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On the number of representations of an A-number
in an algebraic field

By Tryeve NAGELL

§ 1. Introduction

1. Let « be an integer 0 in the algebraic field . If « is representable as
the sum of two integral squares in £, we say, for the sake of brevity, that «
is an A-number in . We say that

a=E+n’,

where & and # are integers in L, is a primitive representation if the ideal (£,7)
is the unit ideal, and otherwise an imprimitive representation. In the following
we shall use the terms A-prime and A-unit. The representations o =2” +y* with
x=1§& y=+4n and =19, y=F§& are considered to be one and the same.
When the degree of & is >2 the integer m is said to be a prime when () is a
prime ideal. The relation 1 = 1% + 0% is called the trivial representation of the number 1.

Design by G an infinite (abelian) group of units belonging to € (composition =
multiplication). By the rank of G we understand the maximal number of inde-
pendent units (of infinite order) in . The rank of the group consisting of all
the units in Q is r=r, +r,—1, where r, is the number of real conjugated fields
and 27, the number of imaginary conjugated fields.

Design by R a ring of integers contained in £ but not in any sub-field of L.
If R contains the number 1, it contains an infinity of units and it is well-known
that the unit-group of R has the rank r.

§ 2. The representations of A-units and A-primes

2. We first prove

Theorem 1. When there are more represeniations of the number 1 than the trivial
one, then there are infinitely many representations.
Proof. Suppose that

1=£+9%
where & and 7 are integers in @ and &n+0. Put for n=1,2,3,...,
Entnput = (& +179)"%,
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where
n__ Ry en- Ry en-— _
&n=¢ (2)5 2n2+(4)§ gt 1)
and
— % - _- n n--3 _
m= (1) en= (5) o @)

Then we clearly have

En =i = (6 — i)

and
(&n +0a8) (En —ad) = (& +70)" (§ — )" = (&% + 7)™

Hence

£+ oﬁ =1.
Thus the Diophantine equation

P?+yt=1 (3)
has the integral solutions

x =5m Y =Yy

It is easy to prove that these solutions are all different.

In fact, if we have (for n<m),

En=Em Nn = Nms
we get

&+ =+ ),

Hence &+in is a root of unity. Suppose that

§+in=g
is a primitive Nth root of unity. Since

E—in=g7",
we get

£=%(e+e“), n=—21—i(9—e“)-

It is easy to show that these numbers are not integers if N+4, +2 and =1.

Suppose first that N is a powder of 2 and 8. If {(p®—1) were an integer,
the number

N .
et -1 =4{£i-}

should also be an integer. But this is not the case.
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Suppose next that N is divisible by the odd prime p. If 1(o®*—1) were an
integer, the number
2N

(e? —1)

i

should also be an integer. Hence, if z is an arbitrary primitive pth root of unity,
the number y=}(x—1) should be an integer. But the numbers y clearly are the
roots of the irreducible algebraic equation

1
@[(2% 1P —1]1=2""1y" '+ 4+ ppp—ly+p=0

with integral coefficients. Hence they are not integers.
Since the values N =4, 2 or 1 imply either £ =0 or 7 =0, theorem 1 is proved.

3. We next prove

Theorem 2. There is exactly one representation of every A-prime, if the number
1 has only the trivial representation. Otherwise there is an infinity of representations.
This result also holds for every A-unit.

Proof. Suppose that the number 1 has only the trivial representation. Let =
be an A-prime with the two representations

=0+ p
and
n=ai+p,
where a, 8, o, and 8, are integers in the field. From these representations we get

7 (B* - B1) = aif® — «°Bi.

Since 7 is a prime, either of the numbers «)f+af;, and o, —of; must be di-
visible by z. We may choose the sign of 8, such that we obtain

yf=af, (mod 7).
Multiplying together the two representations of n, we get
7% = (aa; + BB, + (o — 2B,)%.

Since oyf —af, is divisible by x, the number ag, + 86, is so. If we put

@y +ff, =ap and o f —af, =y,
where 7 and 7, are integers, we get

1 =172 + 17%.
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By hypothesis this equation is possible only for =0 or 7, =0. For =0 and
=1 we get

ay=—pp, and af—af,=*tm,

whence by elimination of /31,

Hence oy =+ and §, =
For ,=0 and 5= il we get

wf=af;, and aoy +fpB, = L,

whence by elimination of g,
2
ac
<:cocl+ﬂ———1 o+ p) = Ap=ta
o oc o

Hence o, = > and B, = +B. Thus there is only a single representation of the
prime. The proof also holds when z is a unit.

