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A Wiener–Wintner theorem for the Hilbert
transform

Michael Lacey and Erin Terwilleger

Abstract. We prove the following extension of the Wiener–Wintner theorem and the

Carleson theorem on pointwise convergence of Fourier series: For all measure-preserving flows

(X, µ, Tt) and f∈Lp(X, µ), there is a set Xf ⊂X of probability one, so that for all x∈Xf ,

lim
s#0

∫
s<|t|<1/s

eiθtf(Tt x)
dt

t
exists for all θ.

The proof is by way of establishing an appropriate oscillation inequality which is itself an extension

of Carleson’s theorem.

1. The main theorem

We are concerned with quantitative inequalities related to the pointwise con-
vergence of singular integrals that are uniform with respect to modulation. To state
our results, define dilation and modulation operators by

Dil(p)
s f(x) def= s−1/pf

(x
s

)
, 0<s, p<∞,(1.1)

Dil(∞)
s f(x) def= f

(x
s

)
, 0<s<∞,

Modξ f(x) def= eixξf(x), ξ ∈R.(1.2)

Let K be a distribution. The most important example will be KH(y)def= ζ(y)/y,
where ζ is a smooth, symmetric, compactly supported function. This is a distribu-
tion associated with a truncation of the Hilbert transform kernel.

Our principal concern is the convergence of terms (Dil(1)s K)∗f(x) in a point-
wise sense, and in one that is, in addition, uniform over all modulations. To do
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this, we use the following definition.

Oscn(K; f)2 def=
∞∑

j=1

sup
kj≤l<l′<kj+1

|[Dil(1)
2l/n K−Dil(1)

2l′/n K]∗f |2.(1.3)

This definition depends upon a choice of an increasing sequence of integers kj∈Z,
a dependence that we suppress as relevant constants are independent of the choice
of {kj}∞j=1. It also depends upon a choice of positive integer n, which we have
incorporated into the notation. This only permits dilations of the form 2l/n for
integers l.

Theorem 1.4. Fix a smooth, symmetric, compactly supported function ζ. For
integers n>0 and 1<p<∞ there is a constant Cn,p,ζ so that we have the inequality

∥∥∥sup
N

Oscn(KH ; ModN f)
∥∥∥

p
≤Cn,p,ζ‖f‖p.(1.5)

The inequality holds for all choices of increasing sequences {kj}∞j=1 satisfying kj+1≥
kj+n.

Our primary interest in this theorem is the corollary below, which is a Hilbert
transform counterpart to the well known Wiener–Wintner theorem for ergodic aver-
ages. Deriving the corollary below is a standard part of the literature, with the
roots of the argument going back to Calderón [6]. The use of an oscillation in-
equality to establish convergence was introduced by Bourgain [5]. See also the
papers of Campbell–Jones–Reinhold–Wierdl [7], and Jones–Kaufmann–Rosenblatt–
Wierdl [13]. A proof of the corollary below is in the next section.

Corollary 1.6. For all measure-preserving flows {Tt :t∈R} on a probability
space (X,µ) and functions f∈Lp(µ), there is a set Xf ⊂X of probability one, so
that for all x∈Xf we have that

lim
s#0

∫
s<|t|<1/s

eiθtf(Tt x)
dt

t
exists for all θ.

This is a common extension of two classical theorems: Carleson’s theorem [9]
on Fourier series with Hunt’s extension [12], and the Wiener–Wintner theorem [23]
on ergodic averages.

Carleson’s theorem. We have the inequality
∥∥∥∥sup

N

∣∣∣∣
∫ ∞

−∞
ModN f(x−y) dy

y

∣∣∣∣
∥∥∥∥

p

� ‖f‖p, 1<p<∞.
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Wiener–Wintner theorem. For all measure-preserving flows {Tt :t∈R} on
a probability space (X,µ) and functions f∈Lp(X,µ), there is a set Xf⊂X of prob-
ability one, so that for all x∈Xf we have that

lim
s!∞

1
s

∫ s

−s

eiθtf(Tt x) dt exists for all θ,

lim
s!0

1
s

∫ s

−s

eiθtf(Tt x) dt exists for all θ.

The Wiener–Wintner theorem can been seen as an extension of the Birkhoff
ergodic theorem. The Carleson theorem is a deep result from the 1960s, and since
then several proofs have been offered. An extensive survey and bibliography on this
subject can be found in [14].

The possibility of extending the Wiener–Wintner theorem to the setting of the
Hilbert transform was first raised in the paper of Campbell and Petersen [8]. The
specific result proved there was essentially Carleson’s theorem on the integers, with
a transference to measure-preserving systems. Part of this was contained in a prior
work of Máté [17], a work that was overlooked until much later.

Assani [1] and [2] proved our Corollary 1.6 on a class of dynamical systems he
termed Wiener–Wintner systems. The definition of these systems depends upon
particular properties not enjoyed by all dynamical systems.

Our tool to prove convergence in the Hilbert transform setting is the oscillation
inequality (1.5), an idea first employed in ergodic theory in the pioneering work
of Bourgain on the ergodic theorem along arithmetic sequences [5]. The use of
oscillation has subsequently been systematically studied in e.g. [7] and [13] and in
references therein.

The main goal of this paper is a proof of Theorem 1.4. Clearly, we follow
the lines of a proof of Carleson’s theorem. In particular we employ the Lacey–
Thiele approach [16] and refine one part of it to deduce our main theorem. We
will also appeal to the ‘restricted weak type argument’ of C. Muscalu, T. Tao and
C. Thiele [18], and L. Grafakos, T. Tao and E. Terwilleger [11].

