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Cyclicity in the Dirichlet space

Omar El-Fallah, Karim Kellay and Thomas Ransford

Abstract. Let D be the Dirichlet space, namely the space of holomorphic functions on the

unit disk whose derivative is square-integrable. We give a new sufficient condition, not far from

the known necessary condition, for a function f∈D to be cyclic, i.e. for {pf :p is a polynomial} to

be dense in D.

The proof is based on the notion of Bergman–Smirnov exceptional set introduced by Heden-

malm and Shields. Our methods yield the first known examples of such sets that are uncountable.

One of the principal ingredients of the proof is a new converse to the strong-type inequality for

capacity.

1. Introduction

Let X be a Banach space of functions holomorphic in the open unit disk D,
such that the shift operator Mz : f(z) �!zf(z) is a continuous map of X into itself.
Given f∈X , we denote by [f ]X the smallest closed Mz-invariant subspace of X
containing f , namely

[f ]X = {pf : p is a polynomial}.
We say that f is cyclic for X if [f ]X =X .

For example, in the case X=H2, where

H2 :=
{
f(z)=

∑
k≥0

akz
k : ‖f‖2

H2 :=
∑
k≥0

|ak|2<∞
}
,

the cyclic vectors were identified by Beurling [2]. He showed that f∈H2 is cyclic
if and only if it is an outer function. This was part of his classification of the
shift-invariant subspaces of H2.
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In this article we shall be interested primarily in studying cyclic vectors in the
case X=D, where D is the Dirichlet space, defined by

D :=
{
f(z)=

∑
k≥0

akz
k : ‖f‖2

D :=
∑
k≥0

(k+1)|ak|2<∞
}
.

Equivalently, D is the space of holomorphic functions whose derivative is square-
integrable on D, and we have

‖f‖2
D = ‖f‖2

H2+
1
π

∫
D

|f ′(z)|2 dA(z),

where dA denotes Lebesgue area measure on D.
By a result of Richter and Sundberg [11, Theorem 5.3], if M is a closed Mz-

invariant subspace of D, then M=[f ]D∩θH2, where f is an outer function in D
and θ is an inner function (not necessarily in D). Thus a complete identification of
the cyclic vectors would be a significant step towards a Beurling-type classification
of the shift-invariant subspaces of D. We refer the reader to the recent book of Ross
and Shapiro [13] for much more information on this theme, especially the connection
with pseudocontinuation, which will play a prominent role in what follows.

The study of cyclic vectors for D was instigated by Brown and Shields in [4].
Among many other results, they obtained the following necessary conditions for
a function to be cyclic. Given f∈D, we write f∗(eiθ):=limr!1− f(reiθ). It is known
that this limit exists for all eiθ in the unit circle T outside a set of logarithmic
capacity zero [1].

Theorem 1.1. ([4]) If f is cyclic for D, then
(i) f is an outer function, and
(ii) Z(f∗):={eiθ∈T:f∗(eiθ)=0} is a set of logarithmic capacity zero.

Brown and Shields further conjectured that, conversely, if (i) and (ii) hold for
some f∈D, then f is cyclic for D. Whether this is true remains an open question.
A weak form of the conjecture was proved by Hedenmalm and Shields [9], and
subsequently improved by Richter and Sundberg [12]. Their combined results, which
will be described in more detail in Section 2, lead to the following partial converse
of Theorem 1.1.

Theorem 1.2. ([9], [12]) Let f∈D. Then f is cyclic for D provided that
(i) f is an outer function, and
(ii) Z(f):={eiθ∈T:lim infz!eiθ |f(z)|=0} is countable.
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Our aim is in this paper is to try to bridge the gap between these two theorems
by replacing ‘countable’ by a condition much closer to ‘capacity zero’. Given E⊂T
and t>0, let us write Et :={eiθ∈T:d(eiθ, E)≤t}, where d denotes the distance with
respect to arclength. Also, |Et| denotes the Lebesgue measure of Et. The following
theorem is our main result.

Theorem 1.3. Let f∈D. Then f is cyclic for D provided that
(i) f is an outer function, and
(ii) Z(f)=C∪E, where C is countable and E is a perfect set satisfying

(1)
∫

0

|Et|
(t log(1/t) log log(1/t))2

dt<∞.

How close is condition (1) to ‘capacity zero’? As an example, consider what
happens when E is a Cantor set constructed in the usual way from the sequence
(ln)n≥0, where supn ln+1/ln<

1
2 . (Thus, we begin with a closed arc of length l0,

remove an open arc from the middle to leave two closed arcs of length l1, remove
open arcs from their middles to leave four arcs of length l2, etc.; then E is the
intersection of the resulting nested sequence of sets.) We shall see later that E
satisfies (1) provided that

(2)
∑
n≥1

2n

n2 log(1/ln)
<∞,

whereas it is well known (see e.g. [7, Section IV, Theorem 3]) that E is of logarithmic
capacity zero if and only if it satisfies the stronger condition

(3)
∑
n≥1

log(1/ln)
2n

=∞.

Yet these conditions are not so far apart. For example, if ln=e−2n/nσ

, then both
(2) and (3) hold if σ<1, and neither holds if σ>1. The case σ=1 shows that the
two are not quite equivalent.

The proof of Theorem 1.3 has four principal ingredients: (i) the notion of Berg-
man–Smirnov exceptional set, as introduced by Hedenmalm and Shields, (ii) a result
about spectral synthesis in the Dirichlet space, (iii) the construction of a certain
holomorphic semigroup in the Dirichlet space, and (iv) the following converse to
the strong-type estimate for capacity, which we believe to be of interest in its own
right.

Theorem 1.4. Let E be a proper closed subset of T, and let η : (0, π]!R+

be a continuous, decreasing function. Then the following are equivalent:
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(i) there exists f∈D such that for all eiθ∈T outside a set of capacity zero

|f∗(eiθ)| ≥ η(d(eiθ, E));

(ii) the capacity c(Et) satisfies∫
0

c(Et) dη2(t)>−∞.

The rest of the paper is organized as follows. The four ingredients of the
proof listed above are treated in Sections 2, 3, 4 and 5, respectively. In Section 6
we combine these ideas to obtain a criterion for Bergman–Smirnov exceptional sets
sufficient to yield a weak version of Theorem 1.3, in which the log-log term is omitted
from (1). In Section 7 we describe the technical refinements needed to obtain the full
version, in Section 8 we complete the proof of Theorem 1.3, and finally in Section 9
we outline the calculation leading to (2). There is also an appendix, wherein we
gather a few general results about measure and capacity that are used in the rest
of the paper.

