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Boundaries and random walks on
finitely generated infinite groups

Anders Karlsson

Abstract. We prove that almost every path of a random walk on a finitely generated non-
amenable group converges in the compactification of the group introduced by W. J. Floyd. In
fact, we consider the more general setting of ergodic cocycles of some semigroup of one-Lipschitz
maps of a complete metric space with a boundary constructed following Gromov. We obtain in
addition that when the Floyd boundary of a finitely generated group is non-trivial, then it is
in fact maximal in the sense that it can be identified with the Poisson boundary of the group
with reasonable measures. The proof relies on works of Kaimanovich together with visibility
properties of Floyd boundaries. Furthermore, we discuss mean proximality of OT" and a conjecture
of McMullen. Lastly, related statements about the convergence of certain sequences of points, for
example quasigeodesic rays or orbits of one-Lipschitz maps, are obtained.

1. Introduction

In several situations concerning an infinite group it has been useful to consider
an auxiliary space which in some sense is a boundary. For a finitely generated group
I' one could start with the Cayley graph K(T', S) with respect to some finite set of
generators S. The end-compactification of the group is the graph itself union the
space of ends of this graph and was introduced by H. Freudenthal, see [S]. There
are however certain groups with only one end, but for which one would like to have
a non-trivial boundary. For example this is the case for fundamental groups of
compact negatively curved manifolds. A finer compactification T =TUAT was first
used by W. J. Floyd [F1] and it is obtained by rescaling the length one edges in
a certain way so that the graph gets finite diameter, then taking the completion
of the graph as a metric space. Indeed, such a boundary OI' of a fundamental
group I' of a compact surface of genus at least two is the circle. Starting with [F1]
this compactification has been used in Kleinian group theory. In this context, we
wish to draw the reader’s attention to a coujecture stated in a recent paper by
C. McMullen [Mc| concerning the existence of a boundary map from the Floyd
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boundary of a fundamental group into the boundary of hyperbolic three-space.

In this note we prove the convergence of quasigeodesics and paths of certain
random walks in a geodesic space to points in a boundary which is constructed
following M. Gromov [G] extending Floyd. In particular, when I' is a finitely gen-
erated non-amenable group with a measure p whose support generates the group,
we obtain that the Floyd boundary T is a p-boundary in the sense of H. Fursten-
berg, see [Fu2] and [Ka2]. Using a different approach, by demonstrating certain
visibility properties and then relying on work of V. Kaimanovich we obtain that
this u-boundary is in fact either trivial or maximal; in the latter case it is the Pois-
son boundary. In general, it may happen that the boundary is trivial: the Floyd
boundary of the product of two finitely generated infinite groups is one point ([F1]).

It was previously known that the Poisson boundary (for reasonable measures)
of a group with infinitely many ends can be identified with the space of ends with
the hitting measure. See W. Woess [W], D. I. Cartwright and P. M. Soardi [CS],
and Kaimanovich [Ka2]. Furthermore, Kaimanovich obtained an identification of
the Poisson boundary for hyperbolic groups, see [Kal] and [Ka2]. See also the work
of A. Ancona [A].

Note also the somewhat related results of Floyd [F2] and C. W. Stark [St],
which extend the result in the original paper [F1] and concern the comparison of
OI" with the Furstenberg boundary for rank one symmetric spaces.

The results in this paper were announced at the workshop on Random Walks
and Geometry at the Erwin Schrodinger Institute, Vienna, Summer 2001. I wish
to thank the organizers (Kaimanovich, Schmidt, Woess) and the Erwin Schrédinger
Institute for the financial support allowing me to participate in this stimulating
conference.