Suppose next that the equation (3) has an infinity of solutions z= Enr Y=
given by (1) and (2). Let w be an A-number with the representation

w=o?+p%
o and f being integers in . Put for n=1,2,3,...,

oy + ﬁn"’ = (‘Sn + 77711') (o + ﬁ”):

where
oy =ak,—fn, and B, =on.+ ..

Then we have

0t~ Bt = (&n — 1at) (@ — B7)
and

(otn + Bnt) (ot — Ba) = (£7 +77) - (o + %) =
Hence
w =05+ .

It is easy to see that, in this way, we get an infinity of representations of w.
In fact, supposing

L = U, ﬂm =ﬂny

we get
§n+77ni =£m+77mi-

But in the proof of theorem 1 we showed that this relation is possible only for
m=n. Thus we have proved theorem 2. Moreover we have proved the more
general result: If the number 1 has an infinity of representations, there is an
infinity of representations of every A-number.

470



ARKIV FOR MATEMATIK. Bd 4 nr 37
§ 3. The representations of an arbitrary A-number

4. Owing to the above proof we have already established the result expressed
in the second part of

Theorem 3. If the number 1 has only the trivial representation, the number of
representations of every A-number is finite. Otherwise there is an infinity of rep-
resentations.

Proof. Suppose that the number 1 has only the trivial representation. Let w
be an A-number having an infinity of different representations

w=c2+6r, n=1,2,8,..)
o, and §, being integers, with «,8,=+0. Then we have for all indices m and n
{(m=+n): oy Loy, St tm tn+ T, and B, + T o,

Among these representations of o there must exist at least two different rep-
resentations

an+pfe and o+ pa, (4)

which satisfy the congruence conditions
ap=a, (mod w) and f,=pg, (mod w). (5)
In fact, the number of residue classes modulo w is IN wl, and thus the remainders
of the four numbers o, f,, «, and f, may be combined in at most [New|* ways.

Multiplying the two representations

w=ai+p: and w=a;+pa,
we get
w2 = (amﬂn - ﬁm“n)2 + oo, + ﬂmﬂn)2

It follows from (5) that the two numbers
Cnfn— Pmotn a0 &ty + Bnfin
are divisible by . Hence we may put
Omfin — Pmotn =wn and oc,,,oc,,+ﬂ,,,ﬂn=w771, (6)
where 7 and 7, are integers. Then we get
1 =172 + 17%.

Thus by our hypothesis we must have either =0 or 5, =0. If =0, it fol-
lows from (6)

omfr =Pty and oy, + fnfn = T o,
whence by elimination of 8,
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. 2 %n

Oty + " =2 (a2 + BR) =" w = to.
Am  On m

Hence «,= ta, and 8,.= =18, For n,=+1 we get from (6):

Al = — ﬂm,gn and ‘xmﬂn - ﬂm“n =tow,
whence by elimination of 8,

2
Gl O -
UpPrt =T (B ) =" =t w.

ﬂn n ﬂn

Hence «,=*p§, and 8,= ta,.
From this we conclude that the representations (4) cannot be different. Con-
sequently, the number of representations must be finite.

§ 4. The totally real fields and the imaginary quadratic fields

3. We next prove

Theorem 4. In the totally real field S there is only a finite number of represen-
tations of a given A-number. There is exactly on representation of the number 1
and likewise of every A-prime and of every A-unit. A unit is an A-number only
when it is o square.

Proof. A real field is called totally real when all the conjugate fields are real.
Let £ be an A-number in § with the representation

E=a®+f
where o and f are integers in . Then the conjugate equations
£ = (@) + ()2
also hold. Since the conjugates are all veal, we gei

o] < [VE®)]

for every value of k. Hence there is only a finite number of possibilities for & when
£ is given. _ .

Consider in particular the case &=1. If we suppose =0, we get |a®|<1,
hence «=0.

When £ is a prime or a unit, we may apply theorem 2.

Finally, suppose that ¢ is a unit with the representation

e=o*+ 2
a and B being integers in §2. Then we get by squaring
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e = (a® — %) + (2xB)?,

2 _ p2\2 2
1 z(i:_ﬂ) N (%Oil?) ,
£ £
Since the number 1 has only the trivial representation, this implies either
«?—p2=0 or xf=0; but it is clear that &® — 8 =0 is impossible when ¢ is a unit.

whence

6. We add the following result:

Theorem 5. In the ficld K ( V' =1) there is only a finite number of representations
of a given A-number. There is exactly one representation of the number 1 and likewise
of every A-prime.