2. Bergman–Smirnov exceptional sets

Recall that D consists of those f(z)=
∑

k≥0 akz
k with

∑
k≥0(k+1)|ak|2<∞.

The dual of D can thus be naturally identified with Be, the Bergman space on the
exterior De of the closed unit disk, defined by

Be :=
{
φ(z)=

∑
k≥0

bk
zk+1

: ‖φ‖2
Be

:=
∑
k≥0

|bk|2
k+1

<∞
}
,

the duality being given by the pairing

〈f, φ〉 :=
∑
k≥0

akbk, f ∈D, φ∈Be.

Given S⊂D, we write S⊥ :={φ∈Be :〈f, φ〉=0 for all f∈S}. By the Hahn–Banach
theorem, f is cyclic for D if and only if [f ]⊥D={0}.

In [9], Hedenmalm and Shields proved an important analytic continuation the-
orem for functions in [f ]⊥D. To state their result, it is convenient to introduce some
notation. Let N+ denote the Smirnov class, namely those functions holomorphic
on D representable as g/h, where g and h are bounded and holomorphic on D and
h is outer. Given a closed subset E of T, we write

HE(N+,Be) := {φ holomorphic on C\E :φ|D ∈N+ and φ|De ∈Be}.
Finally, E is called a Bergman–Smirnov exceptional set if HE(N+,Be)={0}.
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Theorem 2.1. ([9, Lemma 5]) Let f∈D be an outer function belonging to the
disk algebra. Then [f ]⊥D⊂HE(N+,Be), where E is the zero set of f . Hence, if E is
a Bergman–Smirnov exceptional set, then [f ]⊥D={0}, and so f is cyclic.

Theorem 2.1 was subsequently improved by Richter and Sundberg. In our
terminology their result can be stated as follows.

Theorem 2.2. ([12, Corollary 3.3]) Let f∈D be an outer function, let E=
{eiθ∈T:lim infz!eiθ |f(z)|=0}, and suppose that E is a Bergman–Smirnov excep-
tional set. Then f is cyclic.

Of course, the interest of these results depends upon being able to identify
which sets are Bergman–Smirnov exceptional. Hedenmalm and Shields showed that
every countable closed subset of T is Bergman–Smirnov exceptional [9, Theorem 3].
In conjunction with Theorem 2.2 above, this is sufficient to yield Theorem 1.2.

Until now, no other examples of Bergman–Smirnov exceptional sets were
known. We shall prove the following theorem, which is a source of new examples.

Theorem 2.3. Let E be a closed subset of T such that

(4)
∫

0

|Et|
(t log(1/t) log log(1/t))2

dt<∞.

Then E is a Bergman–Smirnov exceptional set.

Assuming this, it is easy to deduce Theorem 1.3.

Proof of Theorem 1.3. Write {eiθ∈T:lim infz!eiθ |f(z)|=0}=C∪E, where C
is countable and E satisfies (1). By Theorem 2.3, E is a Bergman–Smirnov excep-
tional set. As remarked in [9, p. 104], a closed subset of T is Bergman–Smirnov
exceptional if and only if its perfect part is. It follows that C∪E too is Bergman–
Smirnov exceptional. Now apply Theorem 2.2. �

It thus suffices to prove Theorem 2.3. Most of the rest of the paper is devoted
to this goal.

3. Spectral synthesis in the Dirichlet space

The first step on the way is a sort of converse to Theorem 2.1. It is a statement
about spectral synthesis in the Dirichlet space.

Theorem 3.1. Let E be a closed subset of T, let f∈D, and suppose that

(5) |f(z)| ≤C dist(z, E)2, z ∈D,

where C is a constant. Then HE(N+,Be)⊂[f ]⊥D.
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As an easy consequence, we deduce the following result.

Corollary 3.2. Let E be a closed subset of T, and suppose that there exists
a cyclic function f∈D satisfying (5). Then E is a Bergman–Smirnov exceptional
set.

Proof. By the theorem, HE(N+,Be)⊂[f ]⊥D. Since f is cyclic, [f ]⊥D={0}. �

In particular, this allows us to give a new proof of the result of Hedenmalm
and Shields [9, Proposition 1] that singletons are Bergman–Smirnov exceptional.

Corollary 3.3. If E={eiθ}, then E is a Bergman–Smirnov exceptional set.

Proof. It is enough to consider the case E={1}. Let f(z)=(z−1)2. Clearly f
satisfies (5). If we can show that f is cyclic for D, then the result will follow from
Corollary 3.2.

Let

φ(z) :=
∑
k≥0

bk
zk+1

∈ [z−1]⊥D.

Then bk=bk+1 for all k. Since
∑

k≥0 |bk|2/(k+1)<∞, this forces bk=0 for all k,
and so φ=0. Thus [z−1]⊥D={0}, and [z−1]D=D. In particular, 1∈[z−1]D, so
(z−1)∈[(z−1)2]D, and hence, finally, [(z−1)2]D=[(z−1)]D=D, as desired. �

In the next section, we shall consider how to extend this result to more general
sets.

We now turn to the proof of Theorem 3.1, which will occupy the rest of this
section. The arguments that follow were strongly influenced by ideas from [15].

Lemma 3.4. Let E be a closed subset of T with |E|=0, let φ∈HE(N+,Be)
and let f∈D. Suppose that the family of functions

(6) eiθ �−! f(reiθ)φ(eiθ/r), 1
2 <r< 1,

is uniformly integrable on T. Then φ∈[f ]⊥D.

Proof. An elementary computation shows that

〈f, φ〉= lim
r!1−

1
2π

∫ 2π

0

f(reiθ)φ(eiθ/r)eiθ dθ.

The uniform integrability condition allows us to pass the limit inside the integral,
to obtain

(7) 〈f, φ〉=
1
2π

∫ 2π

0

f∗(eiθ)φ(eiθ)eiθ dθ,
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where f∗(eiθ):=limr!1− f(reiθ), which exists a.e. on T. Note that φ(eiθ) exists
a.e. on T because, by assumption, |E|=0. The uniform integrability condition also
implies that f∗φ∈L1(T).

Now on the unit disk, φ∈N+ and f∈D, so fφ∈N+. Also the radial limit
of fφ satisfies (fφ)∗=f∗φ∈L1(T). By Smirnov’s generalized maximum principle
(see e.g. [8, Theorem 2.11]), it follows that fφ∈H1. Therefore the integral in (7)
vanishes and 〈f, φ〉=0.

