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Analytic continuation of residue currents

H̊akan Samuelsson

Abstract. Let X be a complex manifold and let f : X!Cp be a holomorphic mapping

defining a complete intersection. We prove that the iterated Mellin transform of the residue

integral associated with f has an analytic continuation to a neighborhood of the origin in Cp.

1. Introduction

Let X be a complex manifold of complex dimension dimC X=n and let f=
(f1, ..., fp+q) : X!Cp+q be a holomorphic mapping defining a complete intersection.
For a test form ϕ∈Dn,n−p(X) we let the residue integral of f be the integral

Iϕ
f (ε)=

∫
T (ε)

ϕ

f1...fp+q
,

where T (ε) is the tubular set T (ε)=
⋂p

j=1{z ;|fj(z)|2=εj}∩
⋂p+q

j=p+1{z ;|fj(z)|2>εj}.
If we let ε tend to zero along a path to the origin in the first orthant such that
εj/ε

k
j+1!0 for j=1, ..., p+q−1 and all k∈N, a so called “admissible path”, then

by fundamental results of Coleff–Herrera [7] and Passare [12] the residue integral
converges and the limit defines the action of a (0, p)-current on the test form ϕ.
We will refer to this current as the Coleff–Herrera–Passare current and denote it
suggestively by

∂̄

[
1
f1

]
∧...∧∂̄

[
1
fp

][
1

fp+1

]
...

[
1

fp+q

]
,

or sometimes RpP q[1/f ] for short. The current Rp[1/f ] is the classical Coleff–
Herrera product, a current which has proven to be a good notion of a multivariable
residue of f , but also the currents RpP q[1/f ], with q≥1, have turned out to be
important for the theory. In particular, if q=1 then RpP q[1/f ] is a ∂̄-potential to
the Coleff–Herrera product.
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The first question raised by Coleff and Herrera in the book [7] is whether the
residue integral Iϕ

f (ε) has an unrestricted limit as ε tends to zero. This question was
answered in the negative by Passare and Tsikh in [14], where they found two poly-
nomials in C2, with the origin as the only common zero, such that the corresponding
residue integral does not converge unrestrictedly; large classes of such examples were
then found by Björk. In this sense, the definition of the Coleff–Herrera–Passare cur-
rent is quite unstable. A different and, as we will see, more rigid approach is based
on analytic continuation. Let λ1, ..., λp+q be complex parameters with Reλj large.
Then the integral

Γϕ
f (λ)=

∫
X

∂̄|f1|2λ1∧...∧∂̄|fp|2λp |fp+1|2λp+1 ...|fp+q|2λp+q

f1...fp+q
∧ϕ

makes sense and defines an analytic function of λ. This function is the iterated
Mellin transform of the residue integral, i.e.,

±Γϕ
f (λ)=

∫
[0,∞)p+q

Iϕ
f (s) d(sλ1

1 )∧...∧d(sλp+q

p+q ).

It is known that Γϕ
f (λ) has a meromorphic continuation to all of C

p+q and that its
only possible poles in a neighborhood of the half space

⋂p+q
j=1{λ;Reλj≥0} are along

hyperplanes of the form
∑p+q

j=1 ajλj =0, aj∈Q+. Moreover, by results of Yger, the
restriction of Γϕ

f (λ) to any complex line of the form {λ=(t1z, ..., tpz);z∈C}, tj∈R+,
is analytic at the origin and the value there equals the action of the Coleff–Herrera–
Passare current on ϕ. In the case of codimension two, i.e., when f=(f1, f2), it is
also known that the corresponding Γ-functions are analytic in some neighborhood
of

⋂2
j=1{λ;Reλj≥0}. Yger has posed the question whether this generalizes to

arbitrary codimensions. The purpose of this paper is to prove the following theorem,
which answers Yger’s question in the affirmative.

Theorem 1. Let X be a complex manifold of complex dimension n and let f=
(f1, ..., fp+q) : X!C

p+q be a holomorphic mapping defining a complete intersection.
If N is a positive integer and ϕ∈Dn,n−p(X) is a test form on X then the integral

Γϕ
fN (λ)=

∫
X

∂̄|f1|2λ1∧...∧∂̄|fp|2λp |fp+1|2λp+1 ...|fp+q|2λp+q

fN
1 ...f

N
p+q

∧ϕ,(1)

is analytic in a half space {λ∈Cp+q ;Reλj>−ε, 1≤j≤p+q} for some ε∈Q+ in-
dependent of N .

