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L -norms of Hermite polynomials and 
an extremal problem on Wiener chaos 

Lars Larsson-Cohn 

Abstract. We establish sharp asymptotics for the LP-norm of Hermite polynomials and 
prove convergence in distribution of suitably normalized Wick powers. The results are combined 
with numerical integration to study an extremal problem on Wiener chaos. 

1. I n t r o d u c t i o n  

Hermite polynomials arise quite naturally whenever Gaussian variables are 

involved. They also play an important role as eigenfunctions for the quantum- 

mechanical harmonic oscillator. Their LP-norms should therefore be of general 

interest. The main object of this paper is to derive precise asymptotics for these 

norms with p fixed (Theorem 2.1, Remark 3.2). This is done by direct calculations 
based on a classical asymptotic expansion by Plancherel and Rotach. As an appli- 

cation we give a partial negative answer to an extremal question posed by Janson 

(Proposition 5.1). This matter is then further analyzed, chiefly using numerical 

methods. A short intermezzo treats weak convergence of suitably normalized Wick 

powers of a Gaussian variable (Theorem 4.3). 

This paper is a shortened version of [L], where further information can be 
found. The author wishes to thank his advisor Svante Janson for his help and 
support. 

1.1.  N o t a t i o n  

h OO We shall take the Hermite polynomials { ~}n=0 to be monic and orthogonal 

with respect to the Gaussian measure d"/(x)= (27c)-1/2e-X2/2 dx. The LP-norms will 

be taken with respect to this measure, so that II/11~= (fR IIF d~) 1/p for measurable 

functions f .  The Hermite polynomials are oscillating up to the largest zero, which is 
N-O(n-1/6), with N =  4nx/4h~2 IS]. We shall let N keep this meaning throughout. 
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Indicator (characteristic) functions are denoted by 1, and c will denote positive 
finite constants, not necessarily the same on each occurrence. 

2. M a i n  r e s u l t  

Our main result is the following theorem, to be proved in Section 3 below. 
Recall that,  with our normalization, I l h n l l 2 = ~ .  v . 

T h e o r e m  2.1. The JbIlowin9 holds as n--+oo: 
(a) I f  0 < p < 2  then 

(2.1) Ilhn p - -  7~1/4 . . 

(b) I f  2 < p < e c  then 

. ,  c(p) ,/25 (p_l)n/2 ( 1 + O ( ~ )  

The constants c(p) are given by 

lj4 ( 2 ) j2p 
t ; )  p<2, 
(2,~1/4~ P - - !  ~(p--1)/2p 

\ 2 ( p - 2 ) /  , p > 2 ,  

where pp is defined by (3.1) below. 

Remark 2.2. This is an improvement over Theorem 5.19 of [J], who uses com- 
binatorial properties of Wick products together with a hypereontractivity argmnent 
as a main tool to give upper and lower bounds of our type, but with various powers 
of n. The best power n -1/4 is established for p>_4, though. 

Remark 2.3. Theorem 2.1 can be sharpened, cf. Remark 3.2 below. 

Remark 2.4. I f p < q ,  then IIh,~Hp=O(llh,,~llq) if" and only if q_>2. 

Remark 2.5. The peculiar dependence on p, with one sharply marked thresh- 
old value (p=2) has been noticed before. Aptekarev Buyarov Dehesa [ABD] have 
investigated Jacobi polynomials, where this threshold can take any value 2 < p < o c .  

Remark 2.6. For p<2  one value can be given explicitly: c(1)=27/4/7r 5/4. It 
is also easy to see that  c(p) is increasing on (0, 2) (of course) and decreasing on 
(2, oc) with finite limits c(O)=(e/87r)U4 and c(oc)=(27c)-U4. Moreover, c(p)~ 
(%[p-21) -1/4 as p-+2 from either direction. 
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Remark 2.7. Let p = l .  The fact that  f hn(X)e -x2/2 dx=-hn_l (X)e  -x2/2 com- 
bined with Remarks 2.6 and 3.2 (below) yields the following asymptotics for the 
values of a Hermite polynomial at the zeros of its successor: 

7~ 
Ih~-~(xk) -~./2 25/4 

le = 7r3/nnl /4  
k=l 

where Xl, ..., Xn are the zeros of h~. 