Repeating the same argument with f(z) replaced by znf(z), n=0, 1, 2, ..., we
conclude that φ∈[f ]⊥D, as required. �

The next result furnishes an estimate for φ∈HE(N+,Be) valid for all closed
subsets E of T. A stronger estimate will be proved in Section 7 under more restric-
tive conditions on E.

Lemma 3.5. Let E be a closed subset of T, and let φ∈HE(N+,Be). Then
there exists a constant C such that

(8) |φ(z)| ≤ C

dist(z, E)2
, 1< |z|< 2.

Proof. Since φ|De ∈Be, we have

φ(z)=
∑
k≥0

bk
zk+1

, |z|> 1,

where
∑

k≥0 |bk|2/(k+1)<∞. By Schwarz’s inequality, if |z|>1, then
∣∣∣∣
∑
k≥0

bk
zk+1

∣∣∣∣
2

≤
( ∑

k≥0

|bk|2
k+1

)( ∑
k≥0

k+1
|z|2k+2

)
=

( ∑
k≥0

|bk|2
k+1

)( |z|
|z|2−1

)2

.

Hence, there exists a constant C1 such that

(9) |φ(z)| ≤ C1

|z|−1
, |z|> 1.

Also, since φ|D∈N+, it follows that φ∗(eiθ):=limr!1− φ(reiθ) exists a.e. on T,
that log |φ∗|∈L1(T), and that, for |z|<1,

log |φ(z)| ≤ 1
2π

∫ 2π

0

1−|z|2
|eiθ−z|2 log |φ∗(eiθ)| dθ.

Hence, there exists a constant C2 such that

(10) log |φ(z)| ≤ C2

1−|z| , |z|< 1.

The result now follows immediately upon feeding the estimates (9) and (10)
into [15, Lemmas 5.8 and 5.9]. �
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It is now straightforward to deduce the main result.

Proof of Theorem 3.1. Let φ∈HE(N+,Be). By Lemma 3.5, φ satisfies (8). To-
gether with (5), this implies that the family of functions (6) is uniformly integrable.
Note also that the existence of an f∈D\{0} satisfying (5) automatically guarantees
that |E|=0. By Lemma 3.4, φ∈[f ]⊥D. �

4. A holomorphic semigroup in the Dirichlet space

To extend Corollary 3.3 to more general closed sets E, we need to know con-
ditions under which there exists a cyclic f∈D such that (5) holds. There are two
obvious requirements on E. Firstly, for f to be cyclic, E must be a set of logarithmic
capacity zero (this follows from Theorem 1.1). And secondly, for f to satisfy (5),
E must be a so-called Carleson set, i.e.

(11)
∫ 2π

0

log d(eiθ , E) dθ >−∞

(see e.g. [15, p. 1269]). Each of these conditions is also sufficient. Namely, if E is of
capacity zero, then there exists a cyclic f∈D, belonging to the disk algebra, whose
zero set equals E (this is a result of Brown and Cohn [3], refining earlier work of
Carleson [5]). Also, if E is a Carleson set, then there exists f∈D satisfying (5)
(see [5], [15]). However, we do not know whether, if E is both of capacity zero and
a Carleson set, one can choose f having both properties simultaneously.

In this section we develop a device designed to try to circumvent this problem.
Our aim is to prove the following theorem.

Theorem 4.1. Let E be a closed subset of T. Suppose that there exists f∈D
such that

(12) Re f(z)≥ log log(2/dist(z, E)) and |Im f(z)| ≤ 1, z ∈D.

Then E is a Bergman–Smirnov exceptional set.

Comparing this result with Corollary 3.2, we see that it has the advantage that
it is no longer required that f be cyclic. Of course, the growth condition on f has
changed: we shall pursue this in the next section.

The proof of the theorem depends on a lemma about a certain holomorphic
semigroup in D. In what follows, given α∈(0, π/2), we shall write

Ωα := {λ∈C\{0} : | argλ|<π/2−α}.
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Lemma 4.2. Let f∈D, and suppose that there exists α∈(0, π/2) such that

|Im f(z)| ≤α, z ∈D.

For λ∈Ωα, define
gλ(z)= exp(−λef(z)), z ∈D.

Then gλ∈D for λ∈Ωα, the map λ �!gλ : Ωα!D is holomorphic, and ‖gλ−1‖D!0
as λ!0 through positive real values.

Proof. We begin by establishing pointwise estimates for |gλ| and |g′λ|, namely

(13) |gλ(z)| ≤ 1 and |g′λ(z)| ≤ |f ′(z)|
e cos(arg λ+α)

, z ∈D.

To prove these, fix λ∈Ωα, and write and λ=reiθ and f=u+iv. Then

|gλ(z)|= exp(−reu(z) cos(θ+v(z))), z ∈D.

By assumption, |θ|<π/2−α and |v(z)|≤α, so cos(θ+v(z))≥0, and the first estimate
in (13) follows. Also,

|g′λ(z)|= |f ′(z)|reu(z) exp(−reu(z) cos(θ+v(z))), (z ∈D).

Using the elementary inequality te−at≤1/ea, for t, a>0, we obtain the second esti-
mate in (13).

Since f∈D, it follows straightaway from (13) that gλ∈D for all λ∈Ωα.
If λn!λ0 in Ωα, then gλn(z)!gλ0(z) and g′λn

(z)!g′λ0
(z) pointwise on D, and

the estimates (13) then allow us to apply the dominated convergence theorem to
prove that ‖gλn−gλ0‖D!0. Thus λ �!gλ is continuous as a map: Ωα!D. The
usual argument involving Cauchy’s theorem and Morera’s theorem then shows that
this same map is in fact holomorphic.

Finally, let (λn)n≥1 be a sequence of positive numbers tending to 0. It is clear
that gλn(z)!1 and g′λn

(z)!0 pointwise on D. Once again, using (13) with the
dominated convergence theorem, we obtain that ‖gλn−1‖D!0, as required. �

Remark. The family (gλ)λ∈Ωα evidently satisfies

gλ1+λ2 = gλ1gλ2 , λ1, λ2 ∈Ωα,

so it is in fact a holomorphic semigroup in D. However, we shall not make use of
this.
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Proof of Theorem 4.1. The condition (12) on Im f means that we can apply
the preceding lemma with α=1. Define gλ as in the lemma. The condition (12) on
Re f then implies that, for λ real and positive,

|gλ(z)| ≤ exp(−λeRef(z) cos 1)≤ (dist(z, E)/2)λ cos 1, z ∈D.

