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Boundaries and random walks on 
finitely generated infinite groups 

Anders  Karlsson 

Abstract .  We prove that almost every path of a random walk on a finitely generated non- 
amenable group converges in the compactification of the group introduced by W. J. Floyd. In 
fact, we consider the more general setting of ergodic cocycles of some semigroup of one-Lipschitz 
maps of a complete metric space with a boundary constructed following Gromov. We obtain in 
addition that when the Floyd boundary of a finitely generated group is non-trivial, then it is 
in fact maximal in the sense that it can be identified with the Poisson boundary of the group 
with reasonable measures. The proof relies on works of Kaimanovich together with visibility 
properties of Floyd boundaries. Furthermore, we discuss mean proximality of 0[' and a conjecture 
of McMullen. Lastly, related statements about the convergence of certain sequences of points, for 
example quasigeodesic rays or orbits of one-Lipschitz maps, are obtained. 

1. I n t r o d u c t i o n  

In  several s i tua t ions  concerning an infinite group it has been useful to consider 

an  auxil iary space which in some sense is a boundary .  For a finitely generated group 

F one could s tar t  with the Cayley graph K ( F ,  S) with respect to some finite set of 

generators  S. The  end-cornpactification of the group is the graph itself un ion  the 

space of ends of this graph and was in t roduced  by H. Freudenthal ,  see [S]. There  

are however cer ta in  groups with only one end, bu t  for which one would like to have 

a non- t r iv ia l  boundary .  For example this is the case for fundamen ta l  groups of 

compact  negat ively curved manifolds.  A finer compact i f icat ion P FUcgF was first 

used by W. a. Floyd [F1] and  it is ob ta ined  by rescaling the length  one edges in 

a cer ta in  way so tha t  the graph gets finite diameter ,  then  tak ing  the complet ion 

of the graph as a metr ic  space. Indeed,  such a b o u n d a r y  0F  of a fundamen ta l  

group F of a compact  surface of genus at least two is the circle. S ta r t ing  wi th  IF1] 

this compact i f icat ion has been used in Kle in ian  group theory. In  this context ,  we 

wish to draw the reader 's  a t t en t ion  to a conjecture  s ta ted in a recent paper  by 

C. McMullen  [Mc] concerning the existence of a b o u n d a r y  map  from the Floyd 
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boundary of a fundamental  group into the boundary of hyperbolic three-space. 
In this note we prove the convergence of quasigeodesics and paths of certain 

random walks in a geodesic space to points in a boundary which is constructed 
following M. Gromov [G] extending Floyd. In particular, when F is a finitely gen- 
erated non-amenable group with a measure p whose support  generates the group, 
we obtain that  the Floyd boundary OF is a /z -boundary  in the sense of H. Fursten- 
berg, see [Fu2] and [Ka2]. Using a different approach, by demonstrat ing certain 
visibility properties and then relying on work of V. Kaimanovich we obtain tha t  
this p-boundary is in fact either trivial or maximM; in the lat ter  case it is the Pois- 
son boundary. In general, it may happen that  the boundary is trivial: the Floyd 

boundary of the product of two finitely generated infinite groups is one point ([F1]). 
I t  was previously known tha t  the Poisson boundary (for reasonable measures) 

of a group with infinitely many  ends can be identified with the space of ends with 
the hitt ing measure. See W. Woess [W], D. I. Cartwright and P. M. Soardi [CS], 
and Kaimanovich [Ka2]. Furthermore,  Kaimanovich obtained an identification of 
the Poisson boundary for hyperbolic groups, see [Kal] and INn2]. See also the work 

of A. Ancona [A]. 
Note also the somewhat related results of Floyd IF2] and C. W. Stark [St], 

which extend the result in the original paper  IF1] and concern the comparison of 
OF with the Furstenberg boundary  for rank one symmetric  spaces. 

The results in this paper  were announced at the workshop on Random Walks 
and Geometry  at the Erwin SchrSdinger Institute,  Vienna, Summer 2001. I wish 
to thank the organizers (Kaimanovich, Schmidt, Woess) and the Erwin SchrSdinger 
Inst i tute  tbr the financial support  allowing me to participate in this stimulating 

conference. 