We remark that for non-complete intersections, the Γ-function still is mero-
morphic in Cp+q but will in general have poles along hyperplanes through the origin.
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Our proof of Theorem 1 uses Hironaka’s theorem on resolutions of singularities, [10],
to reduce to the case when {z ;f1(z)...fp+q(z)=0} has normal crossings, i.e., in local
coordinates on a blow-up manifold lying above X , the pull-back, f̂j , of the fj are
monomials times invertible holomorphic functions. (For our proof it is actually
enough to use the weaker version of Hironaka’s theorem where the projection from
the blow-up manifold to X is allowed to be “finite-to-one” outside the exceptional
divisor.) In general, the f̂j do not define a complete intersection on the blow-
up manifold but the information that the fj do on the base manifold is coded
in the pull-back, ϕ̂, of the test form ϕ. We are able to recover this information
using a Whitney-type division lemma for (anti)-holomorphic forms. It is also worth
noticing that for p=1, the problem of analytic continuation of Γϕ

fN (λ) is of local
nature on the blow-up manifold, i.e., it suffices to consider one chart on the blow-
up at a time. This is not the case if p≥2 and q≥1, all charts on the blow-up
have to be considered simultaneously. We give a simple example showing this in
Section 3. In [16] we were able to overcome this problem in the special case when
p=2 and q=1 by quite involved integrations by parts on the blow-up manifold.
Very rewarding discussions with Jan-Erik Björk have resulted in a much simpler
and more transparent argument based on induction over p.

We continue and give a short historical account of analytic continuation of
residue currents. The case p=0 and q=1 is the most studied one and the analytic
continuation was in this case proved by Atiyah in [2] using Hironaka’s theorem; see
also [5]. The main point was to get a multiplicative inverse of f in the space of
currents, and indeed, the value at λ=0 gives a current U such that fU=1 in the
sense of currents. At the same time, Dolbeault and Herrera–Lieberman proved, also
using Hironaka’s theorem, that the principal value current of 1/f , defined by

Dn,n(X)�ϕ �−! lim
ε!0

∫
|f |2>ε

ϕ

f
,

and denoted [1/f ], exists, cf. [8] and [9]. It is elementary to see that this current
coincides with the current defined by Atiyah if f is a monomial and for general f it
then follows from Hironaka’s theorem. A perhaps more conceptual explanation for
this equality is that the two definitions are linked via the Mellin transform; recall
from above that

∫
X
|f |2λϕ/f is the Mellin transform of ε �!∫

|f |2>ε
ϕ/f . The poles

of the current-valued function λ �!|f |2λ/f are closely related to the roots of the
Bernstein–Sato polynomial, b(λ), associated with f . By Bernstein–Sato theory, see,
e.g., [6], f satisfies some functional equation

b(λ)f̄λ =
p+q∑
j=1

λjQj(f̄λ+1),
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where Qj are anti-holomorphic differential operators. By iterating m times and
multiplying with fλ/fN it follows that

b(λ+m)...b(λ)
|f |2λ

fN
=

p+q∑
j=1

λjRj

(
f̄m |f |2λ

fN

)

for some anti-holomorphic differential operators Rj . If ϕ∈Dn,n(X) and R∗
j is the

adjoint operator of Rj it thus follows that

∫
X

|f |2λ ϕ

fN
=

1
b(λ+m)...b(λ)

p+q∑
j=1

λj

∫
X

|f |2λ f̄
m

fN
R∗

j (ϕ).(2)

Now, from Kashiwara’s result, [11], we know that b(λ) has all of its roots contained
in the set of negative rational numbers. Hence, we can read off from (2) that the
current-valued function λ �!|f |2λ/fN has a meromorphic continuation to all of C

and that its poles are contained in arithmetic progressions of the form {−s−N} with
s∈Q+. In particular, λ �!∫

X |f |2λϕ/fN is holomorphic in some half space Reλ>−ε
for some ε∈Q+ independent of N . A detailed study of the poles that actually ap-
pear was done by Barlet in [3]. Consider now instead the current-valued function
λ �!∂̄|f |2λ/f . It is the ∂̄-image of λ �!|f |2λ/f and has thus also a meromorphic
continuation to all of C with poles contained in arithmetic progressions of the form
{−s−N}. The value at λ=0 is now the residue current ∂̄[1/f ], i.e., the ∂̄-image
of [1/f ]. The case when f is one function, i.e., p+q=1, is thus well understood.
When p+q>1, the picture is not that coherent. We have seen that Γϕ

f (λ) is the
iterated Mellin transform of the residue integral but from the examples by Passare–
Tsikh and Björk mentioned above, we know that Γϕ

f (λ) is not the Mellin transform
of a continuous function in general. A multivariable Bernstein–Sato approach has
been considered, but by results of Sabbah [15] the zero set of the multivariable
Bernstein–Sato polynomial will in general intersect