In particular, if λ≥2/cos1, then |gλ(z)|≤C dist(z, E)2 for some constant C, and so
by Theorem 3.1 we have HE(N+,Be)⊂[gλ]⊥D.

Now fix φ∈HE(N+,Be), and let k≥0. By what we have just proved, we have
〈zkgλ, φ〉=0 for all real λ≥2/cos1. Also, the map λ �!〈zkgλ, φ〉 is holomorphic
on Ω1. By the identity principle, it follows that 〈zkgλ, φ〉=0 for all λ∈Ω1. In
particular, letting λ!0 through positive values, and recalling that gλ!1 in D, we
obtain 〈zk, φ〉=0. As k is arbitrary, it follows that φ=0. Thus HE(N+,Be)={0},
and E is a Bergman–Smirnov exceptional set. �

5. A converse to the strong-type estimate for capacity

Theorem 4.1 begs the following question: for which sets E⊂T it is possible to
construct f∈D satisfying (12)? Equivalently, and more conveniently, for which sets
E⊂T does there exist f∈D such that

(14) Re f∗(eiθ)≥ log log(π/d(eiθ, E)) and |Im f∗(eiθ)| ≤ 1 q.e. on T?

(Here and in what follows, q.e. denotes ‘quasi-everywhere’, namely everywhere out-
side a set of capacity zero. Recall that, if f∈D, then f∗ exists q.e. on T.) That
the two questions really are equivalent is easily established using the Poisson inte-
gral formula. The purpose of this section is to provide an answer, in the form of
a converse to the strong-type estimate for capacity.

We begin with some notation. Given a (Borel) probability measure µ on T,
we define

I(µ) :=
∫∫

log
∣∣∣ 1
eiθ−eiφ

∣∣∣ dµ(θ) dµ(φ).

Writing µ̂(n):=
∫
e−inθ dµ(θ), n∈Z, a standard calculation (see e.g. [4, p. 294])

shows that

(15) I(µ)=
∑
n≥1

|µ̂(n)|2
n

.

Let E be a proper closed subset of T. We define its capacity c(E) by

1
c(E)

:= inf{I(µ) :µ is a probability measure on E}.
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In so doing, we are following [7]. The usual logarithmic capacity of E is then
e−1/c(E). In particular, E is of logarithmic capacity zero if and only if c(E)=0.
Recall also that Et denotes the set of eiθ∈T such that d(eiθ, E)≤t, where d is
arclength distance.

We can now state the main result of this section, which we believe to be of
independent interest. The equivalence between (i) and (iii) was already remarked
at the end of Section 1.

Theorem 5.1. Let E be a proper closed subset of T, and let η : (0, π]!R+

be a continuous, decreasing function. Then the following are equivalent:
(i) there exists f∈D such that

|f∗(eiθ)| ≥ η(d(eiθ , E)) q.e. on T;

(ii) there exists f∈D such that

Re f∗(eiθ)≥ η(d(eiθ , E)) and |Im f∗(eiθ)| ≤ 1 q.e. on T;

(iii) E and η satisfy

(16)
∫

0

c(Et) dη2(t)>−∞.

Taking η(t)=log log(1/t) for small t, we immediately derive the following corol-
lary, which answers the question posed at the beginning of the section.

Corollary 5.2. Let E be a proper closed subset of T. There exists f∈D
satisfying (14) if and only if∫

0

c(Et)
log log(1/t)
t log(1/t)

dt<∞.

Proof of Theorem 5.1. The implication (ii)⇒(i) is obvious.
For the implication (i)⇒(iii), observe that, if |f∗(eiθ)|≥η(d(eiθ, E)) q.e., then

−
∫

0

c(Et)dη2(t)≤−
∫

0

c({z : |f∗(z)| ≥ η(t)}) dη2(t)=
∫ ∞

c({z : |f∗(z)| ≥ s}) ds2.

The last integral is finite for all f∈D: this is just the strong-type estimate for
capacity (see e.g. [10, Theorem 3.12], [4, p. 295] or [16, §2]).

It remains to prove the implication (iii)⇒(ii); in fact this is the one we actually
need. Given a probability measure µ on T, we define the holomorphic function
fµ : D!C by

fµ(z)=−
∫

log(1−ze−iθ) dµ(θ), z ∈D.

The following lemma lists some basic properties of fµ.
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Lemma 5.3. (i) fµ(0)=0;
(ii) − log(1+|z|)≤Refµ(z)≤− log(1−|z|), z∈D;
(iii) |Im fµ(z)|≤π/2, z∈D;
(iv) fµ∈D if and only if I(µ)<∞, in which case I(µ)=‖fµ(z)/z‖2

D.

Proof. The first three parts are evident. For (iv), combine (15) with the ob-
servation that

fµ(z)=
∫ ∑

n≥1

(ze−iθ)n

n
dµ(θ)=

∑
n≥1

µ̂(n)
n

zn, z ∈D. �

We also require an elementary lemma about Hilbert spaces, whose proof is left
to the reader.

Lemma 5.4. Let (hn)n≥1 be vectors in a Hilbert space H. Suppose that

(hm−hn, hn)H = 0 whenever m≥n.

Then
∑

n≥1 hn/‖hn‖2
H converges in H if and only if

∑
n≥1 n/‖hn‖2

H<∞.

With these lemmas in hand, we can return to the proof of the implication
(iii)⇒(ii) in Theorem 5.1. If η is a bounded function, then we can just take f to be
a large positive constant. So, from now on, we assume that limt!0+ η(t)=∞. Let n0

be a positive integer with n0≥η(π). For n≥n0, we set δn :=η−1(n) and cn :=c(Eδn).
The condition (16) is then equivalent to

(17)
∑

n≥n0

ncn<∞.

Increasing n0, if necessary, we can further suppose that

(18)
∑

n≥n0

cn ≤ 2
π
.

For n≥n0, let µn be the equilibrium measure for Eδn , and let fµn be defined
as in Lemma 5.3. Define f : D!C by

(19) f(z) :=
∑

n≥n0

cnfµn(z), z ∈D.

Since |fµn(z)|≤π/2−log(1−|z|), independently of n, and
∑

n cn<∞, it is clear that
this series converges locally uniformly on D.
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We claim that f∈D. To see this, set hn(z):=fµn(z)/z. By Lemma 5.3 (iv), we
have ‖hn‖2

D=I(µn)=1/cn, so (19) becomes

f(z)= z
∑

n≥n0

hn

‖hn‖2
D
.