2. Preliminaries on metric spaces

The following material is standard; we borrow some notation from [BHK].
Let (Y, d) be a metric space. The length of a continuous curve a:|a,b]—=Y is
defined to be

L(a) =sup Z d(a(ti-r), a(ts)),

where the supremum is taken over all finite partitions a=to<t;<...<tp=b. When
this supremum is finite, « is said to be rectiftable. For such o we can define the arc
length s:[a,b]—[0,00) by

s(t) = L(oa,y);

which is a function of bounded variation.
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A geodesic is a curve g3 for which

d(B(t), B(t')) = L(Be.e1) =t —t']
for any t and ¢'. A metric space is called geodesic if any two points can be joined
by a geodesic segment.
Given a continuous, (strictly) positive function f on Y, we define the f-length
of a rectifiable curve « to be

L(a)= / fds-/ Fla(t)) ds(t).
If f=1, then Ly=L.

Assume from now on that (Y,d) is a geodesic space. A new distance d; is

defined by
df($, y) =inf Lf(a)a
where the infimum is taken over all rectifiable curves o with «(a)=x and o(b)=y.
It is straightforward to verify that (Y, ds) indeed is a metric space and that the two
metrics induce the same topology. Note that for a geodesic 3, we have the simple
bound
Ly(B) < L(B) max f(x).

z€p

3. Definition of f-boundaries

This section defines certain boundaries of a complete metric space. The con-
struction here is a somewhat more restrictive version of the one given by Gromov [G],
Section 7.2.K “A conformal view on the boundary”, which extends Floyd [F1], which
in turn is “based on an idea of Thurston’s and inspired by a construction of Sulli-
van’s”.

Let (Y, d) be a complete metric space which is geodesic and let f be a contin-
uous, (strictly) positive function on Y. We will assume that for some point y in Y,

f is bounded by a monotone real function F' in the way

(F1) f(z) <F(d(y,z)) for every .
Furthermore we require that this F' is summable:

o0
(F2) > F(r)<oo

r=1
and that for every ¢>0 there is a number NV such that
(F3) F(er)<NF(r) forallr>0.

Let the f-boundary of Y be the space 8fY:=§_’f—Y, where ?f denotes the
metric space completion of (Y, dy).
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Floyd’s boundary

This is essentially the construction introduced in [F1]. Let T' be a group gen-
erated by a finite set of elements S. Associated to S there is a left-invariant metric
(word metric) d on I' and a one-complex (Cayley graph) K(I',S). The vertices of
this graph consist of the elements of I', and two vertices are connected by an (un-
oriented) edge if they differ by an element of S on the left. When the edges are
assigned to have length one, the distance d on I is simply the geodesic distance in
the graph.

Let F be a monic, summable function F:N—R, such that given k€N there
exists L, M, N>0 so that MF(r)<F(kr)<NF(r) and L= f(r)<f(s)<Lf(r) for
all natural numbers r and r—k<s<r+k. (It is common to consider F(r—1):=
r~2.) We insist for convenience that F is monotonically decreasing and let f(z)=
F(d(z,e)). Since F' is summable the graph now has finite diameter. The group
completion in the sense of Floyd T=TUdT is (just as above) the completion of the
Cayley graph with the new distance dy as a metric space (i.e. the equivalence classes
of Cauchy sequences). The group I' acts on I' by homeomorphisms. If T consists
of only zero, one, or two points, we say that the boundary is trivial.

Examples

It is easy to see that there is a surjection from OI" to the space of ends. There-
fore, groups with infinitely many ends have a non-trivial Floyd boundary. When I
is a word hyperbolic group then, under some conditions, the f-boundary of I' co-
incides with the standard hyperbolic boundary, see [G], or [CDP] for an exposition
with more details. The conjecture stated in [Me] predicts that the Floyd bound-
ary of a finitely generated fundamental group of a hyperbolic three-manifold is at
least as large as the limit set. For geometrically finite Kleinian groups (in every
dimension) this was already proven in [F1] and [T1).

It was suggested by Gromov that a Floyd type boundary of a Hadamard space
(CAT(0)-space) consists of the set of Tits components of the usual ray boundary.

Let Y be a bounded convex domain equipped with Hilbert’s metric and consider
its natural extrinsic boundary 8.Y:=Y\Y CR". Some calculations of G. Noskov
and the author indicate that a Floyd type boundary is 9. modulo collapsing faces
to points and identifying adjacent faces.
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4. Ergodic cocycles and p-boundaries

Let (Y,d), y, f, and 0Y:=0;Y be as in Section 3.