⋂p+q
j=1{λ;Reλj≥0}, and so this

method cannot be used to prove our result. On the other hand, it shows that
Γϕ

f (λ) has a meromorphic continuation to all of Cp+q. More direct approaches
have been considered by, e.g., Berenstein, Gay, Passare, Tsikh, and Yger and the
case q=0 has got the most attention. For instance, a direct proof of the meromor-
phic continuation of Γϕ

f (λ) to all of Cp can be found in [13]. Also, as mentioned
above, it is proved in [17] that the restriction of λ �!Γϕ

f (λ) to any complex line
of the form {λ=(t1z, ..., tpz);z∈C}, where tj∈R+, is analytic at the origin and
that the value there equals the Coleff–Herrera product. The first analyticity re-
sult in several variables was obtained by Berenstein and Yger. They proved that
if p+q=2, then Γϕ

f (λ) is in fact analytic in a half space in C2 containing the ori-
gin, see, e.g., [4] and [13] for proofs. In view of these positive results it has been
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believed that this holds in general, but to our knowledge no complete proof has
appeared.

This paper is organized as follows. Section 2 contains an outline of the proof
in the case p=2 and q=1. This is to show the essential steps without confronting
technical and notational difficulties. In Section 3 we give a simple example showing
that global effects on the blow-up manifold have to be taken into account when p≥2
and q≥1. The detailed proof of Theorem 1 is contained in Section 4.

Acknowledgements. I am grateful to Jan-Erik Björk for his help and support
during the preparation of this paper. His insightful comments and suggestions have
substantially improved and simplified many arguments as well as the presentation.

2. The main elements of the proof

In this section we illustrate the main new ideas in our proof by considering the
case when p=2 and q=1. Let f1, f2, and f3 be holomorphic functions in C3 (for
simplicity) and assume that the origin is the only common zero. Using the tech-
niques of, e.g., [4] or [13] it is not hard to prove that the current-valued function
λ �!(f−1

1 ∂̄|f1|2λ1)f−1
2 |f2|2λ2f−1

3 |f3|2λ3 can be analytically continued to a neighbor-
hood of the origin; see also Proposition 4 below. Assume now that we can prove
that there is a polynomial P12(λ1, λ2), which is a product of linear factors aλ1+bλ2

in λ1 and λ2, such that the current-valued function

λ �−!P12(λ1, λ2)
∂̄|f1|2λ1∧∂̄|f2|2λ2 |f3|2λ3

f1f2f3
(3)

can be analytically continued to a neighborhood of the origin. That is, we assume
for the moment that the only possible poles (close to the origin) of the mero-
morphic current-valued function (f−1

1 ∂̄|f1|2λ1)∧(f−1
2 ∂̄|f2|2λ2)f−1

3 |f3|2λ3 are along
hyperplanes of the form aλ1+bλ2=0. Consider the equality of currents

∂̄
∂̄|f1|2λ1 |f2|2λ2 |f3|2λ3

f1f2f3
=− ∂̄|f1|

2λ1∧∂̄|f2|2λ2 |f3|2λ3

f1f2f3
(4)

− ∂̄|f1|2λ1 |f2|2λ2∧∂̄|f3|2λ3

f1f2f3
,

which holds for Reλ1,Reλ2,Reλ3�1. We know that the left-hand side can be
analytically continued to a neighborhood of the origin and we have assumed that
we can prove that the first term on the right-hand side only has poles (close to the
origin) along hyperplanes aλ1+bλ2=0. The last term on the right-hand side there-
fore also has only such poles. But, by permuting the indices, we can, assumingly,
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prove that the last term on the right-hand side only has poles along hyperplanes of
the form a′λ1+b′λ3=0. We can thus conclude that the only possible pole that the
last term on the right-hand side can have is along λ1=0. On the other hand, if we
switch the indices 1 and 3 in (4) we similarly get that the last term in (4) only has
poles along hyperplanes a′′λ2+b′′λ3=0. (The last term is unaffected by the switch
modulo a sign.) Its possible pole along λ1=0 is thus not present. In conclusion, the
last term in (4) has an analytic continuation to a neighborhood of the origin if we
can prove the existence of a polynomial P12(λ1, λ2) such that (3) can be analytically
continued to a neighborhood of the origin. To do this, we use Hironaka’s theorem
to compute Γϕ

f (λ) on a blow-up manifold. More precisely, for some neighborhood U
of an arbitrary point in C3 one can find a blow-up manifold U , lying properly above
the base U , such that the preimage Z of Z={x;f1(x)f2(x)f3(x)=0} has normal
crossings and U\Z is biholomorphic to U \Z. By a partition of unity we may as-
sume that ϕ has support in such a U and we pull our integral Γϕ