Acknowledgements. The authors have benefited from conversations with Jim
Campbell, Anthony Quas and Mate Wierdl. Part of this research was completed
at the Schrödinger Institute, Vienna, Austria. For one of us (ML), discussions with
Karl Petersen about this question formed our introduction to Carleson’s theorem,
for which we have been indebted to him ever since. Finally, we thank the referee
for a detailed and helpful report.



318 Michael Lacey and Erin Terwilleger

2. Deduction of Corollary 1.6

This is a known argument. Let us begin with the following simple observation.
Suppose that {an}∞n=1 is a numerical sequence, so that for all increasing sequences
of integers kj ,

∞∑
j=1

sup
kj<n<n′≤kj+1

|an−an′ |2<∞.(2.1)

It follows that limn!∞ an exists. Indeed, to find a contradiction assume that
limn!∞ an does not exist. Then, there is an ε>0 so that for all integers K,
lim supn′>n>K |an−an′ |>ε. And therefore, we can build a sequence of integers
{kj}∞j=1 to contradict (2.1).

We will use an extension of this. Suppose that {an(θ):n∈N and θ∈R} is a col-
lection of numerical sequences indexed by θ∈R. Suppose that for all increasing
sequences of integers kj ,

sup
θ

∞∑
j=1

sup
kj<n<n′≤kj+1

|an−an′ |2<∞.(2.2)

It follows that limn!∞ an(θ) exists for all θ∈R.
Let us begin with the analytical inequality of Theorem 1.4. Using the obser-

vation of Calderón [6], one sees that the oscillation inequality continues to hold on
the measure-preserving flow (X,µ, Tt).

Fix an integer n∈N, and a smooth, symmetric, compactly supported function ζ.
Fix an f∈Lp(X), 1<p<∞. We see that there is a set Xf,ζ,n⊂X of probability one,
so that for all x∈Xf we have that

lim
k!∞

∫ ∞

−∞
eiθtf(Tt x)ζ(2−k/nt)

dt

t
exists for all θ.(2.3)

Now, the countable union of null sets is null, thus we can take a single set Xf,ζ of
probability one so that (2.3) holds for all n∈N.

We need to replace ζ(t)t−1 by 1|t|≤1t
−1. To do so, consider a sequence of

smooth, symmetric, compactly supported functions ζk satisfying

1[−1+2−k,1−2−k](t)≤ ζk(t)≤ 1[−1,1].

Thus, these functions converge pointwise to ζ∞
def= 1[−1,1]. For each k, there is a single

null set Xf,ζk
of probability one so that (2.3) holds for all n∈N and all ζ=ζk.

Therefore, there is a single null set Xf so that (2.3) holds for all n∈N. We can
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further assume that for x∈Xf that we have

M f(x) def= sup
t

1
2t

∫ t

−t

|f(Ts x)| ds<∞.

To conclude, observe that for all 0<a<∞,
∣∣∣∣
∫
eiθtf(Tt x)

[
ζk

(
t

a

)
−ζ∞

(
t

a

)]
dt

t

∣∣∣∣ � 2−k M f(x).

Thus, we see that the corollary holds.

3. Deduction of Theorem 1.4

There are two more technical estimates that we prove. Specifically, let ψ be
some Schwartz function which satisfies

0≤ ψ̂(ξ)≤C0,(3.1)

ψ̂ is supported in
[
−2,− 1

2

]
,(3.2)

|ψ(y)| ≤C1 min(|y|−ν , |y|ν).(3.3)

Here, ν will be a large constant whose exact value we need not specify. And we will
not have complete freedom in precisely which Schwartz function ψ we can take here.
It should arise in a particular way described in the proof of Proposition 3.4, and
will be non-zero! The purpose of this section is to describe how a particular result
for any choice of non-zero ψ as above will lead to a proof of our main theorem.

Consider the distribution

Ψ def=
∞∑

v=1

Dil(1)2−v ψ.

We will prove the following two propositions in the next section.

Proposition 3.4. With the assumptions (3.2)–(3.3), the inequality (1.5) holds
with n=1 and the distribution KH replaced by Ψ.

Proposition 3.5. We have the inequality

∥∥∥∥sup
N

[ ∞∑
j=−∞

|(Dil(1)2j ψ)∗ModN f |2
]1/2∥∥∥∥

p

� ‖f‖p, 1<p<∞.(3.6)
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Note that for fixed modulation, (3.6) is a Littlewood–Paley inequality, making
the inequality above a ‘Carlesonized Littlewood–Paley’ inequality. Inequalities like
this have been proved by Prestini and Sjölin [20]. They also follow from the method
of Lacey and Thiele.

Both propositions follow from our Proposition 4.9 of the next section, which
is phrased in a language conducive to the methods of Lacey and Thiele [16]. These
methods have been applied in a number of variants of Carleson’s theorem, see
e.g. Pramanik and Terwilleger [19] and Grafakos, Tao, and Terwilleger [11].

We turn to the deduction of Theorem 1.4. Observe that the two previous
propositions immediately prove that when we consider dilations which are powers
of 21/n we have∥∥∥sup

N
Oscn(Ψ; ModN f)

∥∥∥
p
�n‖f‖p, n∈N, 1<p<∞.

Thus we need not concern ourselves with these features of Theorem 1.4 and Corol-
lary 1.6.