Let (X,v) be a measure space with v(X)=1 and let L: X—+X be an ergodic
measure-preserving transformation. Let w: X —.5 be a measurable map into a semi-
group S of selfmaps of ¥ which does not increase d-distances. Assume that the
integrability condition

/ dly, w(z)y) dv(z) < oo
X
holds. Define the associated ergodic cocycle (or random product)

u(n, 2) =w(x)w(Le) ...w(L" )

and )
A:= lim —/Xd(e,u(n,x)) dp(x).

7n—00 17

A basic observation is that a(n,z):=d(y,u(n,z)y) is a subadditive cocycle. The
following purely subadditive ergodic statement was proved in [KM].

Lemma. For each £>0, let E. be the set of x for which there exist an integer
K=K(z) and infinitely many n such that
(t) a(n,x)—a(n—k, LFx) > (A—e)k

for all k, K<k<n. Then v((.sq E:)=1.
Using this lemma we can prove the following result.

Theorem. Assume that A>0. Then for almost every z the trajectory u(n, z)y
converges to a point {=E&(x)€0Y .

Proof. Fix an x€FE, for some eé<A. For each m denote by y,, the point
u(m,z)y. Consider an n; and k, K<k<n;, such that ({) in the lemma holds,
and let 5 be a geodesic joining y,, and y,. Let J be the smallest integer larger than
d(Yn,, yx) and jo be the smallest integer larger than 1/ min{A—¢,1}. In the case
J=1 we have that

<F((A—e)k—1)<NF(k)<N i F(r),

r=k—jo
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where N corresponds to c=A—e—1/K in (F3). In the case J>1, note that 3<
d(Yn,, yx)/J <1 and let

J
ty = 7 d(@'m?yk)‘

Using the monotonicity of F, (F1), the triangle inequality, the inequality (1), and
(F3) we have

Since N and jo depend only on A—eg, and because of (F2), it follows that u(n;, z)y is
a Cauchy sequence and moreover that the whole sequence u(m, z)y hence converges
to a point in 9Y. O

We also have the following consequence.

Corollary. Let I be a finitely generated group and p be a probability measure
with finite first moment such that the support of u generates T' as a semigroup.
Assume that the Poisson boundary of (I', ) is non-trivial (which is the case if T' is
non-amenable). Then almost every sample path of the random walk (', 1) converges
to a (random) point of OT (which is defined as in the ezample in Section 3). The
space OI' with the resulting limit measure is a u-boundary.



Boundaries and random walks on finitely generated infinite groups 301

Proof. We will apply the theorem to (Y, d) being the group I' equipped with
a left-invariant word-distance. Furthermore, we let S=I", which acts on Y=I" by
translations preserving the word-metric. Let (X, ) be the infinite product of (T, u)
and L be the shift. It is a known fact that L is an ergodic measure preserving
transformation, and the finiteness of the first moment simply translates into the
integrability assumed above.

It is known that when the Poisson boundary is non-trivial, the word length
of the trajectory grows linearly (so A>0) for almost every trajectory, see [Gu] or
Theorem 5.5 in [Ka2]. Hence by the theorem, almost every sample path converges
to a point in OT.

The resulting measure space, OI' with the hitting measure, is a p-boundary,
see [Ful] or, e.g., [Ka2], p. 660. O

Note that it does not seem to be clear whether the p-boundary obtained is
non-trivial or not. In the next sections however, by combining some observations
about the Floyd boundary with works of Kaimanovich, we obtain that whenever
the Floyd boundary is non-trivial, then it is in fact maximal.

5. Visibility of Floyd’s boundary

Let T be a finitely generated infinite group with a boundary JI" of Floyd type,
see the example in Section 3. We start with a lemma.

