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On the A-numbers in the quadratic fields K ( ~ - ~ )  

B y  TRYGVE NAGELL 

w 1. Introduction 

1. Every  integer ~ ( #  0) in the algebraic field ~ is said to be an A-number in 
if it is representable as the sum of two integral squares in s In  a previous paper  [1] 
we have determined the A-numbers in the quadratic fields K(I/D), where D = - 1 ,  
•  •  -?7, i l l ,  -719, •  +67 and • In  another paper [2] we determined 
the A-numbers when D = • 5 and + 13. In  the present paper  we shall t reat  the cases 
D = • 37. The fields K ( ~ / •  have in the main the same properties as the fields 
K(I /+  5) and K ( l / !  13) t reated in paper [2]. There is, however, an essential difference: 
The fundamental  unit has the form 6 + ~ .  Thus the equations x 2 - 37y ~ = + 4 have 
no solutions in odd (rational) integers: This fact necessitates a modification of the 
methods used in paper [2]. The following developments are in general analogous to 
those occurring in [1] and [2]. 

The number of ideal classes in the field K(}/~) is = 1 and in the field K(I /~  37) = 2. 
In  the Dirichlet field K(I /~ ,  1/-37)  the number of ideal classes is = 1. I f  x + y  1/~33 "] 
is an A-number in K(1/~337), x and y rational integers, then y is even. I f  ~ is an integer 
in K(V~,  ] / : 37 ) ,  the number 2~ belongs to the ring R(1, 1/~11, ] /~ ,  1/~37). For 
the proofs see [1], p. 8-9. 

In  the sequel we shall write 0 instead of 1/~ and consequently iO instead of ~/-37.  

w 2. The real field K(0) 

2. Units and divisors o] the rational primes 2 and 37. Every  A-number in this field 
must  be positive and have a positive norm. The fundamental  unit ~ is 6+0 .  Since 
N ( e ) = - 1 ,  e is not an A-number. The nth power of e is an A-number if and only 
if n is even. The number 2 is a prime in the field and, of course, an A-number. 

Since the prime 0 has the negative norm - 3 7 ,  it cannot be an A-number. The 
number - 1  is a quadratic residue modulo 0. From the relation 

(6 + 0) 0 =�88 +0)  2+�88 +0)  2 

it follows tha t  the product ~0 is an A-number. Hence the number  era0 n, where m and 
n are rational integers, n >~0, is an A-number if and only if m + n  is even. 
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3. The rational primes /or which 37 is a quadratic non.residue. Let  p be an odd 
rational prime such that ,  in K(1), 

Then p is a prime in the field and since 

p = u 2 + v 2, 

where u and v are rational integers, p is an A-prime. 
Suppose next  t h a t  p is an  odd rat ional  prime such that ,  in K(1), 

Then p is a prime in K(0). Since (~-)-37 = + 1 we have, in K(iO), 

(P) = PV, 

where p and p' are different prime ideals. I n  this field we fur ther  have 

( ~ - ~ )  = ( -1) �89 = -- 1. 

The ideal p can never be principal. I n  fact, if we had p = (x + yiO) with rat ional  integers 
x and y, we should have 

p = x 2 + 37 y2. 

Bu t  this equation clearly implies p = + 1 (rood 4). I n  K(i0) we fur ther  have (2) = q2, 
where q is a prime ideal t ha t  is not  principal. Since the number  of ideal classes in 
K(i0) is =2 ,  the produc t  pq is a principal ideal. Hence 

2p = x ~ + 37y 2, 

where x and y are rat ional  odd integers. Since this relation m a y  be wri t ten 

p = �88 + yO) 2 + l ( x  - yO) 2, 

the number  p is an A-prime in K(0). Thus the number  - 1 is a quadratic residue modulo 
p in this field. 

4. The rational p r imes /or  which 37 is a quadratic residue. Let  p be an odd rat ional  
prime such that ,  in K(1), 

I n  this case we have 
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where w and  o~' are  di f ferent  pr imes.  Since 

( - -  1 )  = ( - -  l ) �89176 = - -  ] , 

the  p r ime  ~o is no t  an  A-number .  
F ina l ly ,  we consider  an  odd  pr ime  p such tha t ,  in K(1), 

Since the  f ield is s imple,  and  since the  no rm of the  f u n d a m e n t a l  un i t  ~ is = - l ,  we 
have  a lways  

