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On the Poincaré inequality for vector fields

Ermanno Lanconelli and Daniele Morbidelli(*)

Abstract. We prove the Poincaré inequality for vector fields on the balls of the control
distance by integrating along subunit paths. Our method requires that the balls are representable
by means of suitable “controllable almost exponential maps”.

1. Introduction

In this paper we are concerned with the following Poincaré-type inequality,
) [ e -u@idedy<erlsl [ |Xu@E)ds ue (D),
BxB AB

where B=DB(zo,r):={z€R":d(xo,z)<r} is a ball of the control distance d gen-
erated by a family X=(Xj,..., X;m) of locally Lipschitz continuous vector fields
X;:R"—R". By |B| we denote the Lebesgue measure of B, whereas AB stands for
the homothetic ball B(zg, Ar). Moreover, |Xu| denotes the euclidean norm of the
X-gradient of u, i.e. Xu=(X1u,..., Xnu), X;u=(X;,Vu), j=1,...,m.

The most commonly used definition of control distance is based on the notion
of subunit curve. An absolutely continuous path v:[0, 7] >R" is X-subunit if it
satisfies ¥(t)=3_7_; a;(t)X;(v(t)), with 3", a;(t)?<1, for almost every t€[0,T].
Assuming that for each z,y€R"™ there exists at least one X-subunit path that
connects z and y one defines

d(z,y) =inf{T > 0: there is : [0, T] = R" subunit, with v(0) =z and y(T) =y}.

Then (z,y)—d(z,y) is a distance on R™ which is called the control (or Carnot-
Carathéodory) distance related to X. We shall always assume that the d-topology
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is equivalent to the euclidean one, a condition that is satisfied in many important
contexts.

As is well known, inequalities like (1.1) play a crucial role when studying eigen-
value problems for 3, X7 X; with Neumann boundary conditions. Over the last six
years it has been shown that seemingly unexpected important results follow natu-
rally from (1.1) making this inequality even more relevant. Indeed, let us assume
that the following dilation condition

(1.2) 6B| < 69| B

is satisfied, for any B and for every §>1, where c and @ are suitable constants inde-
pendent of B and 4. Then (1.1) is essentially equivalent to the following Poincaré-
Sobolev inequality

(1.3) (J[B lu—uslq)l/qﬁcr(][)‘B |Xu|”)1/p, u€ C'(AB),

where up=f, u=(1/|B|) [z u, 7 is the radius of the ball B, and 1/p—1/¢=1/Q.
Significant references are Saloff-Coste [S], Biroli and Mosco [BM], Hajtasz and
Koskela [HK], Maheux and Saloff-Coste [MS], Franchi, Lu and Wheeden [FLW],
Garofalo and Nhieu [GN]. Franchi, Lu and Wheeden actually prove that (1.1) and
(1.2) imply a stronger estimate than (1.3), viz. an integral representation formula
for u—up in terms of Xu. Garofalo and Nhieu, assuming (1.2) and a slightly weaker
inequality than (1.1), developed a general geometric theory of first order Sobolev
spaces related to X.

It is also remarkable that the term AB in the right-hand side of (1.3) can be
replaced by B, if (1.2) and (1.3) hold for any B. This important fact comes from a
clever remark by Jerison (J].

In the euclidean setting, corresponding to the case in which Xu=Vu, i.e. X;=
0/0z;, j=1,...,n, inequality (1.1) is well known and can be proved starting from
the identity

==yl 4 z—y
(1.4) u(z)—u(y) —/0 Eu(y—{—tlz—_a) dt.
It is noteworthy that the right-hand side of (1.4) is the integral of ) (0u/0z;) dx;
along the “shortest” X-subunit path connecting z and y.
The idea of estimating the difference between the value of u at different points
by integration along subunit curves was also used in [FL1]. In that paper, seemingly
for the first time, the Poincaré inequality was proved in a non-euclidean setting. The
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class of vector fields studied in [FL1] however, is rather particular: the family X,
indeed, was required to be diagonal, i.e. X;=X;0/dz;, j=1,...,n, and the A;’s were
required to satisfy some strong conditions.

A much wider class of vector fields for which (1.1) holds was found by Jerison [J],
who proved the Poincaré inequality for any family X =(X}, ..., X,») of smooth vector
fields satisfying the Hérmander condition

(1.5) Rank(L(Xy,...,Xm))(z)=n forall zeR".