f (λ) back to U .
In local charts on U , we then have that the pullback, f̂j , of the fj are monomials,
xα(j), times invertible holomorphic functions. Let us consider a generic chart where
the multiindices α(1), α(2), and α(3) are linearly independent. It is then possible to
define new coordinates, still denoted x, such that the invertible holomorphic func-
tions are ≡1; see, e.g., [12]. We note that, in general, there are also so called charts
of resonance where one cannot choose coordinates so that the invertible functions
are ≡1. These charts are responsible for the discontinuity of the residue integral,
Iϕ
f (ε), but do not cause any problems in our situation. We shall thus consider the

integral
∫

X

∂̄|xα(1)|2λ1∧∂̄|xα(2)|2λ2 |xα(3)|2λ3

xα(1)xα(2)xα(3)
∧ρϕ̂,(5)

where ρ is some cut-off function on U . In C3, we have ϕ(z)=
∑3

j=1 ϕj(z) dz∧dz̄j ,
and so, by linearity we may assume that ϕ has a decomposition ϕ=φ∧ψ̄, where
φ∈D3,0(C3) and ψ̄ is the conjugate of a holomorphic 1-form. The pullback ϕ̂=φ̂∧ψ̂
thus also has such a decomposition. For simplicity we assume that ψ̂=h(x) dx3 for
a holomorphic function h on U . Then (5) equals

(6) λ1λ2

∫
X

|xα(1)|2λ1 |xα(2)|2λ2 |xα(3)|2λ3

xα(1)xα(2)xα(3)

dx̄α(1)∧dx̄α(2)

x̄α(1)x̄α(2)
∧ρϕ̂

=λ1λ2

∫
X

|xα(1)|2λ1 |xα(2)|2λ2 |xα(3)|2λ3

xα(1)xα(2)xα(3)
A12

dx̄1∧dx̄2

x̄1x̄2
∧ρϕ̂,

where A12=α(1)1α(2)2−α(1)2α(2)1. We may assume that A12>0 and so, in par-
ticular, α(1)1>0 and α(2)2>0. To avoid having to consider so many cases we also
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assume that α(1)2=α(2)1=0. The cases when this is not fulfilled do not cause any
additional difficulties and can be treated similarly. Three cases can occur:

(i) Neither x1 nor x2 divides xα(3).
(ii) Precisely one of x1 and x2 divides xα(3).
(iii) Both x1 and x2 divide xα(3).
Consider the case (ii) and assume that x1 divides xα(3). The variety V ={x;

f1(x)=f3(x)=0} in C3 has codimension 2 since f1, f2, and f3 define a complete
intersection, and so the holomorphic 2-form df2∧ψ has a vanishing pullback to V .
Since x1 divides both f̂1=xα(1) and f̂3=xα(3) we see that df̂2∧ψ̂=dxα(2)∧ψ̂ must
have a vanishing pullback to {x;x1=0}⊆{x;f̂1(x)=f̂3(x)=0}. But x1 does not
divide xα(2) and hence, dxα(2)∧ψ̂|x1=0=0 in U , where ψ̂|x1=0 means the pullback of
ψ̂ to {x;x1=0} extended constantly to U . This implies that we may replace ϕ̂=φ̂∧ψ̂
in (6) by φ̂∧(ψ̂−ψ̂|x1=0) without affecting the integral. Now, x1 divides ψ̂−ψ̂|x1=0

so we may in fact assume that ϕ̂ in (6) is divisible by x̄1, or formulated differently,
that (dx̄1/x̄1)∧ϕ̂ is a smooth form. If we instead consider the case (iii), similar
degree arguments give that dxα(1)∧ψ̂|x2=0=dxα(2)∧ψ̂|x1=0=0 in U . We may then
replace ϕ̂ in (6) by

φ̂∧(
ψ̂−ψ̂|x1=0−ψ̂|x2=0+ψ̂|x1=x2=0

)
(7)

without affecting the integral. But (7) is divisible by x̄1x̄2, and so, in this case, we
may assume that (dx̄1/x̄1)∧(dx̄2/x̄2)∧ϕ̂ is a smooth form. It is now easy to see
that (6) has a meromorphic continuation and that its possible poles close to the
origin are along hyperplanes aλ1+bλ2=0. In case (i), we write (6) as

A12
λ1λ2

µ1µ2

∫
X

∂̄|x1|2µ1∧∂̄|x2|2µ2 |x3|2µ3

xα1
1 xα2

2 xα3
3

∧ρϕ̂,

where µj=
∑3

i=1 λiα(i)j and αj=
∑3

i=1 α(i)j . It is an easy one-variable problem
to see that this integral (without the coefficient) has an analytic continuation to
a neighborhood of the origin; cf., e.g., Lemma 2.1 in [1]. Since neither x1 nor
x2 divides xα(3), i.e., α(3)1=α(3)2=0, we have µ1=α(1)1λ1+α(2)1λ2 and µ2=
α(1)2λ1+α(2)2λ2 and it follows that (6) only has poles of the allowed type in the
case (i). In the case (ii) (with x1 dividing xα(3)) we write (6) as

−A12
λ1λ2

µ2

∫
X

|x1|2µ1 ∂̄|x2|2µ2 |x3|2µ3

xα1
1 xα2

2 xα3
3

∧ dx̄1

x̄1
∧ρϕ̂.