4p = u 2 - 37v 2, 

where u and  v are r a t iona l  integers  of the  same pa r i t y .  Then  the  numbers  

e o : � 8 9  and  m'=�89 

are  conjuga te  p r ime  factors  of iD in the  field. I f  we suppose  u > 0, t he  numbers  co and  
w' are  posi t ive.  Since the  field K(0, i)  is simple,  we have  

(D = :Tgl:rg2~ ~ 

where # is a un i t  and  ~1 and  ~ are  pr imes  in t h a t  field. According to  l emma  3 in [2], 
we m a y  suppose t h a t  

~1 = �89 + cO) + �89 + dO) 

and  

z z  = �89 + cO) - �89 + dO), 

a, b, c and  d being ra t iona l  in teger  s. The  uni t  ~ belongs to  the  field K(0) since the  
p roduc t  z1~2 belongs to  th is  field. Since w is posi t ive,  ~7 is so. The  norm of co is pos i t ive  
and  the  no rm of ~1~2 is also posi t ive.  Hence  the  no rm of ~ is posi t ive.  Thus  we have  

P u t t i n g  

we get  

~] = B2m 

~1 ~ Y~I Ern and  Y~2 = Y~2 8m, 

(~0 = ~/)1~2' 

where ~1 and  ~2 are  pr imes  in K(0, i )  such t h a t  ~1 is t r ans fo rmed  into  Y~2 when i is 
subs t i t u t ed  b y  - i  and  vice versa.  Consequent ly  we m a y  suppose  t h a t  ~ = 1. Hence  

co = ~(a + cO) 2 + ~(b + dO) 2, (1) 

which involves  the  re la t ions  

and  

2u = a 2 + b  2 +37(c  2 + d  2) (2) 

v = ac + bd. (3) 
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I f  t he  numbers  a, b, c, d are  all  odd  or al l  even,  i t  is clear t h a t  o~ is an  A-number .  
Suppose  nex t  t h a t  a and  c are b o t h  even or bo th  odd.  Then  i t  follows f rom (1) t h a t  
�89 +dO) is an  in teger  and  consequent ly  co is an  A-number .  Analogous ly  when b and  
d are  bo th  even or bo th  odd.  Hence  i t  r emains  to  examine  the  following case: one of 
the  numbers  a and  c is e v e n a n d  the  o ther  one odd,  one of the  numbers  b a n d  d is 
even and  the  o ther  one odd.  Then  i t  follows from (3) t h a t  v is even. Hence  u is also 
even, and  we ge t  f rom (2) 

a2+b2+37(c~+d2) - ~ a 2 § 2 4 7  2 - -0  (rood 4). 

B u t  t he  sum of four  squares  is divisible  b y  4 only  when the  squares are  all  even or  
all  odd.  Thus  we have  p roved  t h a t  o~ is a lways  an  A-number .  

5. Summary  and p r o o / o / t h e  main  result. As a consequence of the  discussions in  
the  preceding  sect ions we m a y  s t a t e  the  following resul t  

Theorem 1. The pr ime r in K(0) is an A-number only in the/oUowing cases: (i) 

r = 2e2m ; ( ii ) ~o = Oe~m+ l ; ( iii ) o~ = pe2m, when p is an odd rational prime such that ( 37 ) = 

- 1 ;  (iv) o) is o / t h e / o r m  �89 +vO), where u and v are rational integers such that �88 2 -  
37v 2) is a rational pr ime =- 1 (rood 4). 

W e  are  now in a pos i t ion  to  es tabl i sh  our  ma in  result .  

Theorem 2. The integer ~ in the/ ie ld K(0) is an A-number i / a n d  only i/  

a = f l ~ O m e  ", 

where fl and ~ are integers in the field with the ]ollowing properties: fl and ~ are pr ime  
to O; fl is either = 1 or =a  product o /A-pr imes ,  di//erent or not; ~ is either a unit  or = a  
product o /pr imes  ~ such that, in K(0), 

m and n are rational integers, m > 0, such that m + n is even. ~ is the /undamental  unit,  
chosen > 1. 