Remark 2.8. A natural question is where the main contributions to the norms 
come from. It tbllows from the proof in Section 3.1 that if p<2,  then the region 
Ix I < c ~ ,  dominates in the sense of the error bounds above. If p>2,  however, a 
slight sharpening of the argument in Section 3.2 shows that the important  parts are 
the intervals IxTp~/n/px/~-i  I<_c l v~n .  Thus, the dominating part is (a small 
part of) the oscillating region for p < 2  and the non-oscillating region for p>2.  

If p=2,  then I l h n l l ~ = ~ .  v . Using Theorem 2.9 below, it is not hard to see that  
the (entire) oscillating part is again the important one. More precisely, 

for any c > 0. 

Our main tool in proving Theorem 2.1 is the following asymptotic expansion 
of Hermite polynomials due to Plancherel and Rotach [PR], see also [S], w 
proven by generating functions and the method of steepest descent. Recall that  
N= 4n~/~. 

T h e o r e m  2.9. (a) Let x = N s i n ~ ,  I~/<1~. Then 

a~ N 2 1 

with an=(2/~)V4~-lZ4~. 
(b) Let x = N c o s h r  0<r Then 

N 2 1 
(2.4) r  ) --  bn exp (~-(2(~-s inh 2r Qn(e_<p ~nh r ) 

with b~ -- (87r)- 1/4n- 1/4 ~ . .  
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(c) L e t  x = N - 3 - 1 / 3 n - 1 / 6 t ,  t bounded. Then 

(2.5) e-~2 /4hn(x) =d~ (A(t)+O ( n~/3 ) ) , 

where G~=3i/3(2/Tr3)~/4n-1/~2~. and d(t) is the Airy function of [S, ~1.81]. 

3. P r o o f  o f  T h e o r e m  2.1 

We turn to the proof of Theorem 2.1. The notation of Theorem 2.9 will be 

used throughout this section. 

3.1.  T h e  c a s e  p < 2  

We start  with a simple, but  useful lemma. 

L e m m a  3.1. Let g be a non-negative periodic function with period 1, and let 
r be a non-negative integer. Then 

/Rg(x)x2re-xe/Wd:z':~r+l/2F(r§ folg(x) dx(t§ , 

a s  ~ --9. cx:) . 

Proof. We have 

g(x)x2~'e -~/~ dx = g(x)x2~'e - /~ dx 

= folg(x)(k~z(X+k)2~ e -(k+x)2/~) dx. 

But the sum in the parentheses is J+I/2F (r+ �89 +O(aJ~e - ~ ) )  uniformly in x, 
as is easily seen by Poisson's summation formula. [] 

We shall only be concerned with the case g(x)= ]sin 7cxl p (or Icos 7rxtP). Hence, 
we define the following quantity, which may be looked upon as "the L p mean of a 
harmonic oscillation": 

( 
= v r(�89 ' 

the last identity follows from the substitution t=s in  2 7~x. 
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Now, fix p with 0 < p < 2 .  Let e ,~=Al~n /n ,  where A is a large constant, and 

put c ~ = N s i n c n ~ 2 A  l x ~ n .  We shall see that  the main contribution to the L p- 
norm comes from the region Ixl_<a~, i.e. I~1 _<on. Namely, let ,o~ --h(1)z-h ( 2 ) n  - ~ with 

h(1)(x)=hn(x)l{~:lccl<_~,j. Furthermore, let hn arise from h! 1) by dropping the O- 
term in (2.3). For simplicity, suppose that  n is odd. Put  f(9~)=�88 
99+O(p 3) and _ 1 f l - - [ (2- -p)  >0. Changing the variable of integration from x over 
to y=N2f(~)/27c and noting that  f~(~)=cos 2 ~, we obtain 

(3.2) 

IIh~ll~- ~a~/_~'~o,,~ sin N2'f(7:)2 P(c~ ~ / 2  dx 

N a-N~f(~)/2~ \ N2 J /  
- 1  2Try 

- -  Isin 7rylP e - 2~2 ~y  e / N2  dy 
N J-N~/(~,.~)/2~ 

where the last step follows by Taylor expansions. Now, N2f(c~)/2~r~c..kn~n. 
The standard estimate of a Gaussian tail shows that  the domain of integration may 
be changed to the entire real line with an error O(n ~) for any s if A=A(s) is large 
enough. But then Lemma 3.1 (with r = 0 )  applies, and we conclude that  

_ ~ . / x ~  N V 2 ~ ( a ~ # P ) P ( I + O ( 1 ) ) - ( a ~ # P ) P ( I + O ( 1 ) )  (3.3) 

which is (2.1) with ]tn in the place of h,~. Since the sine term in (2.3) contributes 

to this with the non-zero factor #pP, (3.3) holds with tz~ replaced by h!~ ). 