2. P r e l i m i n a r i e s  o n  m e t r i c  s p a c e s  

The following material  is standard; we borrow some notation from [BHK]. 
Let (Y,d) be a metric space. The length of a continuous curve a: [a, b ] ~ Y  is 

defined to be 

= sup Z 
i=1  

where the supremum is taken over all finite partit ions a=to < t l < . . .  < t k = b .  When 
this supremum is finite, ct is said to be rectifiable. For such c~ we can define the arc 
length s: [a, b]-+ [0, co) by 

s(O = L(~I[~,,]), 

which is a function of bounded variation. 
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A geodesic is a curve fl for which 

d(3(t) , /~(t '))  = L(Sl[t,,,]) = ] t - t ' l  

for any t and t ' .  A metric space is called geodesic if any two points can be joined 
by a geodesic segment. 

Given a continuous, (strictly) positive function f on Y, we define the f-length 
of a rectifiable curve a to be 

Lf(a) = f ds = f(a(t)) ds(t). 

If f - l ,  then Lf =L. 
Assume from now on that  (Y~d) is a geodesic space. A new distance df is 

defined by 

df (x, y) = inf Lf (c~), 
where the infimum is taken over all rectifiable curves a with a(a)=x and a(b)=y. 
It  is straightforward to verify that  (Y, dr) indeed is a metric space and that  the two 
metrics induce the same topology. Note that  for a geodesic/3, we have the simple 
bound 

L f (9 )  _< L ( Z ) ~ 2  f (x) .  

3. Definit ion of  f -boundar ies  

This section defines certain boundaries of a complete metric space. The con- 
struction here is a somewhat more restrictive version of the one given by Gromov [G], 
Section 7.2.K "A confbrmal view on the boundary",  which extends Floyd [F1], which 
in turn is "based on an idea of Thurs ton 's  and inspired by a construction of Sulli- 
v a n ~ s  ~ . 

Let (Y, d) be a complete metric space which is geodesic and let f be a contin- 
uous, (strictly) positive function on Y. We will assume that  for some point y in Y, 

f is bounded by a monotone real function F in the way 

(F1) f@)  <_ F (d (y ,x ) )  for every co. 

Furthermore we require that  this F is summable: 

(72) < 
r = l  

and that  for every c>0  there is a number N such that  

(F3) F(cr) < NF(r) for all r > 0. 

Let the f-boundary of Y be the space OfY:=Yf -Y ,  where Yf denotes the 
metric space completion of (Y, dr). 
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Floyd's boundary 

This is essentially the construction introduced in IF1]. Let F be a group gen- 
erated by a finite set of elements S. Associated to S there is a left-invariant metric 
(word metric) d on F and a one-complex (Cayley graph) K(F,  S). The vertices of 
this graph consist of the elements of F, and two vertices are connected by an (un- 
oriented) edge if they differ by an element of S on the left. When the edges are 
assigned to have length one, the distance d on F is simply the geodesic distance in 

the graph. 

Let F be a morfic, summable function F : N - - + R ,  such that  given k E N  there 

exists L, M, N > 0  so that  MF(r') <_F(kr)<_NF(r) and L - i f ( r )  <_f(s) <Lf(r) for 
all natural  numbers r and r-k<s<r+k.  (It is common to consider F ( r - 1 ) : =  

r -2 . )  We insist for convenience that  F is monotonically decreasing and let f ( z ) =  
F(d(z,e)). Since F is snmmable the graph now has finite diameter. The group 
completion in the sense of Floyd F = F U O F  is (just as above) the completion of the 
Cayley graph with the new distance d I as a metric space (i.e. the equivalence classes 
of Cauchy sequences). The group F acts on F by homeomorphisms. If  0F consists 
of only zero, one, or two points, we say that  the boundary is trivial. 

Examples 

It  is easy to see that  there is a surjection from OF to the space of ends. There- 
fore, groups with infinitely many ends have a non-trivial Floyd boundary. When F 

is a word hyperbolic group then, under some conditions, the f -bounda ry  of F co- 
incides with the s tandard hyperbolic boundary, see [G], or [CDP] for an exposition 
with more details. The conjecture stated in [Mc] predicts that  the Floyd bound- 
ary of a finitely generated fundamental  group of a hyperbolic three-manifold is at 
least as large as the limit set. For geometrically finite Kleinian groups (in every 

dimension) this was already proven in IF1] and IT1]. 

It  was suggested by Gromov that  a Floyd type boundary of a Hadamard  space 
(CAT(0)-space) consists of the set of Tits  components of the usual ray boundary. 

Let Y be a bounded convex domain equipped with Hilbert 's  metric and consider 
its natural  extrinsic boundary O~Y:=Y\YcR N. Some calculations of G. Noskov 
and the author indicate that  a Floyd type boundary is 0~Y modulo collapsing faces 

to  points and identifying adjacent faces. 
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4. Ergodic cocycles and p-boundaries 

Let (Y,d), y, f ,  and OY:=OfY be as in Section 3. 