Lemma. Let z and w be two points in T’ and let [z, w] be a geodesic segment
connecting z and w. Then

d(z,w) <4rF(r)+2 X:F(j)7

j=r
where r=d(e, [z, w]).
Proof. Let a denote the distance to z from a point m on [z, w] closest to e.
Let z;, 7=0,...,a, be the points (vertices) of the geodesic segment [m, z|C|w, 2].
Because of the minimality of r and the triangle inequality we have the estimates
d(e,z;)>r and dle,z;)>j—r.

For the usual reasons, we hence get

d'(m,2) <Y F(min{d(e,x;),d(e, z541)})
§=0
2r—1 a o
<Y Fr)+ Y] FGor) <2 F(r)+ Y F(j).
j=0

Jj=2r Jj=r
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(If a<2r—1, then we would not decompose the sum, and so the second term would
not be present.} By the same consideration with w instead of 2, the lemma is
proved. [

Note that with only minor modifications, this proof works for any f-boundary
of a geodesic space Y.

Two boundary points v and £ are said to be connected by a geodesic line if
there is a d-geodesic o such that a(n)—~ and a(—n)—¢€, as n—o0.

Proposition. Fvery two points in OI' can be connected by a geodesic line.

Proof. 1t is known and easy to show (see |F1]) that every point v€0I' can
be represented as an endpoint of a geodesic ray from e. Consider the geodesic
segments [v(n),£(n)] for any two distinct boundary points. It follows from the
lemma that the distance r,, from these curve segments to e must be bounded (due
to the summability of F' and since y(oco)#E£(c0)). Thanks to the local finiteness
of T' (the Cayley graph) we may now extract a desired geodesic line using Cantor’s
diagonal argument. [J

6. Poisson boundaries

The results in the previous section lead to (in notation and definitions as
in [Ka2]) the following theorem.

Theorem. If O contains at least three points, then the compactification T of
Floyd type satisfies Kaimanovich’s conditions (CP), (CS), and (CG).

Proof. 1t is known that the (isometric) action of I' by left translation on itself
extends to an action on I' by homeomorphisms, see for example [K2]. Since T is a
compact metric space it is separable. Any two sequences of bounded distance from
each other clearly cannot converge to different boundary points; this is (CP).

As shown in the previous section, any two boundary points can be joined by
d-geodesics. Therefore the sets (strips) S(7, &) which equal the union of all joining
geodesic lines are non-empty and constitute an equivariant family of Borel maps.
Furthermore, for any three distinet boundary points &;, i=1, 2, 3, we may find small
neighborhoods U; in ' of each of the three points so that

S(Ul, Ug)ﬂUg ‘—‘@

To see this, take for U; small disjoint e-neighborhoods in the metric d’. Now assume
that we can find geodesic lines 74 in S(Uy,Us), parametrized so that 4(0) is a
point closest to e and indices ni—oo (because every geodesic line in S intersects
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a ball around e) such that vg(ng)— £, where £ is some point in U3Ndl. But
then, since the d’-length of every d-geodesic ray is uniformly bounded, it follows
that d’'(vg(ng), vx(00))—0, and this cannot happen because the neighborhoods were
disjoint. This proves (CS).

The condition (CG): d is a left-invariant metric on I" and the corresponding
gauge is temperate (just meaning in this context that I' is finitely generated). Fi-
nally, as already discussed, for any two boundary points every joining geodesic line
intersects the same d-finite radius ball around e (a consequence of the lemma in
Section 5). O

We can now invoke the nice arguments of Kaimanovich in [Ka2|, Sections 2, 3,
4, and 6, which in particular involve entropy considerations of certain conditional
random walks (the strip approximation criterion) as well as a version of the martin-
gale convergence theorem ([Fu2]). Corresponding to [Ka2, Theorem 6.6] we hence
have the following result.

Corollary. Let T be a finitely generated group and assume that a Floyd type
boundary OI' contains more than three points. Let p be a probability measure on T’
with finite entropy and finite first logarithmic moment, and whose support generates
a subgroup which is non-elementary with respect to T', that is, it does not fir a finite
subset of OU. Then the compactification I' is p-mazimal.