It remains to take care of h(n 2). We use Lyapounov's inequality, which, for a 
function f on a finite measure space with total mass M and 0<p_<q<oc, may be 
written 

Ilfllp ~- M1/p-1/qllfllq. 

Take q=2 and put c=1/p-1/2>0. Then, for large n, 

which is O(an/n ~) if A(s) is large. This establishes (2.1). 



138 bars  Larsson-Cohn 

3.2. T h e  case  p > 2  

Now, fix p>2.  Let s and co be positive numbers, c small and co large enough in 
a sense to be specified later. Put  h,~=h(~r163 2) +h!: 3) with 

h~ ) (x) = h~ (x)l{x :lzl>N+n-1/6}, 

h~)(x) = A~(x)I{.:I~I<_N_~-II6 }, 

and let hn arise from h!~ ) by dropping the O-term in (9.4) and restricting x to 

N eosh e_< }x} < N eosh w. 
We treat h~ first. Changing variables from x to r we write H[~nil~ as 

2~ m [ (sinh*) 1-~/~ 

2bP f~  
- - : - - N  

Elementary calculus shows that g, defined as above for 0_>0, has a strict global max- 
imum at r189 l o g ( p - l )  with g(r " 1 g ( r  and s inhr  
(p-2)/2~/p-1. If ~<r the Laplace method (e.g. [Br]) gives 

, / ~  :V~(-g"(r l+O 

: ( 2 b ~ ) p (  p _ l  )(p-1)/2 
2 (p -2 )  ( P - 1 ) n P l 2 ( I + O ( 1 ) )  ' 

which, after taking the pth root, is (2.2) with hn instead of h~. It is clear that the 
O-term in (2.4) is bounded for r  - 1 / 6 . _  Hence, we may replace/tn by h 0)~ , in 
fact with an exponentially small difference (the contribution from G close to r  
is only a power of n). 

We complete the proof of (2.2) by claiming that the contributions from h (2) 

and h!2 ) are also exponentially smaller than that of h!~ ), proving this for h!~ 2) only. 
Let ~,(p) denote constants depending on p, not necessarily the same each time. 
Note that the O-term in (2.3) is bounded in the relevant region. Hence, Ih~(x)] < 
C~7(P)~..e x2/4 for I x l < N - n  i/6, and 

Ilh~ 2) II~ ~ c n~(p) (n!) p12 fN (7 (p14-112)x2 dx <_ C~'7(P) (~!)~/~(~-~)~ 

Thus, 

and we need only notice that (p -2 ) /p<  �89 l o g ( p - l )  for p>2,  as is easily seen. This 
completes the proof of Theorem 2.1. 
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Remark 3.2. Theorem 2.1 may be extended to asymptotic expansions. Thus, 
for p<2  one has, for any k, 

(3.4) ,,h ' - - c (P)~n .V( l+Cl~(nP)+  +ck(P)+O(n~f)) 
n p -  7bl /4  v . . . . . .  Tt k 

and similarly for p>2.  The main reason for this is that  the asymptotics of Theo- 
rem 2.9 can be continued to any order [PR]. For p > 2  one then merely inserts these 
terms into the correction terms that  arise fi'om the Laplace method. 

For p < 2  the situation is a little more complicated, since the expansion (2.3) 
starts with a sine expression rather than with 1, making it less obvious how to 
take the pth power dose to its zeros. The problem can be resolved by modifying 
the substitution leading to (3.2) and applying Lemma 3.1 with various values of r; 
cf. [L]. 

The paper [L] also contains a calculation of the first correction term. Some 
rather tedious work yields 

p - 1  
c~(p) -- 8 (2 -p )  ' p <  2, 

p 2 _ 4 p + 6  
c,(p)- 24@_2)2,  p > 2 .  

Thus, we can sharpen Theorem 2.1 to 

c(p) ,(lq p-1 t-O(1)) p < 2 ,  

Hhn[[p= ~n.T(p-1)  ~ff2 1 24(p_2)2n+O , p > 2 .  

4. C o n v e r g e n c e  in d i s t r i b u t i o n  o f  W i c k  p o w e r s  

In the light of Theorem 2.1 one may suspect that  if ~ is a standard Gauss- 
ian variable, then h~(~) converges in distribution when normalized by n-1/4~.. 
We shall see that  this is indeed the case, which will give us a new proof of Theo- 
rem 2.1(a). 