Let (X, u) be a measure space with ~ ( X ) = I  and let L: X - + X  be an ergodic 
measure-preserving transformation.  Let w: X--+S be a measurable map into a semi- 

group S of selfmaps of Y which does not increase d-distances. Assmne that  the 
integrability condition 

j/x d(y, w(x)y) d . (x )  < O 0  

holds. Define the associated ergodic cocyele (or ~nndom product) 

= w ( L  

and 

A := ,,-~lim -nl ; d(e, u(n, x)) dp(x). 

A basic observation is that  a(n,x):=d(y, u(n,x)y) is a subadditive cocycle. The 
following purely subadditive ergodic s ta tement  was proved in [KM]. 

L e m m a .  For each c>O, let Ee be the set of x for which there exist an integer 
K = K ( x )  and infinitely many n such that 

(t) a(n, x ) - a ( n - k ,  Lkx) > ( A - s ) k  

for all k, K < k < n .  Then u ( ~ > 0 E ~ ) = l .  

Using this lemma we can prove the tbllowing result. 

T h e o r e m .  Assume that A>0.  Then for almost every x the trajectory u(n, x)y 
converges to a point ~=~(x)COY. 

Proof. Fix an xEE~ for some s < A .  For each m denote by Ym the point 
u(rn, x)y. Consider an ni and k, K<k<n~, such that  (t) in the lemma holds, 
and let/3 be a geodesic joining Yn~ and Yk. Let J be the smallest integer larger than 
d(y,,~, yk) and J0 be the smallest integer larger than  1 / r a i n { A - e ,  �89 In the ease 
Y = l  we have that  

df(y~,  yk) = inf" Lf(a) < max f(/3(t) )d(y,~.~, Yk) 
oo 

Z 
r k j o  
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1 where N corresponds to c = A - c - 1 / K  in (F3). In the case J > l ,  note that ~_< 
d(y~, yk) /J< 1 and let 

= ~ d(w~, w). t5 
Using the monotonicity of F,  (F1), the triangle inequality, the inequality (t), and 
(F3) we have 

df(y~,  Yk) ~_ Lf(fl) 
J 

~ E  nlax , f ( ~ ( t ) ) d ( / ~ ( ~ j  1), fi@j)) 
j= l  t3-1~t<--td 

J 

-< Z r(d(y, Z(tj))- ~) 
j= l  

J 
< E F ( a ( n i , x ) _ ( d ( y ~ , y ~ )  jd(y ,~,yk))  1) 

j-1 - J 

J 

J 

< ~ (A-c)k+~-  -j~-i ( z 1) 

J 

< X~F(j+~-jo) 
j--1 

( x 3  

_<N E r(r). 
r=k--jo 

Since N and j0 depend only on A - e ,  and because of (F2), it follows that u(ni, x)y is 
a Cauchy sequence and moreover that the whole sequence u(m, x)y hence converges 
to a point in 0Y. [] 

We also have the following consequence. 

Coro l l a ry .  Let F be a finitely generated group and tt be a probability measure 
with finite first moment such that the support of It generates F as a semigroup. 
Assume that the Poisson boundary of (F, It) is non-trivial (which is the case if F is 
non-amenable). Then almost every sample path of the random walk (F, p) converges 
to a (random) point of OF (which is defined as in the example in Section 3). The 
space OF with the resulting limit measure is a It-boundary. 
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Proof. We will apply the theorem to (Y, d) being the group F equipped with 
a left-invariant word-distance. Furthermore, we let S = F ,  which acts on Y = F  by 

translations preserving the word-metric. Let (X, v) be the infinite product  of (F, p) 
and L be the shift. It  is a known fact that  L is an ergodic measure preserving 
transformation,  and the finiteness of the first moment  simply translates into the 
integrability assumed above. 

It  is known that  when the Poisson boundary is non-trivial, the word length 
of the t ra jectory grows linearly (so A>0)  for almost every trajectory, see [Gu] or 
Theorem 5.5 in [Ka2]. Hence by the theorem, almost every sample path  converges 

to a point in OF. 
The resulting measure space, 0F with the hitt ing measure, is a p-boundary, 

see [Ful] or, e.g., [Ka2], p. 660. [] 

Note that  it does not seem to be clear whether the p-boundary  obtained is 
non-trivial or not. In the next sections however, by combining some observations 
about the Floyd boundary with works of Kaimanovieh, we obtain that  whenever 
the Floyd boundary is non-trivial, then it is in fact maximal. 