To the authors’ knowledge, the problem of finding other and different conditions
assuring that (1.1) is satisfied is still widely open. The aim of this paper is to give
a contribution in this direction. We show that the Poincaré inequality (1.1) holds
if the ball B is representable by means of X-controllable almost exponential maps
(see the next section for the precise statement). This hypothesis enables us to prove
(1.1) starting from the idea of estimating u(z)—u(y) by integration along an almost
d-shortest X-subunit path connecting £ and y. It should be immediately noticed
that our condition, unlike (1.5) and that of [FL1] is not directly readable on the
fields, it requires to know a “good representation” of the d-balls. However, for the
vector fields studied in [FL1], this representation is already available, it was proved
in [FL2]. For Hérmander’s vector fields our conditions can be verified by slightly
improving a well-known representation theorem of d-balls due to Nagel, Stein and
Wainger [NSW].

This paper is organized as follows. In Section 2, after introducing our notion of
X-controllable almost exponential map, we prove the main theorem of the paper.
In Section 3 we apply our result to a diagonal case, thus giving a new proof of the
Poincaré inequality of [FL1]. In Section 4 we first show the previously mentioned
improvement of the Nagel-Stein—-Wainger’s representation theorem. Then, by using
our main theorem, we provide a new proof of Jerison’s Poincaré inequality. We
want to stress that the result of Section 4 answers a question raised by Jerison
in [J] about the possibility to demonstrate the Poincaré inequality starting from an
improvement of Nagel-Stein—Wainger’s result. In the last section of the paper we
show an application of our theorem to a pair of non-smooth vector fields in R®.
Such a pair, that we call “of step two”, naturally arises in studying non Levi-flat
real surfaces in C2. We directly refer to Section 5 for a few more comments on this
application.

Before closing this introduction we would like to quote two other papers which
are related to our work. In [FL3] a “non-invariant” Poincaré inequality is proved
assuming that a sufficiently rich family of subunit curves sweeps out from any point
of R™. Although this hypothesis may be difficult to verify and may only lead to
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a weak form of the Poincaré inequality, our main theorem was partially inspired
by [FL3]. Finally, by a technique similar to the one used here, Varopoulos [V] gave
an easy proof of the Poincaré inequality for vector fields which are left invariant on
a homogeneous group.

2. Almost exponential maps,
controllability and the Poincaré inequality

Let us consider, in R™, an open set  and an open neighborhood @Q of the
origin. We will say that a map E:QxQ—R"™ is an almost exponential map of
type a>0 if E(z,0)=z for every €€, E(z,-) is C! and one-to-one on Q and the
jacobian determinant D(z, h):=|det E(z, h)/dh| satisfies the estimate

(2.1) 0< %D(x, 0) < D(z,h)<aD(z,0) forallze$ and heQ.

A map E: QxQ—R™ will be said to be X-controllable with a hitting time T >0
if there exists a function v: @ xQ x [0, T}-+R™ satisfying the following conditions.

(C1) For any (z,h)eQxQ, t—~(z,h,t) is an X-subunit path connecting z
and E(z, h), i.e. ¥(x, h,0)=z, v(z, h,T(z,h))=E(z, h) for a suitable T'(x, h)<T.

(C2) For any (h,t)eQx[0,T], z—~(z, h, t) is a one-to-one map having contin-
uous first derivatives and jacobian determinant uniformly bounded away from zero,
ie.

(2.2) b:

0
8x>

= inf
QxQx|[0,T)

We will call any function + satisfying (C1) and (C2) a control function of E.

Roughly speaking, our main observation is that the Poincaré inequality relies
on the representability of the d-balls by means of X-controllable almost exponential
maps.

The following theorem makes this assertion precise.

Theorem 2.1. Let B=B(zq,r) be a fired d-ball. Assume that there erists an
open set QC B, an almost exponential map E: Qx Q—R"™ and two positive constants
a and 8 satisfying the following conditions:

(i) |B|Lal?| and BCE(z,Q) for every T€$;

(if) E is X-controllable with a hitting time T <ar;

(iif) |(a+1)B|<p|B|.
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Then there exists ¢>0 such that

@3 [ ju@)-u)|dsdy<erlB] Xu(z)|dz, ueC!({a+D)B).
BxB (a+1)B

The constant ¢ depends only on a and B, on the type of E (the constant a in (2.1)),
and on the constant b in (2.2) (related to a control function vy of E).

Proof. We first prove some simple consequences of the hypotheses (i), (ii)
and (iii). Let v: 2xQx[0,T]-+R™ be an X-control function of E such that T<ar
(hypothesis (ii)). Since t—~y(x,h,t) is a subunit curve and v(z, h,0)=r,

(2.4) d(z,y(z,h,t))<t<T<ar, €.