Proof. By theorems 2 and 3 it is sufficient to show that the number 1 has
only the trivial representation. The equation

1=0o+p%
where o and 8 are integers in K (/ =1) leads to either of the following systems:

atfi=1 a—fi=1
or
at+pi=t, 0~ fi=—

But the first system implies that =0 and the second that e¢=0. This proves
theorem 5.
It is easy to prove

Theorem 6. In the imaginary quadratic field K (l/jl—)) there is an infinity of rep-
resentations of every A-number, except when the field is K v -1).

Proof. According to theorem 3 it suffices to show that the number 1 has a
non trivial representation, In fact, since the equation

22— Dy =1

has solutions in rational integers x and y, y+0, the number 1 has the non triv-
ial representation

1=a+(y¥ - D)2

§ 5. The main result on the representations

7. Theorems 4, 5, and 6 are contained in the following general result:

Theorem 7. There is an infinity of representations of every A-number in ax ; al-
gebraic field 8 except in the following cases:
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1°  is the Gaussian field K V-1).
2° Q is totally real.

Proof. In virtue of theorem 3 it is sufficient to prove that there is an infinity
of representations of the number 1, provided that £ is not one of the excep-
tional fields in theorem 7. By theorem 1 it suffices to show that there is a non-
trivial representation of the number 1.

Denote by n the degree of the field &; by r, the number of real conjugate
fields Q™. by r, the number of pairs of imaginary conjugate fields and by
r=r;+7,—1 the number of units in a fundamental system of units in the field €.

We first consider the case that § contains the number V' — 1. In this case we
have n>4. Since r>1, there exists in £ a unit E which is not a root of unity.

Then the equation

1=o?+ 82
is satisfied by the following numbers:

a=}(B"+E™)
and

1
Bo= 5 (" —E™)

where m is an arbitrary rational ‘nteger. Let us choose the number m as a mul-
tiple of ¢ (2), where ¢ (2) denotes the number of residue classes modulo 2 in Q
which are prime to 2. Then we heve for any integer y in £ which is prime to 2,

y"=1 (mod 2).

Hence the numbers o« and B are iitegers in R; for m=+0 we have xf+0.
Consider next the case that Q does not contain the number ¥ — 1. Adjoining

this number to § we get the field Q (/' —1)=Q,. This field has the degree 2n.
Denote by R, the number of real conjugate fields Q{°, by R, the number of
pairs of imaginary conjugate fields and by R=R;+ R,—1 the number of units
in a fundamental system of units i1. the field €.

If £ is a generating number of R, one may find a rational w such that the

2n conjugate fields Q (k=1,2,3,..., 2n) are generated by the 2n numbers
w=E(h)ithi)
where £™ runs through the system of n numbers conjugate to & (see f.ex.
Hecke [4], p. 67). If £ is real, it is evident that o is imaginary, since u=0.
If £® is imaginary, it is evident that o may be real for at most two special
values of u, for all other values of u the number w is imaginary. Hence, all the
2n conjugate fields Q{° are imaginary. Thus we have R, =0, R,=r +2r, and
R=R +R,—1=nr+2r,—1=r+r,

Since § is not totally real, we have r,>>1 and thus
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R>r.

R is the rank of the group of all the units in £,, and r is the rank of the
group of all the units £. Let us consider the ring consisting of the numbers in
Q, having the form ¢+ di, where ¢ and d are integers in . The unit-group G
of this ring has the rank R. The sub-group &, consisting of the squares of the
units in G clearly has the same rank R. The units in G; cannot all be equal
to the product of a unit in £ and a root of unity since r< R. Hence we con-
clude that there exists a unit E=a-bi in the ring, ¢ and b integers in £2,
such that ab=0, and such that E? is not equal to the product of a unit in £2
and a root of unity. Then the number E, =a —bi is also a unit in ;. Hence
a®+b® is a unit in . Then the equation

1=o%+ 82
is satisfied by the following numbers:

ye 7 g
S 2(@ 4"
and
ﬂz E2m__ E%m
2i (a®+ bH)™
where m is a natural number. It is evident that « and § are integers in £,
since ¢ and b are so. The hypothesis «8 =0 leads to

Em =g
Hence EE;! should be a root of unity =E,, and we should have
E*=(a%+ b E,.

But this is contrary to our assumption on E. Thus, for m=+0, we have ¢ff+0,
and the proof of theorem 7 is complete.

Remarks on previous papers on A-numbers.