5. Visibility of Floyd's boundary 

Let F be a finitely generated infinite group with a boundary OF of Floyd type, 
see the example in Section 3. We star t  with a lemma. 

L e m m a .  Let z and w be two points in F and let [z, w] be a geodesic segment 
connecting z and w. Then 

~o 

d'(z, < 4rY(,-)+2 r(j),  
j = r  

wher  [z, 

Proof. Let a denote the distance to z from a point m on [z, w] closest to e. 
Let xj, j = 0 , . . .  ,a,  be the points (vertices) of the geodesic segment [m, z]C[w,z]. 
Because of the minimality of r and the triangle inequality we have the estimates 

d(e, xj) k r  and d(e, x j ) > j - r .  

For the usual reasons, we hence get 

d'(m, z) < f i  F(min{d(e, xj), d(e, xj+l)})  
j-o 
2r--1 f i  oo 

<- E F ( r ) +  F(j  r ) < _ 2 r F ( r ) + E F ( j  ). 
j--0 j--2r j--r 
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(If a <  2 r - 1 ,  then we would not decompose the sum, and so the second term would 
not be present.) By the same consideration with w instead of z, the lemma is 

proved. [] 

Note that  with only minor modifications, this proof works for any f -boundary  

of a geodesic space Y. 
Two boundary points 7 and ~ are said to be connected by a geodesic line if 

there is a d-geodesic a such that  ~(n)-+-y and a ( - n ) - + ~ ,  as n-+cxD. 

P r o p o s i t i o n .  Every two points in OF can be connected by a geodesic line. 

Proof. It  is known and easy to show (see [F1]) that  every point 3,~c9F can 
be represented as an endpoint of a geodesic ray from e. Consider the geodesic 
segments [~/(n), ((n)] for any two distinct boundary points. It follows from the 

lemma that  the distance r ,  from these curve segments to e must be bounded (due 
to the summabil i ty of F and since 7(o0)#{(oo)) .  Thanks to the local finiteness 
of F (the Cayley graph) we may now extract a desired geodesic line using Cantor 's  

diagonal argument.  [] 

6. P o i s s o n  b o u n d a r i e s  

The results in the previous section lead to (in notation and definitions as 
in [Ka2]) the following theorem. 

T h e o r e m .  If OF contains at least three points, then the compactification F of 
Floyd type satisfies Kaimanovich's conditions (CP), (CS), and (CC). 

Proof. It is known that  the (isometric) action of F by left translation on itself 
extends to an action on F by homeomorphisms, see for example [K2]. Since ['  is a 
compact metric space it is separable. Any two sequences of bounded distance fl'om 
each other clearly cannot converge to different boundary points; this is (CP). 

As shown in tile previous section, any two boundary points c~n be joined by 
d-geodesics. Therefore the sets (strips) S('y, ~) which equal the union of ail joining 
geodesic lines are non-empty and constitute an equivariant family of Borel maps. 
Furthermore, for any three distinct boundary points (i, i=1 ,  2~ 3, we may find small 
neighborhoods U~ in F of each of the three points so that  

s(u~,  u2)nu3  = r 

To see this, take for O~i small disjoint c-neighborhoods in the metric d'. Now assume 
that  we can find geodesic lines O~k in S(U1, Us), parametrized so that  7~(0) is a 
point closest to e and indices nk-+oo (because every geodesic line in S intersects 
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a bali around e) such tha t  7k(nk)--+ ~, where ~ is some point in UaNOF. But 
then, since the dr-length of every d-geodesic ray is unitbrmly bounded, it follows 
that  d' (Tk (nk), "Yk (o c))--+ 0, and this cannot happen because the neighborhoods were 
disjoint. This proves (CS). 

The condition (CG): d is a left-invariant metric on F and the corresponding 
gauge is tempera te  (just meaning in this context that  F is finitely generated). Fi- 
nally, as already discussed, tbr any two boundary points every joining geodesic line 
intersects the same d-finite radius ball around e (a consequence of the lamina in 

Section 5). [] 

We can now invoke the nice argmnents of Kaimanovich in [Ka2], Sections 2, 3, 
4, and 6, which in particular involve entropy considerations of certain conditional 
random walks (the strip approximation criterion) as well as a version of the martin- 
gale convergence theorem ([Fu2]). Corresponding to [Ka2, Theorem 6.6] we hence 
have the following result. 