Then, keeping in mind that E(z,h)=v(z,h,T(zx,h)) for a suitable T'(z,h)<T,
E(z,Q)CB(z,ar)CB(zg, (a+1)r). From these inclusions and by also using (iii),
we obtain

(2.5) |E(z,Q)|<B8|B| for all z€Q.

On the other hand, by (2.1),
1
Bz, @)1= [ DG, m)dh> 21D 0) €
Then we have D(z,0)<pa|B|/|Q| which, together with (2.1), implies

(2.6) D(z,h) < ﬂaz% forall z€Q and he Q.

We are now in a position to prove (2.3). We denote by ¢ any positive constant
only depending on a, 3, a and b. For any function u€C!((a+1)B) we have, using
(1), (2.6), (C1) and that + is subunit,

u(z)— T — uly)— dz d:
/Mi (2)—u(y)|d dys/BXB;u(z) ol dady+ |  lu(y)—valdzdy

Bx

—2\B| / fu(y) ~ug| dy

_zl'sfl'//m(x) w(y)| dz dy

2.7) <%a / /E oy U dyds
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% / / D(z, b)[u(z)—u(E(z, k)| dh de

< lQl// |u(z)—u(E(z, h))|dhdx
~at o,

< Ilg: / // [(Vu(v(z, h, t)),4(z, h,t)}| dt dh dx

:Z:///|Xu +(z, b, £))| dz dt dh.

We then use (C2) to estimate the last integral by means of the change of variable
z=7(z,h,t). Keeping in mind that |det 8y/dz|>b and noticing that y(z,h,t)€
B(zo, (a+1)r) for every (z,h,t)cQxQx[0,T] (see (2.4)), we have

T(z, h)
/ —u('y(z, h,t)) dt| dh dz

/Q Xu(y(z,h, 1)l dz < ¢ / |Xu(z)| dz.

B(Io,(a+l)‘r)

This estimate, together with (2.7), gives

/BXBlu(z)—u( )|d:r:dy<c|Q| //(a+1)3 |Xu(z)|dz dh

<er|B| |Xu(2)] dz,
(a+1)B

using that T'<ar. This completes the proof. O
Remark 2.2. Under the same hypotheses as Theorem 2.1 we can directly prove
the L? version (1<p<o0) of inequality (2.3),
/ |u(x) —u(y)}IF de dy < cr?|B| |Xu(z2)|Pdz, u€C'((a+1)B).
BxB (a+1)B

We only have to modify, in an obvious way, the proof of Theorem 2.1.

3. A diagonal case

In this section we will apply Theorem 2.1 to the case in which X=(X;, ..., X,,),
X;=MA;j(z)8/0x;, j=1,...,n, and the A;’s are continuous functions on R™ with
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continuous first derivatives outside N={(zy, ..., Z,):21Z2 ... £,=0}. Moreover, A, =
1, /\jz)\j(ﬂ,‘l, ,.’L‘j_l) and

(3.1) O<xk% <pA;j in R™\II,
a.’L'k
if 1<k<j<n. Under these hypotheses, the following results were proved in [FL2].

(D1) There exists at least one X-subunit path connecting any pair of points
and y in R™.

(D2) The X-control distance d is continuous with respect to the euclidean
topology and the d-balls satisfy the dilation condition (1.2) with ¢ and @ only
depending on the constant g in (3.1).

(D3) There exist n continuous functions Ay, ..., An: R™ x]0, +00[— R, with con-
tinuous first derivatives in R™\TI, such that

B(z,r) C{z+h:h=(h1,...,hy), |hj|<rA;(z,7)}

for every zeR" and r>0 (in the notation of [FL2}, Aj(z,r)=F;(z,r)/7).
(D4) There exists a>0 such that, defining

(3.2) Q=0p:={z € B(zg,r): Aj(z0,7) < a)j(z)}
for any d-ball B=B(xzg,r), then
(33) |B| <alg].

The last assertion is not explicitly stated in [FL2], but it can be deduced from
(3.1) by elementary computation. With (D1)-(D4) in hand it is easy to show that
the hypotheses of Theorem 2.1 are satisfied. Indeed, let B=B(zg,7) be a fixed d-
ball. Define Q:={h=(hq, ..., h,):|h;|<2rA;(zo,7), j=1,...,n} and E:QxQ—>R",
E(z,h)=z+h. Obviously E is an almost exponential map and, thanks to (3.2),
(3.4) BC{zo+h:|hj| <rAj(zo,7)} C{z+h:|hj| <2rAj(zo,7)} =E(z,Q)
for every x€ B. Thus, also keeping in mind (3.3), the condition (i) of Theorem 2.1
holds. Let us now check (ii) assuming n=3 for sake of simplicity (the general

case can be handled in the same way). For every (z,h)eQxQ we define the path
¥(x, h,-) as a sum of three paths, i.e.