By Lemma 5.4 this converges in D provided that (hm−hn, hn)D=0, for m≥n, and∑
n n/‖hn‖2

D<∞. The latter condition is just
∑

n ncn<∞, which we know to be
true from (17). As for the former, we remark that, by the polarization identity,

(hm, hn)D =
∫∫

log
∣∣∣∣ 1
eiθ−eiφ

∣∣∣∣ dµn(θ) dµm(φ)=
∫
Uµn dµm,

where Uµn(z):=
∫

log |1/(eiθ−z)| dµn(θ). By Frostman’s theorem, Uµn≡I(µn) on
Eδn . Hence, if m≥n, then

(hm, hn)D =
∫
I(µn) dµm = I(µn)= (hn, hn)D,

as desired. Thus the claim is justified.
We next estimate Im f∗. Using Lemma 5.3 (iii) together with (18), we have

|Im f(z)| ≤
∑

n≥n0

cn|Im fµn(z)| ≤
∑

n≥n0

cn
π

2
≤ 1, z ∈D.

It follows immediately that |Im f∗|≤1 q.e. on T.
Lastly, we estimate Re f∗. Fix eiφ∈T so that f∗(eiφ) exists and d(eiφ, E)<δn0 .

Let N be the integer such that δN+1≤d(eiφ, E)<δN . We have Re fµn(z)=Uµn(z)≥
− log 2, z∈D, whence, using (18),

Re f(z)=
∑

n≥n0

cnUµn(z)≥
N∑

n=n0

cnUµn(z)− 2
π

log 2, z ∈D.

As Uµn is lower semicontinuous, it follows that

Re f∗(eiφ)≥
N∑

n=n0

cnUµn(eiφ)− 2
π

log 2.

Now eiφ∈Eδn , n0≤n≤N , so Frostman’s theorem implies that Uµn(eiφ)=I(µn),
n0≤n≤N . Hence

Re f∗(eiφ)≥
N∑

n=n0

cnI(µn)− 2
π

log 2 =N+1−n0− 2
π

log 2

≥ η(d(eiφ, E))−n0− 2
π

log 2.
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Thus, if we replace f by f+C, where C is a large enough positive constant, then
we will have Re f∗(eiθ)≥η(d(eiθ, E)) q.e. on T. �

6. First results on Bergman–Smirnov exceptional sets

In this short section, we piece together what we have proved so far about
Bergman–Smirnov exceptional sets. Our first result furnishes a sufficient condition
in terms of capacity.

Theorem 6.1. Let E be a proper closed subset of T such that

(20)
∫

0

c(Et)
log log(1/t)
t log(1/t)

dt<∞.

Then E is a Bergman–Smirnov exceptional set.

Proof. All the work is done: just combine Theorem 4.1 and Corollary 5.2. �

It is a result of Hedenmalm and Shields [9, Lemma 2] that every Bergman–
Smirnov exceptional set is of capacity zero. Thus it is perhaps not surprising that
the condition (20) should also be expressed in terms of capacity (indeed, capacity
zero is equivalent to limt!0 c(Et)=0, while (20) says that limt!0 c(Et)=0 ‘fast’).
However, (20) is difficult to use in practice, and it is convenient to have an easier
criterion, expressed in terms of the measures |Et| rather than the capacities c(Et).
The connection between the two types of condition is described in the appendix
(see Proposition A.4).

Theorem 6.2. Let E be a closed subset of T such that

(21)
∫

0

|Et|
(t log(1/t))2

dt<∞.

Then E is a Bergman–Smirnov exceptional set.

Proof. It suffices to show that (21) implies (20). This is done applying Propo-
sition A.4 with η(t)=log log(1/t) for t close to zero. �

This is not far from the main result that we are trying to prove, Theorem 2.3.
The only difference is an extra factor of (log log(1/t))2 in the denominator of (4).
The next section describes the refinement needed to obtain the stronger result.
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7. A refined estimate

The starting point for all our results is Lemma 3.5, which gives a growth
estimate for functions φ∈HE(N+,Be). This estimate takes no account of any special
properties of the set E. It is reasonable to guess that, if E satisfies a Carleson-type
condition of the sort that we are assuming anyway, then one can improve upon the
estimate (8), and thereby obtain a stronger eventual conclusion. This turns out
indeed to be the case.

The improved estimate that we are seeking is given by the following result.

Theorem 7.1. Let α>0, and let E be a closed subset of T satisfying

(22) |Et|=O(t(log(1/t))2α) as t! 0+.

Then, given φ∈HE(N+,Be), there exists a constant C such that

|φ(z)| ≤ C

dist(z, E)

(
log

4
dist(z, E)

)α+1

, 1< |z|< 2.

We shall examine the consequences of this theorem in the next section. The
rest of this section is devoted to its proof, which proceeds via a number of lemmas.

Given w∈D and f∈D, we define

Twf(z) :=

⎧⎨
⎩

f(z)−f(w)
z−w , z∈D\{w},

f ′(w), z=w.

Lemma 7.2. Tw is a bounded linear operator : D!D with ‖Tw‖≤1/(1−|w|).
Proof. It is clear that T0 : D!D and that ‖T0‖=1. For w �=0, a simple com-

putation shows that Twf−T0f=wTwT0f, f∈D. Hence Tw=T0(I−wT0)−1 and
‖Tw‖≤1/(1−|w|). �

In what follows, A(D) denotes the disk algebra. Also, given f∈A(D), we write
Z(f) for the zero set of f . Recall that the dual of D can be identified with Be. The
next result is a formula for the analytic continuation implicit in Theorem 2.1.

Lemma 7.3. Let f∈D∩A(D) and let φ∈[f ]⊥D. Then φ extends holomorphi-
cally to C\Z(f), and

φ(w)=
〈Twf, φ〉
f(w)

, w∈D\Z(f).

Proof. See [9, Lemma 5]; the formula for φ appears in the penultimate line of
the proof. �
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This leads to the following abstract estimate.

Lemma 7.4. Let E be a closed subset of T and let φ∈HE(N+,Be). Then

(23) |φ(w)| ≤ inf
f∈IE

‖φ‖Be‖f‖D
(1−|w|)|f(w)| , w∈D,

where

IE :=
{
f ∈D∩A(D) : sup

z∈D

|f(z)|
dist(z, E)2

<∞
}
.