C o r o l l a r y .  Let F be a finitely generated g~vup and assume that a Floyd type 

boundary OF contains more than three points. Let p be a probability measure on F 

with finite entropy and finite first logarithmic moment,  and whose support generates 

a subgrmtp which is non-elementary with respect to F, that is, it does not f iz  a finite 

subset of OF. Then the cornpactification F is #-maximal. 

The Floyd boundary of a firlitely generated amenable group consists of zero, 
one, or two points since otherwise the group contains non-commutat ive free sub- 
groups ([K2]). There are however solvable groups for which ti~e Poisson boundary 

is non-trivial fbr any (non-degenerate) probabili ty measure with finite entropy (due 
to Kairnanovich, u and Erschler). 

7. M e a n  proximal i ty  

Let us record some fln'ther consequences of tile previous two sections. For the 
definitions and a basic account of Furstenberg's boundary theory, we refer to tile 
original source [Fu2] as well as [M, Chapter  VII. 

T h e o r e m .  Let F be a finitely generated grwup and assume that Or is a non- 

trivial Floyd boundary. Then Or is a mean proximal X-space. 

Proof. In [K21 it is shown that  0F is a boundary of" F in the sense of [Fu2]. 
Therefore, in particular, F does not leave a finite subset of OF invariant. In view of 
this, tile theorem in Section 6, and the elegant arguments of Kaimanovich in [Ka2, 
Section 2.4], we have that  OF is mean proximal. [] 
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If  the Floyd boundary is non-trivial for a finitely generated fundamental  group 
of a hyperbolic three-manifold, then by knowing that  it can be identified with the 
Poisson boundary as we now do (Section 6), we hence get a unique (up to null 

sets) F-equivariant measurable map onto the limit set. (This is part  of the theory 
of Poisson boundaries, see [Ka2]; for the uniqueness we refer in addition to [M, 
Chapter  VI, Corollary 2.1010 When does this map agree a.e. with a continuous 
map? This question, together with the issue of the non-triviality of OF, is in a sense 
now the content of the conjecture stated in [Mc]. 

Added in pro@ The non-triviality of OF is in fact not an issue: Let F be a 
finitely generated fundamental  group of a hyperbolic three-manifold. It  is known 
from Scott 's  core theorem and Thurs ton 's  uniformization theorem that  the group 

F can be made to act as a geometrically finite Kleinian group, see [E], pp. 266 
267. Hence we know from IF1] that  the boundary OF is infinite (provided that  F is 
non-elementary of course) and we have. 

T h e o r e m .  Let N be a hyperbolic three-manifold with finitely generated funda- 
mental group and denote by A its limit set on the boundary of the hyperbolic three- 
space. Then there exists a unique (up to null sets) measurable, 7h(N)-eqnivariant 

map 

F : c~7c 1 ( iV)  ---} A .  

It  is perhaps interesting to compare this result with [T2], which also considers 
measurable boundary maps. In view of contractivity properties, quite generally, a 

map such as F either agrees with a continuous map or is very discontinuous (the 
F- image of every neighborhood of a point is dense in A). For references to other 
papers discussing the conjecture, see [Mc]. 

8. Convergence  of  certain sequences  

Let (Y, d), y, f ,  and cqY:=OfY be as in the previous section. 

Propos i t ion .  Let y,~ be a sequence of points in Y for which there exists 
two positive constants A and C such that d(y~, y,~+l) < C and d(y,,~, y) > An  for all 
large n. Then y~ converges to a point in OY. 

Prvof. Let/3 be a geodesic joining y~ and Y~+I. For every large n we have 

i fLs(-) <L t(9) 
_< f (9 ( t ) )  d(y.., < r(A  -C)C < 

t 
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Hence the sequence of points in question is a d~-Cauchy sequence, because F is 
summable, and N and C are independent of n. As y.~--+oc in Y, the sequence 

therefore converges to a point in the boundary of Y. [] 

As a corollary of the proposition we have that any quasigeodesic ray converges. 
If F ( r - 1 ) = r  -(2+~), for some positive E, then a similar argument also shows that 

any regular sequence in the sense of [Ka2] converges. 

Using the argument in the proof of Proposition 5.1 in [K1], the lemma in 

Section 5 and the inequality 

<_ d(v, b', 

one can prove the following proposition. 

P r o p o s i t i o n .  Let r  be a one-Lipschitz map of a complete, geodesic 

metric space Y and let Of Y be an f-boundary. If  d(6~(y),y)--+oo, then ~ ( y )  

converges to a point in Of Y ,  as n--+ec. 

Let us emphasize that here, as well as in some other statements in this paper, 

no local compactness is assumed. 
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