Proo/. I t  is ev iden t  t h a t  the  condi t ions  are  sufficient.  Suppose t h a t  ~ is an  A- 
n u m b e r  and  t h a t  

= ~ 0  ~, 
where ~ and  ~? are  integers  in the  field wi th  the  following proper t ies :  t h e y  are p r ime  
to  0; ~ is e i t h e r = l  o r = a  p roduc t  of pr imes  7e sa t i s fy ing the  re la t ion  (4) in  K(0); 

is e i ther  = 1 or = a  p roduc t  of A-pr imes;  m is a ra t iona l  in teger  >~0. Then  we m u s t  
have  ~ =Q~z, where ~ is an  in teger  in the  field and  Q a uni t .  Thus  the  n u m b e r  :r 
is an  A-number .  Now app ly ing  l e m m a  4 in [2] a cer ta in  n u m b e r  of t imes  to  the  pr ime  
factors  z~ of ~, we f ind t h a t  the  number  

~2~ =~ 0~ 

m u s t  be an  A-number .  F ina l ly ,  app ly ing  a resul t  in sect ion 2 we achieve the  proof.  
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w 3. The  i m a g i n a r y  field K ( i 0 )  

6. Units and divisors o/the rational primes 2 and 37. The n u m b e r  - 1 is an  A - n u m b e r  
in the  field since 

- 1 = 6 s + ( iO) ~. 

Thus  the  numbers  ~ a n d  - ~  are  s imul taneous ly  A-number s  or  not .  
The  pr ime  iO is c lear ly  no t  an  A-number ,  and  (iO) 'n is an  A - n u m b e r  on ly  when m 

is even.  The  n u m b e r  - 1  is a quad ra t i c  res idue modulo  i0. The  n u m b e r  u+viO, 
where u a n d  v are r a t iona l  integers,  is never  an  A-number  when v is odd.  I n  v i r t ue  
of the  re la t ion  

2i0 = 6 s + (1 + iO) ~ 

we s ta te :  the number 2i0 is an A-number.  W e  have  

(2) = qs = (I  s + IS), 

where the  p r ime  ideal  q is no t  pr incipal .  The  n u m b e r  - 1 is a quad ra t i c  residue modulo  
q. 

7. The rational p r imes /o r  which - 3 7  is a quadratic non-residue. Le t  p be  an  odd  
ra t iona l  p r ime  such tha t ,  in K(1), 

Then  (p) is a p r ime  ideal  in the  f ield a n d  since 

p = U ~ 4-V s, 

where u a n d  v are  r a t iona l  integers,  p is an  A-pr ime.  
Suppose  nex t  t h a t  p is an  odd  ra t iona l  p r ime  such tha t ,  in K(1), 

- 3 7  

Then (p) is a p r ime  ideal  in the  field K(i0). Since 37 is a quadra t i c  residue of p,  and  
since the  field K(0) is s imple,  the  equa t ion  

4p = x s - 37y s 

is solvable  in ra t iona l  in tegers  x and  y. 
I f  x and  y are  bo th  even, we ge t  

p = x~ - 37y~ = x~ -4- (iOyl) 2, 

where x 1 = �89 and  Yl = �89 Hence p is an A.pr ime.  
If  x and  y are  bo th  odd,  we shall  show t h a t  p is no t  an  A-number .  I n  fact  we have,  

for eve ry  ra t iona l  in teger  m, 

~(x + yO) (6 + O) m = �89 + vO), 
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w h e r e  t h e  r a t i o n a l  in t ege r s  u a n d  v a re  c lea r ly  odd  w h e n  x a n d  y are  odd .  H e n c e ,  in 
t h i s  case, t h e  e q u a t i o n  

p = u 2 - 37v 2 

is n o t  poss ible  in r a t i o n a l  in tegers  u a n d  v. Suppose  n e x t  t h a t  

p = (a +ciO) 2 + (b +diO) 2, 

w h e r e  a, b, c a n d  d are  r a t i o n a l  in tegers .  Th is  r e l a t i on  impl ies  

p = a 2 + b 2 - 37(c 2 + d2), ac = - bd. 

I f  d = 0 we m u s t  h a v e  a = 0. H e n c e  we shou ld  h a v e  p = b 2 - 3 7 c  2 wh ich  is imposs ib l e  
as was  s h o w n  above .  I f  d e  0 we ge t  b = - a c d  -1 a n d  b y  e l i m i n a t i o n  of b 

p d  2 = (c 2 + d  2) (a 2 - 37d2). 

P u t  c = / c  I a n d  d = / d  I where  ( c l , d l ) =  1. T h e n  we ge t  

p = (c~ + 42) (a2d~ 2 - 37/2). 

H e n c e  a is d iv i s ib le  b y  d 1. P u t t i n g  a =gd 1 we m u s t  h a v e  e i the r  

2 2 p = c l  § dl 

o r  

p = g2 _ 37/2. 