For a distribution K, set

‖K‖∗,p = sup
‖f‖p=1

∥∥∥sup
N

Osc1(K; ModN f)
∥∥∥

p
.

Note that since our definition incorporates differences, this is a seminorm on distri-
butions K. That is, it obeys the triangle inequality (which we use), but can be zero
for non-zero distributions. In particular, for a Dirac point mass δ we have ‖δ‖∗,p=0,
and similarly for the distribution K with K̂=1[0,∞).

Our task is to show that ‖KH‖∗,p<∞, whereKH(y)=y−1ζ(y) for some smooth,
symmetric, compactly supported Schwartz function. Our Proposition 3.4 is, with
this notation, the assertion that ‖Ψ‖∗,p<∞. The same inequality will hold for
a kernel which can be obtained as a convex combination of dilations of ψ and Ψ.
Thus, set

Ψ0
def=

∫ 1

0

Dil(1)2s Ψ
ds

s
.

In this integral, we are careful to integrate against the measure ds/s, which is the
Haar measure for the positive reals under multiplication, the underlying group for
the dilation operators. In particular, it follows that Ψ0 is a distribution whose
Fourier transform is a non-zero constant on (−∞,−1) and is 0 on

(
− 1

2 ,∞
)
. Thus

by Proposition 3.4, we clearly have ‖Ψ0‖∗,p<∞.
Now we will show that ‖D0‖∗,p<∞ for the distribution

D0(y)= y−1ζ(y)−c(Ψ0(y)−�Ψ0(y)),
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where we choose the complex constant c so that limξ!∞ D̂0(ξ)=0. In fact, it is
a well-known elementary fact that for c=iπ,∫ ∞

−∞
ζ(y)eiξy dy

y
= c+O(|ξ|−1).(3.7)

We will decompose the distribution D0 into a sum which can be treated with Prop-
osition 3.5. Then using that ‖Ψ0‖∗,p<∞ and ‖D0‖∗,p<∞, we obtain the desired
inequality for K(y)=y−1ζ(y).

Choose χ to be a smooth function supported on 1
2≤|ξ|≤2 so that

∞∑
k=−∞

Dil∞2−k χ= 1R\{0},

and set ∆̂k=D̂0 Dil∞2−k χ. The following lemma finishes the proof of Theorem 1.4.

Lemma 3.8. We have

‖∆k‖∗,p � 2−|k|, k ∈Z.

Proof. We will verify that

‖∆̂k‖∞ � 2−|k|, k ∈Z,(3.9)

∆̂k is supported on 2−k−1 ≤ |ξ| ≤ 2−k+1,(3.10)

|∆k(y)|� 2−k−|k|(1+2−k|y|)−ν , k ∈Z, y ∈R,(3.11)

with implied constants independent of k∈Z and ν being the large, unspecified con-
stant that appears in (3.3). With decay in |k| in both (3.9) and (3.11), the lemma
then follows from a trivial change of scale and from Proposition 3.5.

Let us recall the trivial estimate which follows from the symmetry of ζ,

|K̂H(ξ)|=
∣∣∣∣
∫ ∞

−∞
ζ(y)

eiξy

y
dy

∣∣∣∣� |ξ|.(3.12)

In addition we have the estimate below, applied for |ξ|≤1,
∣∣∣∣ d

w

dξw
K̂H(ξ)

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
ζ(y)yw−1eiξy dy

∣∣∣∣�
{

|ξ|, w even,

1, w odd.
(3.13)

Whereas for |ξ|≥1, we have∣∣∣∣ d
w

dξw
K̂H(ξ)

∣∣∣∣ � |ξ|−ν , |ξ|> 1, 0<w≤ ν.(3.14)

That is, we have very rapid decay in a large number of derivatives.
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Now, (3.10) is true by definition of ∆k. To see (3.9) for k≥2, note that this
is only determined by the Fourier transform of KH since Ψ̂0 and �̂Ψ0 are zero.
The result easily follows by the inequality (3.12) and property (3.10). For k≤2,
the inequality follows from the construction of D0, and in particular the property
in (3.7).

We turn to the last condition, (3.11). It is well known that decay of order ν in
spatial variables is implied by differentiability of a function in frequency variables.
Observe that

(yν∆k(y))̂ (ξ)= i−ν dν

dξν
∆̂k(ξ)= i−ν dν

dξν
Dil(∞)

2−k χ(ξ)K̂H(ξ).

Hence,

|(yν∆k(y))̂ (ξ)| ≤
ν∑

w=0

2kw

∣∣∣∣ d
ν−w

dξν−w
sup

2−k−1≤|ξ|≤2−k+1
K̂H(ξ)

∣∣∣∣.

For k≥1, this sum is dominated by the last two terms. To control them,
use (3.13), supplying the estimate �2(ν−1)k. This is better by a factor of 2−k than
the trivial estimate, so that Fourier inversion proves (3.11) in this case.

The case of k≤0 is easier, due to the rapid decay in (3.14). �

4. Decomposition and main proposition

We state the definitions needed for the main proposition and conclude this
section with the argument of how this proposition proves the results of the previous
section, namely Propositions 3.4 and 3.5.

In addition to the modulation and dilation operators in (1.1) and (1.2), we
need translation operators

Trany f(x) def= f(x−y), y∈R.(4.1)

We set D to be the dyadic grid and say that I×ω∈D×D is a tile if |ω||I|=1. Let T
denote the set of all tiles.