To this end we make use of (2.3), letting a~ keep its meaning from there. By 
disregarding large values of x it is easily seen that,  for odd n, h~ (~)/an converges in 
distribution if and only if e ~2/4 sin (x/~ ~) does, the limits being the same (for even n, 
sin should be replaced by cos). We shall prove a slightly more general statement, 
based on the following reformulation of "Fej6r's lemma" [K]. For the notion of R6nyi 
mixing, see [R]. 
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L e m m a  4.1. Let X be an absolutely continuous random variable, and let g be 
a periodic function with period T. Then g(wX)  is Rdnyi mixing, as ~--+~. More 

precisely, 
P(g(czX) E A ; E)  --+ P(g(U) e A ) P ( E ) ,  

as w--+cxb for any event f and Borel set A c R ,  "where U is uniformly distributed 
on [0, T]. 

A combination of the above lemma with Theorem 4.5 of [Bi] yields 

P r o p o s i t i o n  4.2. Let X be absolutely continuous. Then, as a;-+cxD, both 
(X, sin wX) and (X, cos~X)  converge in distribution to (X, sin U), where U is uni- 

formly distributed on [0, 27r] and independent of X .  

Letting X =~ be standard Gaussian, an application of the continuous mapping 
theorem to Proposition 4.2 together with the remarks at the beginning of this 
section establishes the desired result. Recall that  the n th  Wick power of ~ satisfies 
:{":=hn({)  so that II:{'~:llp=llh,~//p, ef. [J]. 

T h e o r e m  4.3. Let ~ be standard Gaussian. Then, as n-+oo, 

:~n :  d f2"~ 1/4 ~ 2 , ~  

e ~ /~ sin U, 

where U is uniform on [0, 2~r] and independent of ~. 

Remark 4.4. Together with the (easily established) fact that  II:{'~:/a~llp is 
bounded if p<2,  this offers a simple probabilistic proof of Theorem 2.1(a), except 

for the error bound O(n 1). One merely notes that  Ild~/4llp=[2/(2-p)] 1/2p for 

p<2,  and that  Ilsinglb=/% 

5. A n  e x t r e m a l  p r o b l e m  o n  W i e n e r  c h a o s  

We shall use the above results to give a partial solution to the following extremal 
problem. Let H be a Gaussian Hilbert space and consider H :~", the homogeneous 
Wiener chaos of order n (e.g. [J]). Using multipficative properties of the Skorohod 
integral, [J] shows in Remark 7.37 that  when p is an even integer 

f the functional [[X]]p/[[X[[2 is maximized for X E H :~: 
(5.1) 

t by letting X be a Wick power : ~ :. 

He also asks whether this holds for other values of p. We shall see that  the answer 
is largely negative if p<2.  



LP-norms of Hermite polynomials and an extremM problem on Wiener chaos 141 

P r o p o s i t i o n  5.1. Let H be an infinite-dimensional Gaussian Hilbert space, 
and O<p<2. Then (5.1) fails for all sufficiently large n. 

Proof. Let ~ and [~i}~1 be orthonormal elements of H.  Suppose that  (5.1) 
holds for a certain n > l ,  so that  

I1: ~ :  lip >_ IlXllp 
]]:~n:ii2 ilxll2 

]~ , ~ ,  for all X E H  :~:. Take X = X k = ~ i = l . ~ i  " By the central limit theorem Xk/IIXkll2 
converges in distribution and with all moments  to a s tandard Gaussian variable, i.e. 

to ~. Hence, 
i i : ~ : i l , >  x~ p 
]i ~n 112 - ~ -~ II~llp =: ~ (p )  

But ]i:~n:lip=llh~llp. Thus, 

(5.2) Ilhn I1~ --> ~(P) ~ "  �9 

But this fails for large n by Remark 2.4. [] 

We believe that  more is true; that  (5.2) is false for all n_>2 and 0 < p < 2 ,  so 
that  the phrase "sufficiently large" can be removed from Proposit ion 5.1, and that  
a counterexample is furnished by summing sufficiently many Wick powers. As an 
illustration we give a proof for n = 2  based on numerical integration. Here one 
only needs two Wick powers. (This seems not to be the case for n>2 .  Instead, 
numerical evidence suggests tha t  the number of Wick powers then required increases 

indefinitely as p--+0.) 
The integrals below have been calculated to nine decimal places using the 

computer algebra program Maple, cf. [L] for details. This means tha t  the proof is 
not completely rigorous, but can, no doubt, be made so at wish by tracking the 

errors of the integrals more precisely. As a compensation, there is an extra factor 
3 in (5.4) below. of 

P r o p o s i t i o n  5.2. Suppose that dimH_>2. Then (5.1) fails in H :2: for p<2. 