Now µ2=α(1)2λ1+α(2)2λ2, since x2 does not divide xα(3), and from our consider-
ations above we may assume that (dx̄1/dx̄1)∧ϕ̂ is smooth. It follows that (6) only
has the allowed type of poles in the case (ii) as well. The case (iii) is easier; then
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we may assume that (dx̄1/x̄1)∧(dx̄2/x̄2)∧ϕ̂ is a smooth form and (6) is in this case
even analytic at the origin.

Remark 2. As mentioned in the introduction, and shown in the next section,
it is necessary to take global effects on the blow-up manifold into account when
proving analyticity of (1) beyond the origin. However, as indicated by the above
argument, the problem of showing that (1) only has poles along hyperplanes of the
form

∑p
j=1 ajλj =0 is of a local nature on the blow-up; cf. [16].

3. An example

We present a simple example showing that global effects on the blow-up mani-
fold have to be taken into account when proving our result for p≥2 and q≥1.
Consider the integral∫

X

|x1|2λ1 ∂̄|x2|2λ2∧∂̄|x3|2λ3

x1x2x3
∧ϕ(x)dx∧dx̄1(8)

in C
3, where ϕ is a function defined as follows. Let φ, ϕ2 and ϕ3 be smooth functions

on C with support close to the origin but non-vanishing there, and put ϕ1=∂φ/∂z̄.
We define ϕ(x) to be the function ϕ1(x1)ϕ2(x2)ϕ3(x3) in C

3. Note that (8) equals∫
X

|x1|2λ1 |x2|2λ2 |x3|2λ3

x1x2x3
ϕ1
∂ϕ2

∂x̄2

∂ϕ3

∂x̄3
dx∧dx̄

after two integrations by parts, from which we see that (8) is analytic at λ=0. Now
we blow up C3 along the x1-axis and look at the pullback of (8) to this manifold.
Let π : C×B0C

2!C3 be the blow-up map. In the natural coordinates z and ζ on
C×B0C

2 it then looks like

π(z1, z2, z3)= (z1, z2, z2z3),

π(ζ1, ζ2, ζ3)= (ζ1, ζ2ζ3, ζ2).

Since ϕ has support close to the origin, π∗ϕ has support close to π−1(0)=
{z ;z1=z2=0}∪{ζ ;ζ1=ζ2=0}∼=CP

1. Note that z3 and ζ3 are natural coordinates
on this CP

1 and choose a partition of unity, {ρ1, ρ2} on supp(π∗ϕ) such that
supp(ρ1)⊂{z ;|z3|<2} and supp(ρ2)⊂{ζ ;|ζ3|<2}. The pullback of (8) under π now
equals

∫
X

|z1|2λ1 ∂̄|z2|2λ2∧∂̄|z2z3|2λ3

z1z2
2z3

∧ρ1(z)ϕ1(z1)ϕ2(z2)ϕ3(z2z3)z2 dz∧dz̄1

−
∫

X

|ζ1|2λ1 ∂̄|ζ2ζ3|2λ2∧∂̄|ζ2|2λ3

ζ1ζ2
2 ζ3

∧ρ2(ζ)ϕ1(ζ1)ϕ2(ζ2ζ3)ϕ3(ζ2)ζ2 dζ∧dζ̄1.
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We know that this sum (difference) is analytic at λ=0 but we will see that none of
the terms are. Consider the first term. It is easily verified that it can be written as

λ2

λ2+λ3

∫
X

|z1|2λ1 ∂̄|z2|2(λ2+λ3)∧∂̄|z3|2λ3

z1z2z3
ρ1(z)ϕ1(z1)ϕ2(z2)ϕ3(z2z3) dz∧dz̄1.

We denote this integral, with the coefficient λ2/(λ2+λ3) removed, by I(λ). After
two integrations by parts one sees that I(λ) is analytic at the origin, and so
λ2I(λ)/(λ2+λ3) is analytic at the origin if and only if I(λ) vanishes on the hyper-
plane λ2+λ3=0. In particular we must have that I(0)=0. But I(0) can be com-
puted using Cauchy’s formula, and one obtains I(0)=−(2πi)3φ(0)ϕ2(0)ϕ3(0) �=0,
where i here, but not elsewhere, denotes the imaginary unit.