We think of ω as a frequency interval and I as a spatial interval; our definition
of a tile is a reflection of the uncertainty principle for the Fourier transform. We will
plot frequency intervals in the vertical direction. Each dyadic interval ω is a union
of two dyadic intervals of half the length of ω. We call them ω+ and ω− and view ω+

as above ω−.
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We take a fixed Schwartz function ϕ with frequency support in the interval
[−1/ν, 1/ν]. For a tile s=Is×ωs, define

ϕs
def= Modc(ωs,−) Tranc(Is) Dil2|Is| ϕ.(4.2)

Here, c(J) is the center of the interval J , and ωs,− is the lower half of the interval ωs.
Thus, this function is localized to be supported in the time-frequency plane close
to the rectangle Is×ωs,−.

There are companion functions which depend on different choices of certain
measurable functions. These functions should be thought of as those choices of
modulation and indices that will achieve, up to a constant multiple, the supremums
in the oscillation function. To linearize the modulation, let

N : R−!R be a measurable function (a modulation parameter).

We define another function related to the rectangle Is×ωs,+ which tells us when
the linearized modulation parameter is at a certain frequency. Let

φs(x)
def= 1ωs,+(N(x))ϕs(x).(4.3)

Now define a tile variant of the oscillation operator by

Tile-osc(f) def=

[ ∞∑
j=1

sup
kj≤l<l′<kj+1

∣∣∣∣∣
∑
s∈T

2l≤|Is|≤2l′

〈f, ϕs〉φs

∣∣∣∣∣
2]1/2

.(4.4)

Here, an increasing sequence of integers {kj}∞j=1 are specified in advance. We make
the definition for clarity’s sake, as we will not explicitly work with it. Rather we
prefer to fully linearize this maximal operator. This requires the additional choices
of functions

αj : R−!R,

∞∑
j=1

|αj(x)|2 ≤ 1 for all x,(4.5)

�j−, �j+ : R−!Z, kj ≤ �j−<�j+<kj+1.(4.6)

And we set

Fs,j
def= {x : 2�j−(x) ≤ |Is|< 2�j+(x)},(4.7)

fs,j(x)
def= 1Fs,j (x)αj(x)φs(x).(4.8)

The sequences of functions �j± are selecting the level at which the maximal difference
occurs. The αj are chosen to realize the �2− norm in the definition of oscillation.
We make all of these choices in order to linearize the oscillation operator.

Our main proposition is the following result.
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Proposition 4.9. For all choices of N(x) and increasing sequences of in-
tegers {kj}∞j=1, the operator Tile-osc extends to a bounded sublinear operator on Lp,
1<p<∞. In particular, for sets G,H⊂R of finite measure, there exists a set H ′⊂H
such that |H ′|≥ 1

2 |H | and

∞∑
j=1

∑
s∈T

|〈1G, ϕs〉〈1H′ , fs,j〉|� min(|G|, |H |)
(

1+
∣∣∣∣log

|G|
|H |

∣∣∣∣
)
.(4.10)

Note that the inequality above implies that

|〈Tile-osc(1G),1H′〉|� |G|1/p|H |1−1/p, 1<p<∞.

That is, we have the restricted weak-type inequality for all 1<p<∞.(1) Then we
use that a function is in Lp,∞ if for every measurable set H , there is a subset H ′

of H such that |H ′|≥ 1
2 |H | and the integral of the function over the set H ′ is at

most a constant times |H |1−1/p. Hence, by Marcinkiewicz interpolation [21] and the
restricted weak-type reduction of Stein and Weiss [22], we can obtain the estimate

‖Tile-osc(f)‖p � ‖f‖p, 1<p<∞.(4.11)

The deduction of Proposition 3.4 and Proposition 3.5

For ξ∈R and l∈Z, consider the operators

Aξ,l f
def=

∑
|Is|=2l

1ξ∈ωs,+〈f, ϕs〉ϕs.

The tile oscillation operator is built up from these operators. Observe that these
operators enjoy the properties

Aξ,l Transn2l = Transn2l Aξ,l, n∈Z,(4.12)

Aξ,l Dil(2)
2−l′ = Dil(2)

2−l′ Aξ2−l′ ,l+l′ , l′ ∈Z,(4.13)

Aξ,l Mod−θ = Mod−θ Aξ+θ,l, θ∈R.(4.14)

Notice that these conditions tell us that the operators Aξ,l have a near translation
invariance, a certain modulation invariance, and are related to each other through
dilations. In addition, these operators are bounded on L2 uniformly in ξ and l,
a fact well represented in the literature.

(1) In fact, the estimate (4.10) gives a favorable upper bound on the behavior of the constant
with respect to p, namely that they are no more than max(p, p/(p−1)), see [11].
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We will now define

Bξ,l f
def= lim

K!∞
L!∞

1
4KL

∫ K

−K

∫ L

−L

Mod−θ Trans−y A(ξ+θ),l(Transy Modθ f) dy dθ.

By periodicity of the integrand in y and θ, for all Schwartz functions f , the averages
in the right-hand side converge pointwise to Bξ,l f(x) as K,L!∞.

Let us make some observations about the operators Bξ,l. First, (4.12) and pe-
riodicity of the integrand in y imply that Bξ,l commutes with translations. Second,
it is a bounded, positive, semidefinite operator, as is easy to see. Hence, it is given
by convolution. Indeed, (4.14) implies that

Bξ,l f = Modξ βl∗Mod−ξ f

for a function βl that we turn to next. The equality (4.13) implies that βl=Dil(1)
2l β,

where β is given such that β0 is a smooth Schwartz function satisfying the conditions
(3.1)–(3.3), a routine exercise to verify.