In two previous papers, [1] and [2], we have already established a number of
theorems on A-numbers. The proof of theorem 21 in paper [1] was not complete
as we did not show that m may be chosen such that «f=+0. This lacuna was
repaired in the above proof of theorem 7. Theorems 2 and 3 in this paper cor-
respond to theorems 16 and 17 in paper[1] with a certain correction in the
proof. ,

In theorem 2 in[1] it is necessary to add the following condition: The ideal
(«,B) is either the unit ideal or the power of a prime ideal p which does not
divide 2. Thus the theorem ought to be pronounced as follows:

Let o and B be A-numbers in the field Q with the primitive representations in S
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o = a? + b?
and
B=c+d
If (2, 8)=p", m=0, where the prime ideal D is prime to (2), then the product af has
a jrimitive representation of the form
af = (ac + bd)* + (ad F be)?,

either for the wpper or for the lower sign.

This restriction in the theorem does not make necessary any alterations in the
proofs of theorems 29-31 in[1].

The following misprints in paper {1] ought to be noticed: Page 24, in line
14 replace ¢ by =; in the right-hand side of the equation. Page 33, in line 7 the

first equation shall be (;1) = +1. Page 41, in line 11 from below add, after

the word even, >2. Pa:ge /46, in the last line replace db, by cb;. Page 50, in
line 5 from below replace & by B. Page 58, in line 11 from below add, after F,

the square of which. Page 68, in line 9 the first factor shall be (V2+1).

The last 11 lines on page 34 in {1} ought to be replaced by: This congruence
is possible only when one of the numbers b’and ¢ is divisible by 4 and the other
one is =2 (mod 4). Since 2v =ac+ bd, where v is even, we get ac= — bd (mod 4).
Thus, a and d being odd, both b and ¢ should be divisible by 4. Since this is
impossible we conclude that the numbers a, b, ¢ and d are all even.

In paper [2] on pape 279, line 12, read ¢ instead of 5.

§ 6. The complete solution of 5®-+ ;%=1 in a quadratic field

8. According to theorems 4 and 5 it suffices to consider the imaginary quad-
ratic fields K (/ — D), where D is a square-free natural number >1.

First case. —D=2 or =3 (mod 4).
The equation in question is
(@+cV =D+ (b+dV —D)2=1, )
where a, b, ¢ and d are rational integers. Hence we get the system
a’?+b:-D(*+d*) =1, ac= — bd.
If ¢=0 we must have b=0 (d =0 gives the trivial solution). Hence
a®—Dd*=1. (8)
Suppose next ¢d+0. By elimination of a we obtain
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1=0%%2+ b —D(c*+d?.
Then we get
& =(c* +d?) (b — Dc?),

which is impossible since d=0.

Conclusion: We obtain all the solutions of (7) when b=c=0 and ¢ and d
satisfy equation (8).

Second case. — D=1 (mod 4).
Then the equation is

(a+cV—Dy+®+dV -D)=4, (9)

where a, b, ¢ and d are rational integers. @ and ¢ are of the same parity, and
so are b and d. Hence we get the system

a®+ b0 —D(c*+d*) =4, ac= — bd.
If ¢=0 we must have b=0. Thus we get
a*— Dd?=4. (10)
Suppose next cd+0. By elimination of a we obtain
4c® = (c® + d?) (b® — Dc?). (11)

Put (c,d) =g, c=gc,, d=gd, and (c,d,) =1, where g, ¢, and d, are rational inte-
gers. Then we get from (11)

4} = (e} +d}) (B° — Dg’cd).
Hence & is divisible by ¢,. Putting 6 =c,f we get
4=(d+d) (- Dy,
“This is possible only for ¢i=d:=1. Hence
ff—Dg®=2, (12)
In this relation f and ¢ are clearly odd numbers. Hence we must have D= —1

(mod 8).
Conclusion: We obtain all the solutions of (9) from the formula

a®+(dV —D)? =4,
and, if equation (12) is solvable, from the formula
(f+9V~D2+(f—gV —D)*=4.

Equation (12) is not always solvable for D= —1 (mod 8). Thus it is solvable
for D=7 but not for D=15.
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Our results in this section may be interpreted in the Dirichlet-field K (%, V-D)
in the following manner. Design by & the fundamental unit in K (YD), > 1, and
by E the fundamental unit in K (i, V=D), |B|>1 and E>1, if E isreal. Then
we have, for D >3, cither E =¢ or E =) ei. The necessary and sufficient condition
for the latter case is that the ideal (2) is the square of a principal ideal in
K(VI)) For the proof see [3], p. 11-15. Hence we may conclude: The solutions
of &+9*=1 are given by +£" or by + ¢ according as N{e) is = +1lor = — 1L
In this way we get all the solutions except when D= —1 (mod 8) and the ideal
{2) is the square of a principal ideal in K 4 B) in which case we have the further
solutions + Ee”. The exponent M is an arbitrary rational integer.
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