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On the existence of  boundary values for harmonic functions 

in several variables 

By LENI~ART CARLESON 

1. Let u (z) be harmonic in [z [ < 1 and assume u (z)/> 0. By the Poisson for- 
mula we have for r <  R <  1 

, g  

R ~ + r 2 - 2 R r cos (0 - ~v) u (R e iv) d T. (1.1) 
- - 3  

if In  particular, u (0) = ~ u (R e ~) d ~v. (1.2) 

We can thus select a sequence Rn-->l so tha t  u(R,te t'~) d cf converges weakly to  
some non-negative measure d/z. We decompose d~t by  Lebesgue's theorem: 

d /x = l (cf) dcp + ds  (~v), (1.3) 

where s(~) is singular. Formula (1.1) becomes 

7t 

u(re  ie) = f P(r; o 
--xC 

-~) (1(~)2~+~d8(~)), (1.4) 

where P is the Poisson kernel, i.e. the normal derivative of the Green's function. 
The s tandard way  to prove tha t  

lira u(z) exists a.e., z-->e ~~ non-tang., (1.5) 

is by  means of a partial integration in (1.4) and Lebesgue's theorem on the 
existence of the derivative of an indefinite integral (see e.g. Nevanlinna [2], 
p. 190). This argument  requires estimates of OP/aO, which makes generalizations 
difficult. However,  using a slightly stronger version of Lebesgue's theorem, we 
obtain a proof not  depending on partial integrations and therefore possible to  
generalize. 
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I t  is well known (see e.g. Zygmund [4], 65) that almost everywhere (0) 

t 

f {ll(O)-l(~)[ dq~+ds (~v)} =o(t), t--->O. 
- t  

(1.6) 

We assume that (1.6) holds for 0 = 0  and consider for simplicity only radial ap- 
proach in (1.5). Choose (~ > 0, fixed as r-->l, and define N so that 2N~ ~< (~ < 2 N+I 7, 
7 =  1 - r .  From (1.4) it follows 

I u ( r ) -  1 (o) 1 < + ~ I 1 (~) - 1 
v=O 

- ~  2v~<lcPl<2V+lT/ 

+ u (0) M a x  P (r, ~) 
I~l~>~ 

N 

~<o(r/) Max P +  ~ o(2"~/) Max P + o ( 1 )  
~=o 2v~<l~l 

(1.7) 

2. We shall now use the above argument to prove a boundary value theorem 
for harmonic functions of several variables. I t  is closely related to previous 
works by Calderon and Stein [3]. The way of estimating the Green's func- 
tion is taken from Calderon [I]. The lack of the method of conformal mapping 
introduces technical difficulties in proofs of rather evident results. This fact is 
clearly illustrated in section 4. 

Before stating the theorem we introduce some notations. We consider points 
.P = (Xl ,  X$ . . . . .  Xm; y ) =  (x; y) in (m + 1)-dimensional Euclidean space. Ix[ denotes 
distance on the m-dimensional subspace X = { P l y = O } ,  dx  denotes the volume 
element in X. By V~(x ~ we mean the cone 

Ix-x01< y. 

Theorem. Let u (P) be harmonic in y > 0 and assume that /or almost all x E X, 
there is a cone V~ (x) so that u (P) is bounded /rom below in V~ (x). Then 

lim u(P),  P-+(x; 0), PE  V~,(x), (2.1) 

exists a.e. on X /or all oe. 

We consider only x's belonging to some bounded set, e.g. Ix] < 1. If we avoid 
an open subset 0 of measure toO<e,  we have for y~<y0 and a certain ~ in- 
dependent of x, u(P)>Const ,  P E V~(x), x~O.  We form the region 

R=R(O)={~o V~(x)} N {Pllx[< I, Y<Yo}. 
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I f  Y0 is large enough R is connected. We may  assume tha t  u />0  in R. We 
observe tha t  every boundary  point P of R satisfies the Poincar~ condition (some 
cone with vertex at P is contained in the complement of R). The Dirichlet 
problem can thus be solved for R. Let  R,* be the par t  of R where y > n -1 and 
let G~ (P) be the Green's function for R,* with some fixed pole Po- We need 
a uniform estimate of Gn(P) (see Calderon [1]). 