The Floyd boundary of a finitely generated amenable group consists of zero,
one, or two points since otherwise the group contains non-commutative free sub-
groups ([K2]). There are however solvable groups for which the Poisson boundary
is non-trivial for any (non-degenerate) probability measure with finite entropy (due
to Kaimanovich, Vershik and Erschler).

7. Mean proximality

Let us record some further consequences of the previous two sections. For the
definitions and a basic account of Furstenberg’s boundary theory, we refer to the
original source [Fu2] as well as [M, Chapter VI].

Theorem. Let I' be a finitely generated group and assume that 01 is a non-
trivial Floyd boundary. Then 0T is a mean proximal T-space.

Proof. In [K2] it is shown that 0T is a boundary of I' in the sense of [Fu2|.
Therefore, in particular, I' does not leave a finite subset of 91" invariant. In view of
this, the theorem in Section 6, and the elegant arguments of Kaimanovich in [Ka2,
Section 2.4], we have that OI" is mean proximal. O
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If the Floyd boundary is non-trivial for a finitely generated fundamental group
of a hyperbolic three-manifold, then by knowing that it can be identified with the
Poisson boundary as we now do (Section 6), we hence get a unique (up to null
sets) T-equivariant measurable map onto the limit set. (This is part of the theory
of Poisson boundaries, see [Ka2]; for the uniqueness we refer in addition to [M,
Chapter VI, Corollary 2.10].) When does this map agree a.e. with a continuous
map? This question, together with the issue of the non-triviality of 91", is in a sense
now the content of the conjecture stated in [Mc].

Added in proof. The non-triviality of 0T is in fact not an issue: Let I' be a
finitely generated fundamental group of a hyperbolic three-manifold. It is known
from Scott’s core theorem and Thurston’s uniformization theorem that the group
T' can be made to act as a geometrically finite Kleinian group, see [E], pp. 266—
267. Hence we know from [F1] that the boundary OI' is infinite (provided that I is
non-elementary of course) and we have.

Theorem. Let N be a hyperbolic three-manifold with finitely generated funda-
mental group and denote by A its limit set on the boundary of the hyperbolic three-
space. Then there exists a unique (up to null sels) measurable, m1(N)-equivariant
map

F:0m(N)— A

It is perhaps interesting to compare this result with [T2], which also considers
measurable boundary maps. In view of contractivity properties, quite generally, a
map such as F either agrees with a continuous map or is very discontinuous (the
F-image of every neighborhood of a point is dense in A). For references to other
papers discussing the conjecture, see [Mc].

8. Convergence of certain sequences
Let (Y,d), y, f, and 0Y :=0;Y De as in the previous section.

Proposition. Let y, be a sequence of points in Y for which there exists
two positive constants A and C such that d(yn, Yns1)<C and d(yn,y)>An for all
large n. Then y, converges to a point in Y.

Proof. Let [ be a geodesic joining ¥y, and y,41. For every large n we have

df(Yns Ynt1) = inf Le(a) < Lg(B)
< mtaX F(B@) d(yn, ynt1) < F(An—C)YC < CNF(n).
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Hence the sequence of points in question is a d’-Cauchy sequence, because F' is
summable, and N and C are independent of n. As y,—o0 in Y, the sequence
therefore converges to a point in the boundary of Y. [

As a corollary of the proposition we have that any quasigeodesic ray converges.
If F(r—1)=r"3%%) for some positive &, then a similar argument also shows that
any regular sequence in the sense of [Ka2] converges.

Using the argument in the proof of Proposition 5.1 in [K1], the lemma in
Section 5 and the inequality

(zlw)y <dly, [z, w])

one can prove the following proposition.

Proposition. Let ¢:Y =Y be a one-Lipschitz map of a complete, geodesic
metric space Y and let 0;Y be an f-boundary. If d(¢™(y),y)—00, then ¢"(y)
converges to a point in 0;Y, as n—oc.

Let us emphasize that here, as well as in some other statements in this paper,
no local compactness is assumed.
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