Assuming Proposition 4.9, it follows that we can conclude Propositions 3.4
and 3.5 for non-zero functions ψ=β0. Our proof is complete.

5. Main lemmas

To prove Proposition 4.9, we must first obtain the set H ′⊂H . Consider the
set

Ω =
{
x : M1G(x)> 6 min

(
1,

|G|
|H |

)}
,

where M is the Hardy–Littlewood maximal function. Setting H ′=H\Ω and using
that M is of weak type (1,1) with constant at most 3, we see that |H ′|≥ 1

2 |H |. To
prove (4.10), we split the sum over s∈T into the sum over s such that Is⊂Ω and the
sum over s such that Is 
⊂Ω. The former sum can be taken care of by an argument of
M. Lacey and C. Thiele [15, Section 4] done in the bilinear setting. It also appears,
modified to the linear case as is our situation here, in L. Grafakos, T. Tao, and
E. Terwilleger [11, Section 3]. The reader can also see the same argument in [14,
(7.8)]. Thus we restrict our attention to the tiles s where Is 
⊂Ω.

We begin with some concepts needed to phrase the proof. There is a natural
partial order on tiles. We say that s<s′ if ωs⊃ωs′ and Is⊂Is′ . Note that the time
variable of s is localized to that of s′, and the frequency variable of s is similarly
localized, up to the variability allowed by the uncertainty principle. Note that two
tiles are incomparable with respect to the ‘<’ partial order if and only if the tiles,
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as rectangles in the time-frequency plane, do not intersect. A maximal tile will be
one that is maximal with respect to this partial order.

Let S denote an arbitrary set of tiles. We call a set of tiles T⊂S a tree if there
is a tile IT×ωT, called the top of the tree, such that for all s∈T, s<IT×ωT. We
note that the top is not uniquely defined. An important point is that a tree top
specifies a location in the time variable for the tiles in the tree, namely inside IT,
and localizes the frequency variables, identifying ωT as a nominal origin.

We say that the count of S is at most A if S=
⋃

T⊂S T, where each T⊂T is
a tree which is maximal with respect to inclusion and

Count(S) def=
∑
T⊂S

|IT| ≤A.

Fix χ(x)=(1+|x|)−ν, where ν is, as before, a large constant whose exact value
is unimportant to us. Define

χI := Transc(I) Dil(1)|I| χ,(5.1)

dense(s) := sup
s<s′

∫
N−1(ωs′)∩H

χIs′ dx,(5.2)

dense(S) := sup
s∈S

dense(s), S ⊂T .

The first and most natural definition of a ‘density’ of a tile, would be
|Is|−1|N−1(ωs,+)∩Is|. However ϕ is supported on the whole real line, although it
does decay faster than the inverse of any polynomial. We refer to this as a ‘Schwartz
tails problem’. The definition of density as

∫
N−1(ωs) χIs dx, as it turns out, is still

not adequate. That we should take the supremum over s<s′ only becomes evident
in the proof of the ‘tree lemma’ below.

The following ‘density lemma’ is well known in the literature. See [16, Prop-
osition 3.1] or the survey [14, Lemma 3.6].

Lemma 5.3. Any subset S⊂T is a union of Sheavy and Slight for which

dense(Slight)< 1
2 dense(S),

and the collection Sheavy satisfies

Count(Sheavy)� dense(S)−1|H |.(5.4)

What is significant is that this relatively simple lemma admits a non-trivial
variant intimately linked to the tree structure and orthogonality. We should refine
the notion of a tree. Recall that ωs,+ is the top half and ωs,− the bottom half of
the frequency interval ωs associated to a tile s. Call a tree T with top IT×ωT
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a +tree if for each s∈T, aside from the top, IT×ωT∩Is×ωs,+ is not empty and
a −tree if for each s∈T, aside from the top, IT×ωT∩Is×ωs,− is not empty. Any
tree is a union of a +tree and a −tree . If T is a +tree , observe that the rectangles
{Is×ωs,− :s∈T} are disjoint. We see that

∑
s∈T

|〈f, ϕs〉|2 � ‖f‖2
2.

This motivates the definition

size(S) := sup
{[

1
|IT|

∑
s∈T

|〈f, ϕs〉|2
]1/2

:T⊂S is a +tree
}
.(5.5)

The following ‘size lemma’ has also appeared in the literature. See [16, Prop-
osition 3.2] or the survey [14, Lemma 3.9].

Lemma 5.6. Assume that f=1G. Any subset S⊂T is a union of Sbig and
Ssmall for which

size(Ssmall)< 1
2 size(S),

and the collection Sbig satisfies

Count(Sbig)� size(S)−2|G|.(5.7)

Concerning the quantity size, we need an additional piece of information about
it. Recall that M is the Hardy–Littlewood maximal function.

Lemma 5.8. Suppose that S is the set of tiles with

Is 
⊂Ω, s∈S.

Then it is the case that size(S)�min(1, |G|/|H |).

This fact, a delicate consequence of the Calderón–Zygmund decomposition,
was proved by Muscalu, Tao, and Thiele [18, Lemma 7.8] in the multilinear case
and will not be proved in this paper. See also [14, Lemma 7.10] for an alternative
proof, and in [11, Lemma 1] for the adaptation to higher dimensions.