Let  ~(t) denote the distance from t EO to the complement O' of O and form 

( ~ (t) d t 
h (x; y) = y J((t - x ) ~  y~(m+l)/2 = ~/hi (x; y). 

O 

h (x; y) is harmonic in y > 0. Observing tha t  ~ (t) ~> �89 T (x) if It - x I ~< ~ ~ (x), we 
see tha t  h(x; Cq~(x))>~2mC-mq~(x), where Jtm only depends on m. (Points with 
I x l = 1 also have this property.) This implies tha t  h (x; z) >/C: .  z, z = y - n -1, for 
(x; y) on the par t  of dR,*, where n-l<y<yo,  I x [ < l .  Let  G*(P) be the 
Green's function for the cylinder n-i<y<yo,  [ x l < l ,  with pole at  P0" Clearly, 
if (~ > 0 is given, there exist two constants ci, c 2 > 0 so tha t  

clz~G* (P)~c2z 

if I xl < 1 - ( ~  and y<(~ say. The second relation holds for all I xl <1 .  By  the 
maximum principle 

G,* (P) ~> G* (P) - C~ h (x; z) in Rn. 

Hence for c = c (~) independent of n and I x l < 1 - ~, y < 5, 

G. ,*(P)>~2c(z-C:,h(x; z))=2c.z(1-C:,hl).  

We now need an estimate of h i(x; z)~<h i(x; 0). We have 

f h i (x; 0) 
O" o I x -  t 1 I> ~(t) 

< f d t = m O < e. 
(9 

Hence h I (x; z) ~ (2 Ca)-i for all z, except when x E O i, m O i < 2 ~m C~ ~ = ~i. 
Wha t  will be needed of the above investigation of Gn is tha t  

~ G n ~ r  for all n, PEAR,,, y = n  -1, 
a n  

except for x in a set S of measure <~-t-~i. 
We now consider the harmonic measure w,* (e; P) of a certain subset e of a R,* 

a t  a point P E Rn. If  P =P0,  we delete the variable P.  Harnack ' s  inequality 
yields 

395 



L. CARLESON, Boundary values for harmonic functions in several variables 

.M(J O) 1<-~ (2n(e; P~))<~M(P) 
o~ (e) 

with M (P) independent of n and e, n > n (P). We can write d o)~(. ; P)  = K~ (" ; 
P)dm,~. Here K,~(P) is harmonic in P and satisfies the inequality above. Also 
Kn (Po) = 1. We form u~ (P) = u (x; y + e) and have 

u~(P)=  fu (Q)K.(Q; P)do~,,(Q). 
ORn 

(2.2) 

This formula corresponds to (1.1). Lett ing n - ->~  we obtain with obvious no- 
tat ions 

u~ (P) = fu~ (Q) K (Q; P)  d o~ (Q). 
0h  

Letting e-+0 we get for a certain /ELl(dw) and with s singular with respect 
to o) 

u ( P ) =  f/(Q)K(Q; P)dw(Q)+ fK(Q; P)ds(Q). 
OR O~ 

(2.3) is the analogue of (1.4). 

3. Let  us consider a point  Q0 = (x0; 0 ) E a R  such tha t  

(a) Qo is a point  of density for the complement of 01 U 0 = S ;  

L /  

Ixl<e Ixl<8 

Since Lebesgue's theorem on symmetric derivatives holds for m dimensions, an  
inspection of the proof of (1.6) shows tha t  (b), as well as (a), holds a.e. Namely,  
decompose d o~ = ~ (Q) d Q + d ~ (Q) where ~ q L 1 (d Q) and v is singular with respect 
to Lebesgue measure. Then /ilL 1(dr) and 

f I/(Q)-/(Oo)lv/(O)dQ<~ f [/(Q)y'(Q)-/(Qo)y'(Qo)[dQ 
Jx[<e Ixl<e 

+ ( / (Q0) I v/(Q) - v/(Q0) [ d Q = o 

Izl<6 

almost everywhere. Since ~ is singular, 

f /(Q)d~(Q)=o(e m) a.e. 

ixi<6 
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We finally observe that  ~G,/~n >~c for (x; y) E~R,~, xq.S. Since the surface ele- 
ment  da~ also satisfies an inequality d an~cdQ, it follows tha t  s is singular 
also with respect to Lebesgue measure. 