B u t  these  e q u a t i o n s  are  b o t h  imposs ib le .  Hence  p is  not an  A-number .  W e  say  t h a t  
t h e  r a t i o n a l  p r i m e  p is a B - p r i m e  w h e n  p has  t h e  fo l lowing  p roper t i e s :  p ~ - 1 ( m o d  4), 
37 is a q u a d r a t i c  res idue  m o d u l o  p;  t h e  e q u a t i o n  p = x  2 - 3 7 y  2 has  no so lu t ions  in  
r a t i o n a l  in t ege r s  x a n d  y. H e n c e  we h a v e  p r o v e d  t h a t  a B - p r i m e  is n o t  a n  A - n u m b e r .  
B y  t h e  s a m e  m e t h o d  we  m a y  show t h a t  t h e  e q u a t i o n  

2p = (a § ciO) 2 § (b § diO) 2, 

where  p is a B - p r i m e ,  is n o t  poss ible  in  r a t i o n a l  in tegers  a, b, c a n d  d. I n  fac t ,  if d = 0  
we ge t  2p = b 2 - 3 7 c  2, w h i c h  is imposs ib le  m o d u l o  4. I f  d r 0 we ge t  in  t h e  s a m e  w a y  
as  a b o v e  

2p  = (c~ + d~) (g2 _ 37/2). 

H e n c e  c~ = d~ = 1 a n d  p = g2 _ 37/e. Since  p is a B - p r i m e  the  l a t t e r  e q u a t i o n  is imposs ib le .  
T h u s  we h a v e  p r o v e d  

L e m m a  1. When  p is a B - p r i m e  none o / t h e  numbers  p or 2p is an A-number .  

W e  f u r t h e r  p r o v e  

L e m m a  2. The product  o / t w o  B - p r i m e s  is  an A-number .  
Proo/ .  L e t  p a n d  P l  be t w o  B - p r i m e s  

p = �88 2 + (yiO) 2] a n d  Pl = �88 + (yliO)2], 
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where x, y, x 1 and Yl are odd rat ional  integers. Then  

16pp 1 = [xx 1 +_ 37yy1] 2 § [(xy I • xly)iO] 2. 

Here the  sign m a y  be chosen such t h a t  the number  x x l + 3 7 y y  1 is divisible by  4. 
Then xy 1 + x 1 y is also divisible by  4. This proves  the lemma.  

8. The rational primes p = - 1  (rood 4) /or which - 3 7  is a quadratic residue. Let  
p be an odd rat ional  pr ime such tha t ,  in K(1), 

Then we have  

(p )  = ~]3,, 

where p and ]3' are different pr ime ideals in the  field K(iO). In  this field we fur ther  
have  

The ideal ]3 can never be principal. I n  fact,  if we had  ]3 = (x + yiO) with ra t ional  integers 
x and y, we should have  

p = x 2 + 37y 2. 

Bu t  this equat ion clearly implies p ~ + 1 (rood 4). 

L e m m a  3. Let ~ and fl be integers in K(i0), not both equal to zero. Further, let p be a 
prime ideal in the field satis/ying relation (5). I / t he  sum ~2 + fl~ is divisible by the power 
pro, we must have 

= fl = 0 (mod ]3~), 
where v = [ l (m + 1)]. 

The proof is the same as t ha t  of l emma 6 in paper  [2]. 
The following results m a y  be obta ined  in the same manner  as the  l e m m a t a  '7-10 

in paper  [2]. 

L e m m a  4. Let ~ be a prime ideal in the field satis/ying relation (5). Then p2 is a 
principal ideal=(u +viO), u and v being rational integers, u even and v odd. Further, 
the numbers 2(u +viO) and iO(u +viO) are A-numbers. 

Let 01 be another prime ideal satis/ying relation (5). Then P01 is a principal ideal = 
(a), where the integer at is not an A-number. 

9. The rational primes p ~ + 1 (rood 4 ) / o r  which - 37 is a quadratic residue. Con- 
sider finally the  case 

( ~ ) = + 1  and (-~-)-37 = +  1, 

where p is an odd rat ional  prime. Here  we have  

(p )  = P V ,  
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where p and  p'  are different pr ime ideals in  the field. Exac t ly  as in paper  [2], p. 272, 
i t  may  be shown tha t  these ideals are principal.  Hence 

p = u s + 37v 2, 

where u and  v are ra t ional  integers. Then  the numbers  

co = u + viO and  o~' = u - viO 

are conjugate prime factors of p in  K(i0). Since the field K(O,iO) is simple, we have 