Proof. Let f∈IE. By Theorem 3.1 we have φ∈[f ]⊥D. Hence, using the two
preceding lemmas,

|φ(w)| ≤ |〈Twf, φ〉|
|f(w)| ≤ ‖φ‖Be‖Twf‖D

|f(w)| ≤ ‖φ‖Be‖f‖D
(1−|w|)|f(w)| , w∈D\Z(f). �

Of course, this result is of interest only if IE �={0}. As remarked at the begin-
ning of Section 4, this happens if and only if E is a Carleson set (i.e. (11) holds).
In this case, Carleson’s construction actually yields an outer function f0 such that
f ′′
0 ∈A(D) and Z(f)=E.

The idea will now be to take such an f0, and modify it to construct functions
f∈IE for which ‖f‖D/|f(w)| is relatively small, so that Lemma 7.4 yields good
estimates for |φ(w)|. For this, we need estimates both for ‖f‖D and |f(w)| when f
is an outer function. We begin with ‖f‖D.

Lemma 7.5. Let ρ : T![0, 1] be a C1 function such that, for some β∈(0, 1),

Iβ :=
∫
T

ρ(ζ)−β |dζ|<∞.

Define f : D!C by

(24) f(z) := exp
(

1
2π

∫ 2π

0

eiθ+z
eiθ−z log ρ(eiθ) dθ

)
, z ∈D.

Then f∈D and

‖f‖2
D ≤ 1+

πe2

8
Mm

(
logM+

2
β

log
Iβ
m

)2

,

where M :=max(e4/β , ‖ρ′‖∞) and m:=|{ζ :ρ(ζ)<1}|.
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Proof. We have

‖f‖2
D = ‖f‖2

H2+
1
π

∫
D

|f ′(z)|2 dA(z).

Since |f∗|=ρ≤1 a.e., it follows that ‖f‖2
H2≤1. The problem is to estimate the

Dirichlet integral. For this, we use a formula of Carleson [6] for the Dirichlet integral
of an outer function: for f defined as above,
(25)
1
π

∫
D

|f ′(z)|2 dA(z)=
(

1
2π

)2∫
T

∫
T

(ρ(ζ)2−ρ(ζ′)2)(log |ρ(ζ)|−log |ρ(ζ′)|)
|ζ−ζ′|2 |dζ| |dζ′|.

Let J denote the right-hand side of (25). By the mean-value theorem,
|ρ(ζ)−ρ(ζ′)|≤Md(ζ, ζ′), where d denotes arclength distance on T. Since d(ζ, ζ′)≤
(π/2)|ζ−ζ′|, we obtain

J ≤M

8

∫
T

∫
T

|log ρ(ζ)−log ρ(ζ′)|
d(ζ, ζ′)

|dζ| |dζ′|.

Now, if ρ(ζ)≤ρ(ζ′), then

|log ρ(ζ)−log ρ(ζ′)| ≤ M

ρ(ζ)
d(ζ, ζ′) and |log ρ(ζ)−log ρ(ζ′)| ≤ log

1
ρ(ζ)

.

Hence, for each ε∈(0, 1),
∫∫

ρ(ζ)≤ρ(ζ′)

|log ρ(ζ)−log ρ(ζ′)|
d(ζ, ζ′)

|dζ| |dζ′| ≤
∫
T

∫
T

(
M

ρ(ζ)

)ε( log(1/ρ(ζ))
d(ζ, ζ′)

)1−ε

|dζ| |dζ′|

≤
∫
T

(
M

ρ(ζ)

)ε(
log

1
ρ(ζ)

)1−ε 2π
ε

|dζ|.

A similar estimate holds on the set {ζ :ρ(ζ)≥ρ(ζ′)}. Adding the two, we obtain

J ≤ π

2
M1+ε

ε

∫
T

1
ρ(ζ)ε

(
log

1
ρ(ζ)

)1−ε

|dζ| ≤ π

2
M1+ε

ε2

∫
{ρ<1}

1
ρ(ζ)2ε

|dζ|.

Now, provided that ε≤β/2, we have
∫
{ρ<1}

1
ρ2ε

|dζ|=m

∫
{ρ<1}

1
ρ2ε

|dζ|
m

≤m

(∫
{ρ<1}

1
ρβ

|dζ|
m

)2ε/β

=m1−2ε/βI
2ε/β
β .

Hence
J ≤ π

2
Mm

Kε

ε2
, where K =M(Iβ/m)2/β .

This is minimized by taking ε=2/logK, which gives the result. �
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Lemma 7.6. Let ρ, f, Iβ and m be as in the preceding lemma. Then

|f(z)| ≥ exp
(
− 2
πβ

m log(Iβ/m)
1−|z|

)
, z ∈D.

Proof. For z∈D, we have

log
1

|f(z)| =
1
2π

∫
T

1−|z|2
|ζ−z|2 log

1
ρ(ζ)

|dζ| ≤ 1
π

1
1−|z|

∫
T

log
1
ρ(ζ)

|dζ|.

Now, for each λ∈(0, 1),
∫
{ρ<λ}

log
1

ρ(ζ)
|dζ| ≤λβ log(1/λ)

∫
T

1
ρ(ζ)β

|dζ|= Iβλ
β log(1/λ),

and ∫
{λ≤ρ<1}

log
1
ρ(ζ)

|dζ| ≤
∫
{ρ<1}

log
1
λ
|dζ|=m log(1/λ).

Taking λ=(m/Iβ)1/β , it follows that
∫
T

log
1
ρ(ζ)

|dζ| ≤ 2
m

β
log

Iβ
m
.

Inserting this estimate into the first line of the proof gives the result. �

The final ingredient is a maximum principle due to Solomyak [14, p. 366].

Lemma 7.7. Let E be a closed subset of T and let u be a subharmonic func-
tion on C\E. Suppose that

u(z)≤ψ(dist(z,T)), z ∈C\T,

where ψ : R+!R+ is a decreasing function such that supt>0 ψ(t)/ψ(2t)<∞. Then
there exists a constant C such that

u(z)≤Cψ(dist(z, E)), z ∈C\E.

Proof of Theorem 7.1. Using Proposition A.1, we see that the hypothesis (22)
implies

(26)
∫ 2π

0

1
d(eiθ, E)(log(π/d(eiθ, E)))2α+2

dθ <∞.
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In particular, E is a Carleson set, so there exists an outer function f0 such that
f ′′
0 ∈A(D) and Z(f)=E. We briefly recall the construction of f0 given in [5, The-

orem 1]. Define ρ0 : T!R+ by setting ρ0=0 on E, and on each complementary arc
(eiθ1 , eiθ2) setting

ρ0(eiθ) :=
(
θ−θ1
2π

)3(
θ2−θ
2π

)3

, θ1<θ<θ2.