Let  us assume tha t  Q0 = (0; 0) is a point, where (a) and (b)hold. We choose 
.4 =(0;  a), a > 0 ,  and consider u(A), as a-->0. The general non-tangential ap- 
proach is analogous. Define for a fixed ~ > 0  

K~={QIQe~R, Y<Yo, Ix,[ <2~a} 

for J '=0,  1 . . . . .  N, 2'Va~(~<2"V~la, and 

L,=K~-K~ 1, v=l  . . . . .  N, Lo=Ko ,  

and F = ~ R - KN. 

Formula (2.3) yields (cf (1.7)) 

lu(A)-/(Qo)]< f(/(Q)-/(Qo))K(Q; A)do(Q)I+ fK(Q; A)ds(Q) 
N 

~< ~ sup K (Q; A) ~ (~) 2'~a "~ + 0 (I) sup K (Q; A). 
*,=0 Q t L  v Q e F  

We must  s tudy the harmonic functions K(Q; A) for Q=Q~)EL~ and consider 
first the case v =0 .  

Since ~G,~/~n>~c for (x; y)EaR~, xC~Olt3 O, it follows from condition ( a ) t h a t  
the harmonic measure v o (P) of L o satisfies 

Vo(Po) >~ya m, (32) 

where the constant y is independent of a. We also observe that  ~R, Ix I<  1, 
can be represented y =y~ (x), where ~, satisfies a Lipschitz condition of order 1 
and y~(x)=o(Ix[) , Ix]-->0. 

We remove from R the set I x i ] < 2 a ,  y<ka.  The resulting domain is called 
R' .  The harmonic measure of the par t  of ~R '  with ]x~l<2a is called ~'0(P). 
Since the harmonic measure of {PIPC~R', Ix, I = 2 a ,  y<]ca} with respect to R '  
is smaller than the harmonic measure of the same set with respect to y > 0, 
it follows tha t  its value at Po=O(kla m. Hence vo(P) also satisfies the ine- 
quality (3.2) if k is small enough. 

We set K(Q(~ A)= /~  o. From Harnack ' s  inequality and the maximum prin- 
ciple it follows that  

K (Q(0); p )  ~> Cons t . / 6  vo (P). 

Setting P=Po we find 

/~0 < Const. a m .  (3.3) 

We now choose Q = Q(~) = (x~; y~) and consider B = (x,; 2~a), v ~ A T. :By (a), ~, (x~) 
=o(2~a) .  We set K(Q(~); B)=~uv and find as above 

/~ < Const. a -  m 2-  m~. 
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On the other hand, K (Q(~); P)/l~, is a positivo harmonic function which vanishes 
on ~ R - L ,  and = 1  for P = B .  (In fact, one should first consider K, ;  since all 
estimates are uniform, n-->oo causes no difficulty.) By  the lemma in section 4 
and the maximum principle 

f y d t  K (Q('); P) ~< Cons t . / , , .  {(x - t )  ~ +y2}(~§ 

( t ;  ~, (t)  EK:, + 1  - KV-- 2 

in R. Inserting P = A  we find 

K (Q(V); A) ~< Const. 2 - '  2 ..... a-".  (3.4) 

Finally, if Q E F, the argument  giving (3.4) can be used for v = N giving sup K (Q; A)-+0,  
Q G I  ~ 

a-~0. Inserting (3.3) and (3.4) we find lira u(A)=/(Qo) and the theorem is 
a-->0 

proved. 