(~0 ~ Y '~l~/~2,  

where zt 1 and  7t 2 are primes in the la t ter  field. Since 2~t I and  27t 2 belong to the ring 
R(1, i, O, iO) (cf. the introduct ion) ,  we may  suppose t ha t  

and  

gx = �89 + ciO) + i�89 + diO) 

~ = �89 + ciO) - i�89 + diO), 

a, b, c and  d being ra t ional  integers. Hence 

o~ = �88 + ciO) ~ + �88 + diO) ~, (6) 

which involves the equat ions  

and  

4u = a 2 + b  ~ - 3 7 ( c  ~ + d  2) (7) 

2v = ac + bd. (8) 

If  u is even and  v odd the prime co can never  be an  A-number .  I n  this case we call ~o 
a C-prime.  

Suppose next  t ha t  u is odd and  v even. If the numbers  a, b, c and  d are all even, 
~o is an  A-number .  If  they  are all odd, we get from (7) 4u-=0 (mod 8), thus  u is even 
and  eo is a C-prime. Exac t ly  as in  paper  [2], p. 273, it  ma y  be shown t h a t  the only 
remaining  possibil i ty is t ha t  a and  d are both  even and  b and  c are both  odd. (I t  is, 
of course, unnecessary to t rea t  the case with b and  c even and  a and  d odd). I n  this 
case we get from (7) 

a 2 + d  2 - 0  (mod 8). 

I t  follows from this congruence tha t  �89 and  �89 are either both  odd or bo th  even. If  
eo were an  A-number ,  it  is evident  t ha t  it  should exist a un i t  E in  K(O,iO) such tha t  

Exe 1 = a 1 + c x iO + i( b I + d 1 iO ), (9) 

al, bl, c I and  d x being ra t ional  integers. I t  suffices to consider the case t ha t  E is the 
fundamen ta l  un i t  in  K(O, iO). I n  this field one ma y  choose the fundamen ta l  un i t  
= 6 + 0 ,  cf. paper  [3], p. 11-15. Hence 

E g  1 = �89 + 0) [a + ciO + i(b + diO)] = 

= �89 - 37d + (6c + b) iO + (6b + 37c) i + (a - 6d) 0]. 
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Since the n u m b e r  6 c + b  is odd we see t ha t  E g  1 is no t  of the  form (9) with ra t ional  
integers al, bl, Cl, d i. Thus  we conclude t ha t  r is no t  an  A - n u m b e r  in  this  ease. We 
say t ha t  the  prime ~o is an  F . p r i m e ,  when co is of the form (6), where a, b, c a nd  d 
are ra t ional  integers, such tha t  one of the numbers  a s + d s and  b s + c s is divisible by  
8 and  the other one only  by  2. 

I n  the above proof the number s  6 a - 3 7 d  and  a - 6 d  are even, and  the  number s  
6c + b and  6b + 37c are odd. Hence we may  state 

Lemma 5. I n  all the representations o / a n  F - p r i m e  co, 

o) = �88 + ciO) s + Ji(b + diO) s, 

wi th  rational integers a, b, c and d, one o / t h e  numbers  a s + d  2 and b e + c  s is  divisible by  
8 and the other one only  by 2. 

Lemma 6. The  product  o / t w o  F - p r i m e s  is  an  A -number .  
Proo/ .  Let ~o and  0) 1 be two F-primes,  

a~ = J;(a + ciO) 2 + {(b + diO) ~, 

o~ 1 = �88 1 + CliO) ~" + {(bl  + dliO) s, 

where a, b, c, d, ai, bi,  C i and  d i a r e  ra t ional  integers, such tha t  a, d, a i a nd  d i are 
even and  b, c, b I and  c i are odd. Then  we get 

16o)ol = [aai - 37cci _ bbl T 37ddl + (acl + al c + bd 1 + b 1 d)iO] 2 + 

[ab i - 37cd 1 + a i b _ 37c 1 d + (b 1 c + ad i T- a i d ~- bcl)i0] s. 

Since a + d and  a i + d 1 are always divisible by  4, we have, as well for the upper  as for 
the lower sign, 

ac x +ale+_ (bd 1 + b i d  ) - 0 (rood 4) 

and  

ab 1 - 3 7 e d i t  (alb - 3 7 c l d  ) - 0 (rood 4). 

Let  us choose the sign such tha t  the n u m b e r  cc 1 T bbi is divisible by  4. Then  we clearly 
ob ta in  

and  

aa i - 37cc I _ (bb 1 - 37ddl) ~ 0 (rood 4) 

bl C ~-adi-T- (aid  + bCl) - 0 (rood 4). 