Remark 3. This example could be a little confusing. The variable z1 just
appears as a “dummy variable” in the computations above, to which nothing inter-
esting happens. This indicates that global effects appear already in the case p=2
and q=0. It is in fact so, but in this case the analyticity follows, simply by applying
to ∂̄-exact test forms, if we can prove analyticity of

(λ1, λ2) �−!
∫

X

|f1|2λ1 ∂̄|f2|2λ2

f1 ·f2 ∧ϕ, ϕ∈Dn,n−1(X).

This can actually be done using only local arguments, see, e.g., Proposition 4 below.
The case p=2, q=0 can therefore be reduced to a case where only local arguments
are needed, but for p≥2 and q≥1 this is in general not possible.

4. The proof

We give here the detailed proof of Theorem 1. We begin with the following
proposition, whose proof relies on the Whitney-type division lemma (Lemma 5)
below.

Proposition 4. Let f=(f1, ..., fp) : X!Cp be a holomorphic mapping defin-
ing a complete intersection and let g1, ..., gq be holomorphic functions on X such
that (f1, ..., fp, gj) defines a complete intersection for each j=1, ..., q. Let also
ϕ∈Dn,n−p(X) be a test form and N a positive integer. Then, for some ε∈Q+

independent of N , the function

Γϕ
f,g(λ)=

∫
X

∂̄|f1|2λ1∧...∧∂̄|fp|2λp |g1|2λp+1 ...|gq|2λp+q

fN
1 ...f

N
p g

N
1 ...g

N
q

∧ϕ,

originally defined when all Reλj are large, has a meromorphic continuation to
all of Cp+q and its only possible poles in the half space H={λ∈Cp+q ;Reλj>−ε,
1≤j≤p+q} are along hyperplanes of the form

∑p
j=1 ajλj =0, where aj∈N and at
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least two of the aj are non-zero. In particular, if p=1 then Γϕ
f,g(λ) is analytic

in H.

Proof. It is well known that Γϕ
f,g(λ) has a meromorphic continuation to all

of Cp+q so we only check that its possible poles in H are of the prescribed form.
We will compute Γϕ

f,g(λ) by pulling the integral back to a blow-up manifold, X ,
given by Hironaka’s theorem, where the variety {x;f̂1(x)...f̂p(x)·ĝ1(x)...ĝq(x)=0}
has normal crossings; cf. Section 2. (The hat, ,̂ means pullback to the blow-up.)
We can thus write

Γϕ
f,g(λ)=

∑
ρ

∫
X

∂̄|f̂1|2λ1∧...∧∂̄|f̂p|2λp |ĝ1|2λp+1 ...|ĝq|2λp+q

f̂N
1 ...f̂

N
p ĝ

N
1 ...ĝ

N
q

∧ρϕ̂,

where {ρ} is a partition of unity of supp(ϕ̂) and each ρ has support in a coordinate
chart where f̂i and ĝj are monomials times invertible holomorphic functions. Let
us consider a chart with holomorphic coordinates x in which f̂1=u1x

α(1), ..., f̂p=
upx

α(p) and ĝ1=v1xβ(1), ..., ĝq=vqx
β(q), where the ui and the vj are invertible and

holomorphic. Denote by m the number of vectors in a maximal linearly independent
subset of {α(1), ..., α(p)} and assume for simplicity that α(1), ..., α(m) are linearly
independent. It is then possible to define new coordinates, still denoted by x, such
that u1=...=um≡1 in the new coordinates; see, e.g., [12, p. 46]. Now, for each
j=m+1, ..., p, α(j) is a linear combination of α(1), ..., α(m) and it follows from
exterior algebra that dxα(j)∧dxα(1)∧...∧dxα(m)=0. In the x-chart, the term we
are looking at can therefore be written

∫
X

∂̄|xα(1)|2λ1∧...∧∂̄|xα(m)|2λm |xλγ |2
xNαxNβ

ρV λUλ∧dūm+1∧...∧dūp∧ϕ̂,(9)

where we have introduced the notation:

α=
p∑

j=1

α(j),

β=
q∑

j=1

β(j),

λγ=
p∑

j=m+1

λjα(j)+
q∑

j=1

λp+jβ(j),

V λ =
|v1|2λp+1 ...|vq|2λp+q

(v1...vq)N
,

Uλ =λm+1...λp
|um+1|2λm+1−2...|up|2λp−2

(um+1...up)N−1
.
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Let K⊆{1, ..., n} be the set of indices i such that xi divides at least some ĝj. We
will use the following division lemma, proved below, to replace the form dūm+1∧
...∧dūp∧ϕ̂ in (9) by another one, which vanishes on the variety {x;

∏
i∈K xi=0}.