Proof. Let { and r /be  independent s tandard Gaussian variables in H.  We claim 

that  
11:~2:11p<11:~2:+:~2:11~ o < p < 2 .  
I1:~:11~ 11:(2:+:~2:112' 

By elementary calculus this is equivalent to 

(5.a) I(P) := \ v ~  ~:i  Ix- l iP e-~ d~ < 0 
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for 0 < p < 2 .  Trivially, f ( 0 ) = f ( 2 ) = 0 .  One can express f in terms of confluent 

hypergeometric functions, which offers a simple way to calculate it to great accuracy. 

Differentiating under the integral, one obtains expressions for f~ and f "  similar 

to (5.3). Simple estimates and numerical integration then show that  If"l<<A=4 
on [0, 2]. 

Now, given a e  [0, 2] with f(a) <0, we have f(p) < f(a) +if(a) (p-  a) + �89 2 
so that, starting at a and moving in either direction, f cannot reach zero before 
p=a+ Ap with A p =  ( - f ' ( a )4 -x / f  '(a) 2 - 2df(a) ) /A. The following iterations thus 

guarantee that f(p) <0 for p~, < p < 2 :  

(5.4) P0 3 A 
2, 

P k + ~ = P k + ~  Pk=Pk  
3 f '(pk)+X/ff(pk)2--2Af(pk) 
4 A ' 

where the extra factor } has been added for safety. Note that we are moving to the 

left so that Ap<0.  The numbers ff(Pk) are calculated by numerical integration, 

and f(p~) by the hypergeometric representation mentioned above. The results are 

shown in Table 1. Since p9<1, we conclude that f < 0  on [1, 2). 

Table 1. Results of the iterations (5.4). The values 
are actually calculated to nine decimal places. 

k pk 
0 2 0 
1 1.9320 -0.0113 

2 1.8399 -0.0239 

3 1.7323 -0.0351 

4 1.6149 -0.0438 

5 1.4919 -0.0498 

6 1.3665 -0.0531 

7 1.2411 -0.0542 

8 1.1174 -0.0534 

9 0.9971 -0.0513 

f (Pk ) f f  (Pk ) Apk 
0.1812 

0.1532 

0.1205 

0.0888 

0.0606 

0.0367 

0.0170 

0.0009 

-0.0123 

-0.0232 

-0.0906 

-0.1228 

-0.1435 

-0.1566 

-0.1640 

-0.1672 

-0.1672 

-0.1648 

-0.1604 

-0.1545 

Starting a similar iteration at P0 =0, one also reaches p =  1 after a few iterations, 

and so f < 0  on (0,2). [] 

Remark 5.3. For p = l  we can give the value f (1)=2(~fg-v~) /e~/~<O.  By 
continuity, f < 0  in a neighbourhood of p =  1 without appealing to numerics. 
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W~e close with a brief discussion of possible generalizations of (5.1). Fix a 
Gaussian Hilbert space H and let J~(p, q) be the s tatement  (5.1) with IIxII2 replaced 
by IlXllq. The argument of Proposition 5.1 shows tha t  if dim H = o o  then J~(p, q) 
fails for large n whenever p<q and q_>2. If  0<p ,  q<2,  the same holds provided that  

9(P)<9(q), where 9(p )=c(p ) / z (p )  with c(p) as in Theorem 2.1. By Remark 2.6 this 
is true at least for p fixed and q close to 2. 

One may be tempted to conjecture that  Jn(P, q) holds whenever p>q. This is 

false, however. Namely, since g(p)=(2rc) - l /4F( �89  U2v, straight- 

forward calculations show that  

lira g'(p) -- 1 _ 3)e.r/2+l/4 
p~o 48(271-)1/4 (7c2 < O, 

where "y is Euler 's constant. Hence g(p)<9(q) for small 0 < q < p .  

We have performed further numerical integration using the NAG software pack- 
age. The cases dim H < 3  and n=2 ,  3, 4 and 9 have been studied in some detail. The 
results indicate that  J~(p, q) is in general false whenever p<q or p_<2. We still be- 
lieve tha t  Jn(P, q) holds at least for p>q>_2. A proof of this seems to require new 
ideas, however. 
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