This proves the lemma.  

Lemma 7. I ]  eo is  an  F -pr ime ,  209 is  not an  A . n u m b e r .  
Proo/ .  Suppose w given by  (6), where a and  d are even, b and  c odd. Then  we have 

8w = 4o)(12 + 12) = [a + b + (c + d)iO] s + [a - b + (c - d)iO] s. 

If  2co were an  A-number ,  i t  should exist a un i t  E in  K(0,i0) such tha t  

E[a  + b + (c + d)iO + i(a - b) - (c - d)O] = a 1 + c 1 iO + i(b 1 + d 1 iO), 
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where the  ra t iona l  integers  al, bl, cl and  d 1 were all  even. I t  is sufficient  to  t ake  
E = 6 + O .  Then  we get  a l = 6 a + 6 b - 3 7 ( c - d  ). Hence a 1 is odd,  and  2m is no t  an  
A-number .  

10. Summary.  As a consequence of the  discussions in the  preceding sections,  we 
m a y  s ta te  the  following results .  

Theorem 3. All  the prime ideals in K(i0) are principal except the prime ideal divisors 
o / 2  and o/ the odd rational primes p satis/yinq the relations, in K(1), 

T h e o r e m  4. The prime ~ in K(i0) is an A-number only in the/ollowing cases: 
(i) w = + p  where p is an odd rational prime such that, in K(1), 

- 3 7  = - 1 ,  

except when p -  - 1  (mod 4) and the equation p = x  ~ - 3 7 y  ~ has no solutions in rational 
integers x and y. 

(ii) ~o is o / t h e / o r m  u + viO, where u and v are rational integers, u odd, v even, such 
that u s + 37v 2 is a rational prime, except when the A-number 4o~ has a representation 
o/ the ]orm 

4so = (a + ciO) 2 + (b + diO) 2, (I0) 

a, b, c and d being rational integers such that one o / the  numbers a 2 + d  2 and b ~ + c  2 is 
divisible by 9 and the other one only by 2. 

B y  means  of this  theorem it  m a y  a lways  be dec ided  if a given pr ime is an  A-pr ime  
or not.  This  is ev iden t  in the  first  case. I n  the  second case i t  follows f rom sect ion 5 
t h a t  equa t ion  (10) is a lways  solvable  when co is a p r ime  of the  t y p e  in quest ion.  Thus  
a solut ion of (10) m a y  be found  b y  t r ia l .  

I t  is now possible to  de te rmine  the  necessary  and  sufficient condi t ions  for a given 
in teger  :r in the  field to  be an A-number .  To arr ive  a t  a resul t  of t h a t  sor t  i t  should,  
however,  be necessary  to develop a g rea t  number  of l e m m a t a  on cer ta in  p roduc t s  of 
the  t y p e  

O)1 (D2 (D3 . .  �9 0 )~  ~ 

where ~o~ is e i ther  a B-pr ime,  or a C-prime,  or an  F-pr ime,  or  a number  u § defined 
in l emma  4, and  f inal ly  o)~ m a y  also be = 2 or = iO. I t  should fu r the rmore  be necessary 
to  d is t inguish  two k inds  of C-primes.  (The l e m m a t a  1, 2, 4, 6 and  7 are of the  t y p e  in 
question.)  Since the  discussions in t h a t  m a t t e r  should be too extens ive  we t e rmina t e  
wi th  these  remarks .  

11. Numerical examples in K(i0). The  numbers  3 and  l l  are  B-pr imes  since 

3 = ~ ( 7 2 - 3 7 . 1 2 )  and  1 1 = { ( 9 3 - 3 7 " 1 2 ) .  

The number  2 + 3i0 is a C-pr ime since 

2 + 3i0 = {[32 + (6 + i0)2], 

and  since N(2 + 3 i 0 ) = 3 3 7  is a prime.  
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The number - 1 6  +i0  is a C-prime of another kind since 

- 1 6  + iO = � 8 8  + iO) ~ + (1  - iO)] ~, 

and since N ( -  16 +iO)=293 is a prime. 
The number - 3  + 2i0 is an F-pr ime since 

- 3 + 2i0 = � 8 8  + iO) 2 + 3 2 ] ,  

a, nd since N ( - 3  +2i0)= 157 is a prime. 
The number - 1 3  +2i0 is an A-prime since 

- 1 3  + 2i0 = (6  + iO) ~ + ( 5  - iO) ~, 

and since N ( -  13 +2 i0)=313  is a prime. 
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