Lemma 5. If ψ is a holomorphic (n−p)-form on the base manifold X, then
one can find explicitly a holomorphic (n−m)-form ω in the x-chart on X such that

(i) (dxj/xj)∧(dum+1∧...∧dup∧ψ̂−ω) is non-singular for all j∈K, and
(ii) dxα(1)∧...∧dxα(m)∧ω=0.

By linearity, we may assume that ϕ is decomposable and write ϕ=φ1∧φ̄2,
where φ1∈Dn,0(X) and φ2 is a holomorphic (n−p)-form. With φ2 as in-data to
Lemma 5 we thus see that we may replace dūm+1∧...∧dūp∧ϕ̂ in (9) by an (n, n−m)-
form ξ, without affecting the integral, such that (dx̄j/x̄j)∧ξ is smooth for all j∈K.
It follows that for any L⊆K,

∧
j∈L(dx̄j/x̄j)∧ξ is a smooth form. Using Leibniz’

rule to expand the expressions ∂̄|xα(j)|2λj , 1≤j≤m, the integral (9) can be written

∑
i1<...<im

det(A(i1, ..., im))
∫
X

|xλ(α+β)|2
xN(α+β)

dx̄i1∧...∧dx̄im

x̄i1 ...x̄im

∧Φ(x;λ),(10)

where A(i1, ..., im) is the matrix (α(ik)il
)k,l,

λ(α+β)=
p∑

j=1

λjα(j)+
q∑

j=1

λp+jβ(j),

and

Φ(x;λ)=λ1...λmρV
λUλ∧ξ.

We emphasize that Φ is a smooth compactly supported form depending analytically
on λ and that

∧
j∈L(dx̄j/x̄j)∧Φ, L⊆K, also is. For notational convenience, we

consider the term of (10) with ij=j and to make our considerations non-trivial we
then assume that A:=A(1, ...,m) is non-singular. Furthermore, we assume, also for
simplicity, that 1, ..., k /∈K and that k+1, ...,m∈K. If we put µ=λ(α+β) we can
write the term under consideration as

(11)
det(A)
µ1...µk

∫
X

∂̄|x1|2µ1∧...∧∂̄|xk|2µk |xk+1|2µk+1 ...|xn|2µn

xN(α+β)

∧ dx̄k+1∧...∧dx̄m

x̄k+1...x̄m
∧Φ(x;λ).

Here, the expression on the second row is a smooth compactly supported form
depending analytically on λ. After this observation it is a one-variable problem to
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see that the integral, without the coefficient in front, has an analytic continuation
to some half space H independent of N ; see, e.g., Lemma 2.1 in [1]. The possible
poles are therefore only along hyperplanes of the form µj =0. Fix a j with 1≤j≤k.
Then j /∈K, which means that xj does not divide any of the ĝ-functions. Hence,
β(1)j =...=β(q)j=0, and consequently, µj =

∑p
i=1 α(i)jλi. Moreover, if µj happens

to be proportional to some λi then, first of all, xj must divide xα(i) but no other
xα(l) (or any xβ(l)). Secondly, the term (11) of (10) that we are considering must
have arisen from the term in the Leibniz expansion of (9) when the ∂̄ in front of
|xα(i)|2λi has fallen on |xα(i)j

j |2λi . Thus, i≤m and no other µν with 1≤ν≤k can
be proportional to λi. Since Φ(x;λ) is divisible by λi we can therefore cancel poles
along hyperplanes µj =0 if µj is proportional to some λi. In conclusion, Γϕ

f,g(λ) has
a meromorphic continuation to some half space H with possible poles only along
hyperplanes of the form

∑p
j=1 ajλj =0, where aj∈N and at least two aj must be

non-zero. �

Proof of Lemma 5. Put Ψ=dum+1∧...∧dup∧ψ̂ and define

ω=
∑
j∈K

Ψj−
∑

i,j∈K
i<j

Ψij +...+(−1)|K|−1Ψi1...i|K| ,

where Ψi1...il
means the pullback of Ψ to {x;xi1 =...=xil

=0} extended constantly
to C

n. A straightforward induction over |K| shows that ω so defined satisfies (i).
(See also [16].) To see that ω satisfies (ii), consider a Ψi1...il

. Let L be the set
of indices j such that no xik

, 1≤k≤l, divides f̂j and write L=L′∪L′′, where L′=
{j∈L;j≤m} and L′′={j∈L;m+1≤j≤p}. For each xik

, with 1≤k≤l, we know
that xik

divides some ĝ-function, say ĝjk
. The variety {x;xi1 =...=xil

=0} is then
contained in {x;ĝj1(x)=...=ĝjl

(x)=0}∩⋂
i/∈L{x;f̂i(x)=0}, i.e., in the preimage of

V :={x;gj1(x)=...=gjl
(x)=0}∩⋂

i/∈L{x;fi(x)=0}. Since (f, gj) defines a complete
intersection for any j, the variety V has codimension at least p−|L|+1. Now, the
form

∧
j∈L dfj∧ψ has degree n−p+|L| and thus, has a vanishing pullback to V .