For a set of tiles S, set

Sum(S) def=
∞∑

j=1

∑
s∈S

|〈1G, ϕs〉〈1H , fs,j〉|.

Our final lemma relates trees, density and size. It is the ‘tree lemma’.
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Lemma 5.9. For any tree T

Sum(T)� size(T) dense(T)|IT|.(5.10)

Of course for any set of tiles S, we would then have

Sum(S)�
∑
T⊂S

size(T) dense(T)|IT|.

Proof of Proposition 4.9. Recall that we are considering the tiles s∈S such
that Is 
⊂Ω. This style of proof is well represented in the literature. See Muscalu,
Tao, and Thiele [18] and Grafakos, Tao, and Terwilleger [11] for two examples. We
include details for the sake of completeness.

To fix ideas, let us first consider the case of |G|
|H |. We inductively apply
Lemmas 5.6 and 5.3 so that the estimates on the counts of the collections we get
in (5.7) and (5.4) are approximately the same. Thus, we can decompose the set of
tiles S into pairwise disjoint subcollections of tiles Sn, n≥0, such that

size(Sn)� 2−n, dense(Sn)� 2−2n and Count(Sn)� 22n|G|.

Thus, applying the tree lemma, we see that

Sum(Sn)� 2−n|G|, n≥ 0.

This is summable in n to our desired estimate. This case is complete.
The next case is that of |G|>3|H |. In this case, the best estimate on the count

that we can hope to get from the size lemma starts off much larger than that from
the density lemma. Therefore, it is more efficient to initially just apply the density
lemma.

For 0≤n≤log(|G|/|H |), we apply the density lemma to get subcollections of
tiles Sn such that

size(Sn)� 1, dense(Sn)� 2−2n and Count(Sn)� 22n|H |.

Clearly, we have

Sum(Sn)� |H |, 0≤n≤ log
|G|
|H | .

And this is summed over n to get the claimed bound of |H | log(|G|/|H |).
For the remaining collection of tiles, we proceed as in the first case. Namely,

for n≥log(|G|/|H |), apply the size lemma or density lemma, as needed, to get
subcollections of tiles Sn satisfying

size(Sn)� 2−n, dense(Sn)� 2−2n and Count(Sn)� 22n|G|.
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Then we have

Sum(Sn)� 2−n|G|, n≥ log
|G|
|H | .

Again this is summed over n to get the claimed bound of |H |�|H | log(|G|/|H |).
The last case, that of 3|G|<|H |, is the most intricate of the three cases and

is the one where the refined size estimate is needed.(2) Applying Lemma 5.8, we
obtain the estimate size(S)�|G|/|H |.

Initially applying the density lemma to S will yield a better bound on the
count than from the size lemma. Thus, for 0≤n≤log(|H |/|G|), we apply the density
lemma to get subcollections Sn⊂S such that

size(Sn)� |G|
|H | , dense(Sn)� 2−n and Count(Sn)� 2n|H |.

Clearly we have

Sum(Sn)� |G|,

and summing over 0≤n≤log(|H |/|G|) yields the bound |G| log(|H |/|G|).
For n≥log(|H |/|G|), we apply the size lemma or the density lemma, as needed,

to decompose the remaining tiles into subcollections Sn with

size(Sn)�
√

2−n
|G|
|H | , dense(Sn)� 2−n and Count(Sn)� 2n|H |.

For these collections, we have

Sum(Sn)�
√

2−n|G||H |,

which summed over n≥log(|H |/|G|) will give us the bound of �|G|. �

6. Proof of Lemma 5.9

The tree lemma, with its adaptation to the setting of oscillation, is the primary
new step in this paper. This lemma appears in [16] and [11] with the functions φs

rather than the functions fs,j . These new functions have the oscillation built into
them and dealing with them brings about new difficulties.

We begin with some remarks about oscillation operators and a particular form
of the same that we shall use at a critical point of this proof. Let ζ be a smooth

(2) This case is the one that is needed to deduce the oscillation inequalities for 1<p<2.
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function with Fourier transform supported in [−1−ε, 1+ε] for a fixed, small, positive
ε and equal to 1 on [−1, 1]. Set

Osc(f)2 def=
∞∑

j=1

sup
2kj ≤|I|≤|I′|≤2kj+1

∣∣Dil(1)|I| ζ∗f−Dil(1)|I′| ζ∗f
∣∣2.

It is known that this is bounded on L2, and in this situation we will give an elem-
entary proof of this fact below.

We shall have recourse to not only this bound, but a particular refinement.
Let J be a partition of R into dyadic intervals. To each J∈J , associate a subset
E(J)⊂J with |E(J)|≤δ|J |, where 0<δ<1 is fixed. Consider

Oscδ(f)2 def=
∑
J∈J

1E(J)

∞∑
j=1

sup
J⊂I⊂I′

2kj ≤|I|≤|I′|≤2kj+1

|1I〈ζI , f〉−1I′〈ζI′ , f〉|2(6.1)

We estimate the norm of this operator.

Lemma 6.2. We have the estimate

‖Oscδ(f)‖2 �
√
δ‖f‖2(6.3)

for all f∈L2.

