circles C, there also holds (for certain numbers H(1), H(2), ...)

n=H@m+Dh-1 n=H(p+2)-1
(0 U C,>...04
n=H(p) n=H(p+1)

if p is big enough (p=m).
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5. For a given natural number N with
H(p)SN<H(p+1), (p=m)
those n for which both
H(p+tl)sn<H(p+2)
and C,=Cy
hold, are those given by the relation

2V < < (222,

6. For all n with 2 <n< (22 -1
we have Gy 11~ O = 29(n) A (1te,)
where : lim g, =0.

The sets Ay, By, 4,

o w0

The definitions are: Ai=N U Cania
m=1n=m
BIZ 01 g 0271

=] n=H(p+D)-1

A2= n U Cn
p=m n=H(p)

n+p=even number.

For every point € A there exists a sequence m,,7,,... such that
x€Cy, 1=1,2,...
and Hm)<n <H(m+1)<n,< ...
If x€ 4, this sequence is of the form
... odd, even, odd, even, ... (34)

For each z€ A4, the sequence 7,7, ... contains an infinity of odd numbers (an
infinity of even numbers if z€ B,). It follows

A,cA,cA4, A,cB,c4
and 4,=4,nNB;, A=A,UB,
and m(4, U By)=m(4)=1.
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We deduce from the preceeding that the sequence {g(2n)}%: is a majorizing
sequence for the set A4;, and also for the set B,. This gives (cf. Definition 1.1)

m({d;) <}, m(B)<i
The subadditivity of m ([9), Satz 3) gives
m(A,) +m(By)=m(4, U By)=1,
and it follows m(d,) =m(B,)=1.
There remains to prove m(4, N B,)=1,

and for this purpose it is sufficient to prove

m(Ad,) = %. (35)
This is because A,=A4,N By
and m(d, N By)<i.

The proof of (35) is indirect, and we assume that ¢g((2+¢&)n) is a majorizing
sequence for the set A4,. From this assumption it follows that there exists a se-
quence C, of circles of radii g((2+¢)n) with

i.e. 4, U O (36)

for every N.
We now consider the following two families of circles, subsets of {On};?:l and
{O;L};Lw=1:

; 1 ng 1 '
=100 | (272 —— 4 2< N2 ;=1,2, ...
o {0n|(2 ) g2 n<(2 )2+s+2}’ =12,
where 27 <y < (2,
and
Bi=1{Cn| H(p) <27 <n< (2" <H(pi+1)=H(pi+1), and n +p; is even},

i=1,2,....
The same estimate as in [9] (the proof of Hilfssatz 2) gives that there exists

one O,€p; (say Cn.,) Which does not intersect any O € ;. This holds if »; is big
enough, Therefore ;> Cny 3> COniyy> ... defines a point x€ 4, with
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(if N is big enough). This contradicts (36). Thus the sequence
{g((2 + &) m)}ia
is not a majorizing sequence for the set 4, and
m(4,) > %. ' (35)

The proof of Proposition 8.1 is now complete.

9. The vector sum of nullsets

The sum, 4+ B, of two sets of complex numbers is defined as
A+B={z|z=a+b,a€d, bEB}.
If the set 4 has m(g(z), 4)<(1/k) and if the set B is countable, then

1
migl@), 4+ B) <,
([9] Satz 5).
If the sets A and B are only assumed to have

3

m(g(x), 4) <Ilc and m(g(x), B) <

ES ]

then the vector sum 4+ B can contain all complex numbers. This statement is
independent of the choice of the function g(x). An example where the vector
sum 4+ B contains all complex numbers is the following:

Let the set {a,}s2, be dense and denote

C’n={z“z—an|<g(lm)}
and let 4=B=0 UG,
m=1 n=m

For a given arbitrary complex number z we can define a sequence 7,7, ...
such that

Crip1={C I ,Z"C"‘aml<g(kni)}

This is possible since {an};}il is dense and lim,_,. g(kn)=0.

It follows that Chiyo ©Chn;
and the set N UGy
m=1 i=m

therefore defines two complex numbers, say ¢ € 4 and b€ B, with ¢ +b =z. Thus,
we have shown that each complex number z belongs to A+ B. This example
originates from [3].
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We now investigate the special case when the sets 4 and B are assumed to
have capacity zero with respect to some arbitrary given positive kernel function
®(t). How does this assumption on 4 and B restrict the vector sum A4+ B?

It is here sufficient to apply Proposition 3.2. The function g(x) is at our dis-
posal, and the result is that the sets A and B can be chosen so that each
complex number z belongs to 4+ B.

10. A funciional equation

In this section we study the functional equation from Section 4 of this paper:

g(g(r, 1), t2) =g(r, 8, - 1) (6)

This functional equation is important in the theory of iterated functions, and
log t here indicates the “number of iterations” of the function r—>g(r, e).

The most immediate solutions of (6) are g(r,t) =t and g(r, ) =7*. In this paper
the function ¢(r,t) generalizes the function 7* in function theoretic applications
(Section 4, 5, 6). We now give a solution of the functional equation (6), and then
study the convexity of g¢(r,t) for fixed values of ¢, ¢>1. The function g(r,¢) is
assumed to be twice differentiable with respect to both variables.

The solution of (6): The following assumptions are made

g(r,1)=r
og(r, 1)
P >0.
For ¢{=1 we denote QQ%,L): f(r). (37)
We also assume that fry = C%Q (38)
and F(re)= — o0, F(Ry)= t oo, —oo<ry<R;< + o0,
The solution is then given for
ro<r<nR,,
0<t< + o0,

The functional equation (6) is applied with ¢, =¢ and t,=1+ (dt/¢).
g (g(r, f),1+ %) =g(r,t+dt).

The left and right hand sides are, up to first order terms
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dt 0
x—l-?f(x) and z-dt —8%0,

where x=g(r,t). From this we obtain

fx) _ox
t o

For r=const. the relation to be integrated becomes

&t_ds
b fx)
which gives logt—1log 1 =F(g(r,t))— F(r).

Then the solution of the functional equation is
g(r,t)=F "1 (F(r)+1og?t).

A check shows that this solution fulfils all assumptions made.

Convex solutions:

A problem concerning the convexity of the solutions g(r,t) of (6) is indicated
in [2] (No. 5).

Let g(r,t,) be a convex function of r for some given # >1. Is g(r,¢) then
convex for all £>17

The answer is in the negative

Proof. Differentiation of
Flg(r, t,))=F(r) +logt,

62g(’l', tl)

shows that the convexity condition P >0 is equivalent to
7

@(x) > p(x+logt,) (39)

where the function ¢(x) is defined by

F'(r) (F'(r)~* = g(F(r)).

The same method, or direct use of (37) and (38) shows that g(r,?) is convex for
every ¢t>1 if and only if the function @(x) is monotonic decreasing, or, which
is the same, F'(r)"' is convex. Evidently (39) does not force the function ¢(x)
to be monotonic.
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