Then f0 is the outer function obtained by taking ρ=ρ0 in (24).
We now modify f0 as follows. For each δ∈(0, 1), we can find ρδ∈C3(T) such

that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρδ=ρ0 on Eδ/2,

ρδ=1 on T\Eδ,

ρ0≤ρδ≤1 on T,

‖ρ′δ‖∞≤1/δ.

Since ρδ(eiθ)≥ρ0(eiθ)≥d(eiθ, E)6/(2π)6, condition (26) implies that the integrals

I1/7,δ :=
∫
T

1
ρδ(ζ)1/7

|dζ|

are bounded above independently of δ. Hence, if we define fδ by

fδ(z) := exp
(

1
2π

∫ 2π

0

eiθ+z
eiθ−z log ρδ(eiθ) dθ

)
, z ∈D,

then, by Lemmas 7.5 and 7.6, there exist constants C1, C2>0, independent of δ,
such that

‖fδ‖D ≤C1
|Eδ|1/2

δ1/2

(
log

1
δ
+log

1
|Eδ|

)

|fδ(z)| ≥ exp
(
−C2

|Eδ| log(1/|Eδ|)
1−|z|

)
, z ∈D.

Note also that, since ρδ=ρ0 on a neighbourhood of E, the proof of [5, Theorem 1]
shows that we still have f ′′

δ ∈A(D) and Z(f)=E. In particular, fδ∈IE , where IE is
as defined in Lemma 7.4. Hence,

inf
f∈IE

‖f‖D
|f(z)| ≤ inf

δ>0
C1

|Eδ|1/2

δ1/2

(
log

1
δ
+log

1
|Eδ|

)
exp

(
C2

|Eδ| log(1/|Eδ|)
1−|z|

)
, z ∈D.

Clearly |Eδ|≥δ, and from (22) we have |Eδ|=O(δ(log 1/δ)2α) as δ!0+. Hence,
there exist constants C′

1 and C′
2 such that

inf
f∈IE

‖f‖D
|f(z)| ≤ inf

δ>0
C′

1

(
log

1
δ

)α+1

exp
(
C′

2

δ(log(1/δ))2α+1

1−|z|
)
, z ∈D.
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Choosing δ=(1−|z|)2, it follows that, for some constant C3,

(27) inf
f∈IE

‖f‖D
|f(z)| ≤C3

(
log

1
1−|z|

)α+1

, z ∈D.

Now let φ∈HE(N+,Be). Substituting (27) into Lemma 7.4, we obtain

|φ(z)| ≤ C′

1−|z|
(

log
1

1−|z|
)α+1

, z ∈D.

Recall also from (9) that, on the exterior of the unit disk, we have the elementary
estimate

|φ(z)| ≤ C′′

|z|−1
, z ∈De.

Combining these and applying Lemma 7.7 with u=|φ|, we finally arrive at the
desired conclusion. �

8. Completion of the proof

We now examine the implications of Theorem 7.1. The first result is a refine-
ment of Theorem 3.1.

Theorem 8.1. Let α>0, and let E be a closed subset of T satisfying

(28)
∫

0

|Et|
t2(log(1/t))2α

dt<∞.

Let f∈D, and suppose that there exists a constant C such that

(29) |f(z)| ≤C

(
log

2
dist(z, E)

)−(3α+1)

, z ∈D.

Then HE(N+,Be)⊂[f ]⊥D.

Proof. Let φ∈HE(N+,Be). Condition (28) implies that (22) holds, so by
Theorem 7.1 there is a constant C′ such that

|φ(z)| ≤ C′

dist(z, E)

(
log

4
dist(z, E)

)α+1

, 1< |z|< 2.

Combining this with (29), we deduce that there exists a constant C′′ such that

|f(reiθ)φ(eiθ/r)| ≤ C′′

d(eiθ, E)(log(π/d(eiθ, E)))2α
, 1

2 <r< 1.
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By Proposition A.1, condition (28) implies that
∫ 2π

0

dθ

d(eiθ, E)(log(π/d(eiθ, E)))2α
<∞.

It follows that the family of functions

eiθ �−! f(reiθ)φ(eiθ/r), 1
2 <r< 1,

is uniformly integrable. Lemma 3.4 therefore applies, and we conclude that φ∈[f ]⊥D,
as desired. �

The next result extends Theorem 4.1.

Theorem 8.2. Let E be a closed subset of T satisfying (28). Suppose that
there exists f∈D such that

(30) Re f(z)≥ log log log
2e

dist(z, E)
and |Im f(z)| ≤ 1, z ∈D.

Then E is a Bergman–Smirnov exceptional set.

Proof. Define gλ as in Lemma 4.2. Using (30), we see that if λ is real and
sufficiently large, then

|gλ(z)| ≤C

(
log

2
dist(z, E)

)−(3α+1)

, z ∈D,

and so by the preceding theorem HE(N+,Be)⊂[gλ]⊥D. The rest of the proof is
identical to that of Theorem 4.1. �

Finally, we can complete the proof of Theorem 2.3, and hence of our main
result, Theorem 1.3.

Proof of Theorem 2.3. Let E be a closed subset of T such that∫
0

|Et|
(t log(1/t) log log(1/t))2

dt<∞.

This condition implies that (28) holds for all α>1. By Proposition A.4, it also
guarantees that ∫

0

c(Et) dη2(t)>−∞,

where η(t)=log log log(1/t) for t close to zero, and so by Theorem 5.1 there exists
f∈D such that (30) holds. Invoking Theorem 8.2, we conclude that E is a Bergman–
Smirnov exceptional set. �
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9. An example: Cantor sets

We give a sufficient condition for a Cantor set to be Bergman–Smirnov excep-
tional, thereby justifying the claim made in (2).

Theorem 9.1. Let (ln)n≥0 be a positive sequence such that supn ln+1/ln
< 1

2 , and E be the circular Cantor set constructed from this sequence. Then E

is a Bergman–Smirnov exceptional set provided that

(31)
∑

n

2n

n2 log(1/ln)
<∞.

Proof. Let ω : (0, π]!R be a positive, smooth, decreasing function such that,
for t close to zero,

ω(t)=
1

t(log(1/t))2(log log(1/t))2
.

Then, for t close to zero,

|ω′(t)| � 1
t2(log(1/t))2(log log(1/t))2

and
∫ t

0

ω(s) ds� 1
log(1/t)(log log(1/t))2

.