Proof. Let us begin with a proof that ‖Osc‖2!2�1. That is, we do not have
the additional information about the partition J , and sets E(J) for J∈J . For
a sequence of increasing integers kj and function f∈L2, set

f̂j = 1{ξ:2−kj+1−1≤|ξ|≤2−kj+1}f̂

Then, we certainly have
∑∞

j=1‖fj‖2
2≤3‖f‖2

2. Moreover, due to our assumption
about the function ζ,

sup
2kj ≤|I|≤|I′|≤2kj+1

|Dil(1)|I| ζ∗f | ≤Mfj−1+M fj+M fj+1,

where M is the usual maximal function. Thus, by the boundedness of the maximal
function on L2 we have

‖Osc(f)‖2
2 ≤ 3

∞∑
j=1

‖M fj‖2
2 � ‖f‖2

2.

It is hardly surprising that the proof above appeals to the boundedness of the
maximal function, since the estimate on the oscillation operator implies that for
the maximal function. Likewise, our lemma implies a bound for a certain variant
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of the maximal function. As it turns out, we need this variant in the course of the
proof.

Define

Mδ f(x) def=
∑
J∈J

1E(J)(x) sup
J⊂I

〈|f |, χI〉,

where χI is defined as in (5.1). Then the estimate we claim is ‖Mδ‖2�
√
δ. Indeed,

for any point x∈E(J), we have the inequality

Mδ f(x)� inf
y∈J

M f(y),

where M is the usual maximal function. Therefore, we can estimate

‖Mδ f‖2
2 =

∑
J∈T

∫
E(J)

Mδ f(x)2 dx�
∑
J∈T

|E(J)| inf
y∈J

M f(y)2 ≤ δ

∫ ∞

−∞
M f(x)2 dx.

This proves our claim.
To conclude the proof, we can estimate∫

⋃
J∈T E(J)

Oscδ(f)(x)2 dx�
∞∑

j=1

‖Mδ fj‖2
2 � δ

∞∑
j=1

‖fj‖2
2 � δ‖f‖2

2.

Our proof is complete. �
We begin the main line of the argument. Let δ=dense(T), and σ=size(T).

By a modification of the functions αj(x) by a choice of signs, we can assume the
identity

∞∑
j=1

∑
s∈T

|〈1G, ϕs〉〈fs,j ,1H′〉|=
∫

H′

∞∑
j=1

∑
s∈T

〈1G, ϕs〉fs,j(x) dx.

As we have no particular control on the set H ′, we will need the following
partition of the real line induced by the tree T. Let J be the partition of R

consisting of the maximal dyadic intervals J such that 3J does not contain any Is
for s∈T. It is helpful to observe that for such J , if |J |≤|IT|, then J⊂3IT, and if
|J |≥|IT|, then dist(J, IT)�|J |. The integral above is at most the sum of the two
terms

∞∑
j=1

∑
J∈J

∑
s∈T

|Is|≤2|J|

|〈1G, ϕs〉|
∫

J∩H′
|fs,j(x)| dx,(6.4)

∞∑
j=1

∑
J∈J

∫
J∩H′

∣∣∣∣∣
∑
s∈T

|Is|>2|J|

〈1G, ϕs〉fs,j(x)

∣∣∣∣∣ dx.(6.5)

Notice that for the second sum to be non-zero, we must have J⊂3IT.
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The first term (6.4) is controlled by an appeal to the ‘Schwartz tails’. Fix an
integer n≥−1, and only consider those s∈T for which |Is|=2−n|J |. Recalling that
fs,j(x)=1Fs,j (x)αj(x)1ωs,+(N(x))ϕs(x), we see that

∞∑
j=1

∑
s∈T

|Is|=2−n|J|

|〈1G, ϕs〉|
∫

J∩H′
|fs,j(x)| dx�

∑
s∈T

|Is|=2−n|J|

σδ(|Is|−1dist(Is, J))−10|Is|

� σδ2−nmin(|J |, |J |(|IT|−1dist(J, IT))−5).

Observe that for each s above, only one value of j contributes to the left-hand sum.
In addition, we have used the fact that there are only a bounded number of tiles s
for which |Is|−1dist(Is, J) is essentially constant. In addition, for the case |J |≤|IT|,
we used that the distance from Is to J is at least �|J |. In the case |J |>|IT|, use
|Is|−1dist(Is, J)≥|IT|−1dist(J, IT). The estimate above can then be summed over
n≥−1 and J∈J to bound (6.4) by �σδ|IT|, as required.

Now we turn to the control of (6.5). The integral in this quantity is supported
in the set

E(J)= J∩
⋃
s∈T

|Is|>2|J|

(N−1(ωs,+)∩H ′).(6.6)

Then the critical observation is that |E(J)|�δ|J |. To see this, let J ′ be the next
larger dyadic interval that contains J . Then 3J ′ must contain some Is′ for s′∈T.
Hence there exists a tile s′ with Is′⊂Is′⊂IT such that |Is′ |=2|J | or |Is′ |=4|J |, and
ωT⊂ωs′⊂ωs′. Then, s′<s′, and by the definition of density,

|J∩H ′∩N−1(ωs′)|
|Is′ | ≤

∫
H′∩N−1(ωs′)

χIs′ dx≤ δ.

But, for each s as in (6.6), we have ωs⊂ωs′ , so that E(J)⊂N−1(ωs′). Our claim
follows.

Suppose that T is a −tree. This means that the tiles {Is×ωs,+ :s∈T} are
disjoint and thus the functions fs,j are disjointly supported. In particular, the
oscillation that arises from such functions is trivially bounded by their �∞-norm.
Then the bound for (6.5) is no more than

∞∑
j=1

|E(J)|
∥∥∥∥∥

∑
s∈T

|Is|>2|J|

|〈1G, ϕs〉fs,j |
∥∥∥∥∥
∞

� δσ|J |.