Hence, we get that

( ∧
j∈L

dfj∧ψ
)∧

=
∧
j∈L

df̂j∧ψ̂=
∧

i∈L′
dxα(i)∧

∧
j∈L′′

d(ujx
α(j))∧ψ̂

has a vanishing pullback to {x;xi1 =...=xil
=0}. But this means that

x
∑

i∈L′′ α(i)
∧

j∈L′
dxα(j)∧

( ∧
k∈L′′

duk∧ψ̂
)
i1...il

+
∧

ι∈L′
dxα(ι)∧

∑
ν∈L′′

dxα(ν)∧ξν = 0
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for some forms ξν , where the first term arises when no differential hits any xα(j),
j∈L′′. Taking the exterior product with

∧
j /∈L′′(duj)i1...il

we obtain

x
∑

i∈L′′ α(i)
∧

j∈L′
dxα(j)∧Ψi1...il

+
∧

ι∈L′
dxα(ι)∧

∑
ν∈L′′

dxα(ν)∧ξ̃ν = 0.

We now multiply this equation with the exterior product of all dxα(j) with j≤m
and j /∈L′. Then we get dxα(1)∧...∧dxα(m) in front of the sum and this makes all
terms under the summation sign disappear since every α(ν), with ν∈L′′, is a linear
combination of α(1), ..., α(m). It thus follows that

x
∑

i∈L′′dxα(1)∧...∧dxα(m)∧Ψi1...il
= 0,

and since this holds everywhere we may remove the factor x
∑

i∈L′′ and conclude
that ω has the property (ii). �

Proof of Theorem 1. The proof is based on induction over p. The induction
start, p=1, follows from Proposition 4. Assume therefore that the theorem is proved
for p=k. We introduce the notation γ(λi1 , ..., λip ;λ∗) for the current-valued function

∂̄|fi1 |2λi1 ∧...∧∂̄|fip |2λip |fj1 |2λj1 ...|fjq |2λjq

fN
1 ...f

N
p+q

.

When all Reλj are large we have the equality of currents

∂̄γ(λ1, ..., λk;λ∗)= (−1)k

q∑
j=1

γ(λ1, ..., λk, λk+j ;λ∗),

and by our assumption, the left-hand side is analytic in some half space H in-
dependent ofN . Moreover, by Proposition 4, the term on the right-hand side corres-
ponding to j has only poles along hyperplanes of the form ak+jλk+j +

∑k
i=1 aiλi=0.

It thus follows that γ(λ1, ..., λk+1;λ∗), on one hand, only has poles along hyper-
planes

∑k+1
i=1 aiλi=0 and, on the other, only has poles along hyperplanes ak+jλk+j +∑k

i=1 aiλi=0 with j>1. But then γ(λ1, ..., λk+1;λ∗) can only have poles along hy-
perplanes of the form

∑k
i=1 aiλi=0. Consider now the current equality

∂̄γ(λ1, ..., λk−1, λk+1;λ∗)= (−1)k+1γ(λ1, ..., λk+1;λ∗)

+(−1)k

q∑
i=2

γ(λ1, ..., λk−1, λk+1, λk+i;λ∗).

From this it follows similarly that γ(λ1, ..., λk+1;λ∗) can only have poles along
hyperplanes of the form ak+1λk+1+ak+jλk+j +

∑k−1
i=1 aiλi=0 with j>1. Since we
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know that its only poles are along
∑k

i=1 aiλi=0, we see that it in fact only can have
poles along

∑k−1
i=1 aiλi=0. Continuing in this way, looking at appropriate current

equalities and using the induction hypothesis and Proposition 4, we eventually
see that γ(λ1, ..., λk+1;λ∗) cannot have any poles at all in H . This concludes the
induction step and consequently the proof of Theorem 1. �
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i Priložen. 3 (1969), 84–85 (Russian). English transl.: Functional Anal. Appl.
3 (1969), 68–69.

6. Björk, J. E., Analytic D-Modules and Applications, Mathematics and its Applications
247, Kluwer, Dordrecht, 1993.

7. Coleff, N. R. and Herrera, M. E., Les courants résiduels associés à une forme
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