Thus equivalence (ii)⇔(iii) of Proposition A.1 shows that (4) holds if and only if
|E|=0 and ∑

n≥0

2n

∫ (ln−2ln+1)/2

0

ω(t) dt<∞,

i.e. if and only if 2nln!0 and
∑
n≥0

2n

log(1/dn)(log log(1/dn))2
<∞,

where dn=(ln−2ln+1)/2. Both of these conditions are implied by (31). �

A. Conditions of Carleson type

In this appendix we gather a few results about measure and capacity that are
used in the rest of the paper. Most, if not all, of these results are well known, but
they are scattered about the literature, and not necessarily in the precise form in
which we need them.

We begin by fixing some notation. Let E be a subset of the unit circle T. If
E is measurable, we denote by |E| the (circular) Lebesgue measure of E. Given
t∈(0, π], we write

Et := {eiθ ∈T : d(eiθ , E)≤ t},
where d denotes arclength distance on T. Also, we define NE(t) to be the smallest
number of closed arcs of length 2t that cover E.
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Our first result establishes the equivalence between various forms of ‘Carleson-
type’ conditions. The classical condition (11) for Carleson sets corresponds to taking
ω(t)=log+(1/t). The conditions in several of our results, in particular Theorem 2.3,
are also of this general type.

Proposition A.1. Let E be a closed subset of T. Let ω : [0, π]!(0,∞] be
a continuous, decreasing function such that ω(0)=∞ and limt!0+ tω(t)=0. Then
the following are equivalent :

(i)
∫ 2π

0
ω(d(eiθ, E)) dθ<∞;

(ii) |E|=0 and
∑

j

∫ |Ij |/2

0 ω(t) dt<∞, where (Ij)j are the components of T\E;
(iii)

∫ π

0 |Et| dω(t)>−∞;
(iv)

∫ π

0
tNE(t) dω(t)>−∞.

For the proof, we need two lemmas. We are grateful to A. Bourhim for telling
us about the first of these.

Lemma A.2. Let E,ω be as in Proposition A.1, and suppose, in addition,
that |E|=0. Then

∫ 2π

0

ω(d(eiθ, E)) dθ= 2
∑

j

∫ |Ij |/2

0

ω(t) dt= 2πω(π)−
∫ π

0

|Et| dω(t).

Proof. We have∫ 2π

0

ω(d(eiθ , E)) dθ=
∑

j

∫
eiθ∈Ij

ω(d(eiθ, ∂Ij)) dθ=
∑

j

2
∫ |Ij |/2

0

ω(t) dt,

which gives the first equality. To prove the second, we begin by noting that |Et|=∑
j min(2t, |Ij |). Now, for each j, integration by parts gives

∫ π

0

min(2t, |Ij |) dω(t)= |Ij |ω(π)−2
∫ |Ij |/2

0

ω(t) dt.

Hence, summing over j, we get∫ π

0

|Et| dω(t)=
∑

j

|Ij |ω(π)−2
∑

j

∫ |Ij |/2

0

ω(t) dt= 2πω(π)−2
∑

j

∫ |Ij |/2

0

ω(t) dt,

as desired. �

Lemma A.3. Let E be a subset of T. Then

tNE(t)≤ |Et| ≤ 4tNE(t), 0< t≤ π.

Proof. Since E is covered by NE(t) arcs of length 2t, it follows that Et is
covered by NE(t) arcs of length 4t. This gives the right-hand inequality.
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To prove the left-hand inequality, let J1, ..., Jn be a maximal collection of dis-
joint, closed arcs of length t, each of which meets E. Then J1∪...∪Jn ⊂Et, so
nt≤|Et|. Also, by maximality of the collection, each point of E lies within a dis-
tance t/2 of one of the Jk. So, after doubling the Jk, they cover E, and hence
NE(t)≤n. The result follows. �

Proof of Proposition A.1. Since ω(0)=∞, both (i) and (iii) clearly imply
that |E|=0, and the equivalence of (i), (ii) and (iii) then follows immediately from
Lemma A.2. The equivalence of (iii) and (iv) is obvious from Lemma A.3. �

Several results in the paper, notably Theorem 5.1, give rise to a Carleson-type
condition expressed in terms of the capacities c(Et) rather than the measures |Et|.
(The capacity c(E) is defined in Section 5.) The following proposition provides
a link between the two types of condition.

Proposition A.4. Let E be a proper closed subset of T, and let η : (0, π]!R+

be a C1 function such that η′(t)<0 for all t. If

(32)
∫

0

|Et|η′(t)2 dt<∞,

then

(33)
∫

0

c(Et) dη2(t)>−∞.

To prove this, we need an elementary inequality.

Lemma A.5. Let a>0, and let h : [0, a]!R be a C1 function such that h(x)>0
and h′(x)>0 for all x∈[0, a]. Then

∫ a

0

x

h(x)
dx≤ 2

∫ a

0

1
h′(x)

dx.

Proof. By Schwarz’s inequality,
( ∫ a

0

x

h(x)
dx

)2

≤
( ∫ a

0

x2h′(x)
h(x)2

dx

)( ∫ a

0

1
h′(x)

dx

)
.

Integrating by parts, we have
∫ a

0

x2h′(x)
h(x)2

dx=
[−x2

h(x)

]a

0

+
∫ a

0

2x
h(x)

dx≤ 2
∫ a

0

x

h(x)
dx.

The result follows. �
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Proof of Proposition A.4. By a well-known calculation, which can be found
for example in [7, pp. 30–31], there exists a constant C>0 such that, for all closed
subsets E of T,

1
c(E)

≥C

∫ π

0

ds

|Es| .

Replacing E by Et, we obtain

1
c(Et)

≥C

∫ π−t

0

ds

|Et+s| =C

∫ π

t

ds

|Es| , 0< t≤ π.

Thus, if we define

g(t) :=
∫ π

t

ds

|Es| , 0< t≤ π,

then (33) will hold provided that

(34)
∫ π

0

dη2(t)
g(t)

>−∞.

We can suppose, without loss of generality, that η(π)=0. Making the change
of variable x=η(t), the condition (34) is then equivalent to

∫ ∞

0

x

h(x)
dx<∞,

where h:=g�η−1. Using Lemma A.5, this will hold provided that
∫ ∞

0

1
h′(x)

dx<∞.

Undoing the change of variable, this last condition is equivalent to
∫ π

0

η′(t)2

g′(t)
dt>−∞,

which in turn is equivalent to (32), since g′(t)=−1/|Et|. Thus (32) implies (33). �
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et de statistique
Université Laval
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