This is summed over J⊂3IT to get the desired bound.
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Suppose that T is a +tree. This is the interesting case. At this point, we will
appeal to the norm bound for oscillation, (6.3), applied to the function

Γ def= Mod−c(ωT)

∑
s∈T

〈1G, ϕs〉ϕs.

This is an assumption that can be assumed by an appropriate modulation of the
fixed L2-function f . In the definition of Γ, it is useful to us that we only use the
‘smooth’ functions ϕs in the definition of this function. Note that ‖Γ‖2�σ

√
|IT|,

which is a consequence of the definition of size and the (near) orthogonality of the
functions ϕs in the case of the +tree.

The purpose of these next remarks is to relate the sums over a +tree to oscil-
lation. Recall that the oscillation is defined relative to a sequence of integers kj .
For each J , consider x∈J and integers � such that max(2|J |, 2�j−(x))<2�<2�j+(x).
We have ∑

s∈T
|Is|=2�

〈1G, ϕs〉fs,j(x)=
∑
s∈T

|Is|=2�

〈1G, ϕs〉ϕs(x)αj(x).

This is because all of the intervals ωs,+ are nested and must contain ωT, and if
N(x)∈ωs,+, then it must also be in every other ωs′,+ that is the same size or
larger. What is significant here is that on the right we have a particular scale
of (a modulation of) the sum that defines Γ.

Furthermore, consider the functions

Γj,J(x) def= Mod−c(ωT)

∑
s∈T

max(2|J|,2�j−(x))≤|Is|≤2
�j+(x)

〈1G, ϕs〉ϕs.

In particular, we can choose ζ as in the definition of our oscillation operator (6.1)
so that

Dil(1)
2� ζ∗Γ = Mod−c(ωT)

∑
s∈T

|Is|≥2�

〈1G, ϕs〉ϕs.

Therefore, we have

Γj,J =
[
Dil(1)

max(2|J|,2�j−(x))
ζ−Dil(1)

2�j+(x)+1
ζ
]
∗Γ.

We conclude that for x∈E(J),

∞∑
j=1

∣∣∣∣∣
∑
s∈T

2|J|<|Is|

〈1G, ϕs〉fs,j(x)

∣∣∣∣∣≤
( ∞∑

j=1

|Γj,J(x)|2
)1/2( ∞∑

j=1

|αj(x)|2
)1/2

� Oscδ Γ(x),



334 Michael Lacey and Erin Terwilleger

where we are using the oscillation operator defined in (6.1). We are able to use this
operator here since 2|J |<|Is| and 3J does not contain any Is, which implies that
J⊂3Is.

The conclusion of this proof is now at hand. By Lemma 6.2 we have

∑
J∈J

|J|≤3|IT|

∫
E(J)

∞∑
j=1

∣∣∣∣∣
∑
s∈T

2|J|<|Is|

〈1G, ϕs〉fs,j(x)

∣∣∣∣∣ dx�
∫

⋃
|J|≤3|IT| E(J)

|Oscδ Γ(x)| dx

�
∣∣∣∣

⋃
|J|≤3|IT|

E(J)
∣∣∣∣
1/2

‖Oscδ Γ‖2

� δ
√
|IT|‖Γ‖2

� σδ|IT|.

7. Concluding remarks

Let us pose a conjecture concerning the kernel JH(y)def= 1[−1,1]y
−1, that is the

Hilbert transform kernel with a sharp cut off.

Conjecture 7.1. We have the inequality valid for all n≥1,

‖Oscn(JH ; f)‖p � ‖f‖p, 1<p<∞.

In fact, the implied constant can be taken independent of n.

The proof as currently presented does not permit the deduction of this. Given
the central role the Fourier transform plays in our proof, the technical difficulty
we come to has a succinct description in terms of ĴH . Namely, the variation of
ĴH is infinite. But as the variation is only logarithmically infinite, one suspects
that a proof of the conjecture above would have to revisit the proof of Carleson’s
theorem, with this example in mind.

The following is a corollary of Theorem 1.4.

Corollary 7.2. For any measure-preserving system (X,µ,T) and f∈Lp(X,µ)
for 1<p<∞, there is a set Xf of probability one for which for all x∈Xf ,

lim
N!∞

∑
0<|k|<N

eiθk

k
f(Tk x) exists for all θ.

The proof would begin by transferring the oscillation inequality (1.5), valid
on R, to the integers Z. This kind of transference can be done directly; it is also



A Wiener–Wintner theorem for the Hilbert transform 335

possible that the necessary result follows from known transference results such as
Auscher and Carro [3]. Details are left to the reader.

Likewise, the method of proof that we employ throughout the paper could be
adapted to shed light on more general singular integrals, as well as the original
Wiener–Wintner theorem. Indeed, an oscillation result could be proved for the
latter theorem. We do not however pursue these lines here.

The Wiener–Wintner theorem has a deep extension to the return time theorem
of Bourgain [4], see also the appendix to [5]. This theorem, which we do not recall in
detail here, has certain extensions and variants that are currently only approachable
via the phase plane methods of the type used in this paper. The return time is
however a more sophisticated result, and the phase plane methods required are
correspondingly more difficult. These issues will be explored in forthcoming papers
of C. Demeter, M. Lacey, T. Tao, and C. Thiele. Note added during revision of this
paper : The paper mentioned here is [10].
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