4. Lemma. Let E be a subset o/ X in I x l < l  and /orm /or a /ixed 

R =  U V~,(x) N{PI IxI<I ,  y < l }  
x s  

and assume that the part P o I ~R with ]xi < 1 ,  y < l  satis]ies y<~. Let u be a 
positive harmonic function in R which vanishes continuously on, ~ R except on the 
part o I F which satisfies Ix I < ~. Then there exists a constant K, only depending 
on ~, such that 

u(x; y )<K'u (O;  ~), Ix] -~-~. (4.1) 

By  (2.2) it is sufficient to prove (4.1) when u is the harmonic measure of 
F N {PI ] x -  x0l < Q} for e arbitrarily small and I x01 < 1. To simplify the nota-  
tions we choose x o = 0. The  proof shows tha t  this is no restriction. We use the 
notat ion Kt for constants only depending on ~. 

Suppose tha t  (0; Y0)EF and consider the sets Dr: 

D , = R f i { P ]  Ixl<2~Q, y<~yo+K12"~=~l,,}, v = 0 ,  1, . . . .  

I f  K 1 is large enough the boundary  of Dr consists of three parts: (1) a subset 
~, of F; (2) a subset fly of the cylinder [xl = 2"q; (3) a "d isk"  rv: I xl < 2" q, 
Y = ~b. We use the notat ion mr = u (0; rb). I f  K1 is large enough it follows from 
Harnack 's  principle tha t  

u (P) ~< K s my on ~, (4,2) 

and m,-1 ~< K2 m,. (4.3) 

To be able to discuss u (P) on fl, we observe tha t  R has the following property.  
If  ~ is a given x-vector such tha t  I ~ ] = 2" ~ and ~ (~) < y < 7, is the corresponding 
subset of fl,, then r/, - ~/(~) < K 32" e and all points (x; y) with I x - ~ I < *r (Y - ~/(~)), 
Ix I < 1 ,  y < l ,  belong to R. ~ is a positive number  to be determined later and 
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we write K~ (6) for functions of a and (~. (4.2) and the above mentioned prop- 
er ty  of R imply, again by Harnack ' s  inequality, tha t  

u(~;y)<.K4(~)m~,  ~ ( ~ ) + ~ 2 ~ Q < y < ~ .  (4.4) 

We shall now show by induction that ,  for ~ small enough, 

u(P)<~Ksm j, PEfljU~j. (4.5) 

Let us first consider ] = 0 .  That  (4.5) holds in this case is easily seen if we 
compare u with the harmonic measure of the bot tom of a cylinder with radius 
Q and side K s ~, evaluated at  its center of gravity.  We now assume tha t  (4.5) 
holds for ~ < v - 1 .  To prove (4.5) on fl~Uy, it is, by  (4.2) and (4.4) only the 
par t  of fir ~4th ~ (~) < y ~< ~ (~) + (~ 2 ~ ~ tha t  has to be considered. 

Let ~ be the following auxiliary domain 

Z=(PI ~y> - I x l ,  I x - ( - 1 ,  0 . . . . .  o)f>�89 

and let co(P) be the harmonic measure of the par t  of ~Y~ which is not the 
cone ~ y = - - I x l .  

We now shrink ~ by a length factor 2"*1~ and make a translation and rota- 
tion of the resulting domain to a domain with vertex of the cone at (~; ~ (~)) 
and axis of the cylinder along the y-axis, o) becomes ~o I and it follows from 
the maximum principle, the induction assumption and (4.3) tha t  

U (P)  ~< g 5 my-1 o) 1 (P) < K 7 my o) 1 (P) 

in Dv-D,_I. Since co(0; y)-->0, y->0, it foUow~ tha t  co1(~; ~ ( $ ) §  if 
s<(~(e). Hence if 8=8(K~IK5), (4.5) is proved for }=v.  

The induction can be continued as long as 2 ~  <~ �89 The maximum principle 
now shows tha t  (4.1) holds. 
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