7(1"1 h, - ) =73(-7:’ h,- )+72(xvha : )+'71($a h, )
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where

73($,h,t)=($1,$2,$3+t]\3), 05t5|h3//~\3|,
Y2(x, b, t) = (21, Ta+tA2, 3+ h3), 0<t<|hz/As,
T (x, h, t) = (.’II] +t1~\1, :L‘2+h2, .’113+h3), 0<t< lh'l/Allv

and A;=(sgn(h;)/a)As(zg, 1), i=1, 2, 3. Then, if we define
T(, h) := |ha/As| +lha/Aa| +|h1 /Ai],

7("1"» h, 0) =73($a h, 0)=.’12 and 7(x7 h, T(.’L‘, h))=71 (1"1 h, |h‘1 |/A1):‘T+h‘ Using the
definition of @ the hitting time T'=sup, , T(z, h) can be estimated by 6ar.
Moreover, noticing that

L% A;

Yi=Aie; = N(n) Xi(%),
we can assert that v(z,h,-) is X-subunit since A;(zo,7)<ali(z) for any z€Q
(see (3.2)). Finally, for every fixed heQ and t€[0,7T], z—~(z,h,t) is a smooth
function having jacobian determinant det &y/dxz=1. Thus, also keeping in mind
(D2), all the hypotheses of Theorem 2.1 are satisfied and the Poincaré inequality
(1.1) holds, in this case, for every d-ball B.

We would like to close this section by quoting a paper by Franchi [F| containing

a Poincaré inequality for diagonal vector fields more general than ours. However,
the representation theorem for the d-balls proved in [F| could be seemingly used to
prove that the hypotheses of Theorem 2.1 are satisfied in that more general case,
too.

4. Hérmander vector fields and Jerison’s Poincaré inequality

In this section X=(Xj,..., X;z) will be a family of smooth vector fields on
R™ satisfying the Hérmander condition (1.5). It is well known that the control
distance d related to X is locally Holder continuous with respect to the euclidean
distance (see [FP}; see also [VSC], for a simpler proof). By using a representation
theorem of the d-balls that slightly generalizes and improves a well-known result by
Nagel, Stein and Wainger, we will show that the hypotheses of our Theorem 2.1 are
satisfied for every d-ball with small enough radius. This will provide a new proof
of Jerison’s Poincaré inequality.
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We begin by introducing some notation and definitions. If I=(i1,...,4p) is a
multi-index such that 1<i; <m, we set

X1 =X, [Xiy - [Xs, 1, X, ] 1]

and [I|=p. We shall say that X; is a commutator of length |I| and we assume that
each of the vector fields X; is a commutator of length 1.
If $1,...,81€{X1,..., X}, for any c€R we set
C'1 (07 Sl) = 60'51 9
02(0'; Sl, SZ) — e—aSge—asl ea'SzeaSl’
Cl(a; S, ..., Sl) = CI—I(U; Sy, ..., Sl)—le_"slcl_l(a; Sa,,e, S[)easl, 1>2,

and
Ci(aV: 8,,...,8), if >0,

(4.1) exp*(0S) = { ot St
Ci(lo|/%; 81, ...,81) 7, ife <0,

where S denotes the commutator [Sy,[S2 ... [Si—1, 1] ..-]]. By the Campbell-Haus-
dorff formula. (see [NSW, Lemma 2.21]) we have

(4.2) exp*(0S)(z) =z+0S(z)+0(jo|' ), as o0,

which in particular means that exp*(0.S)(z) is a perturbation of the exponential
map exp(oS)(z).

Let now K be an arbitrary compact subset of R®. By the Hérmander condition
(1.5) there exists a positive integer v=v(K) such that

span {X;(z):|I|<v}=R"™ foralzeK.

Denote by Y1, ...,Y, an enumeration of the commutators of length <v. The length
of Y; will be denoted by I;. Given an n-tuple n=(Y},,...,Yj,), we finally let

l(’l]) = l.il +...+l]‘n,

(4.3) hlly =, max |hgV5,if h=(hy, ..., hn),
Qn(ry={heR":|hli,<r}, ifr>0

and

(4.4) E,(z,h)=exp*(MYj,) ...exp* (k. Y}, )(2).

By using (4.2) it is easy to see that E,(z,h)=z+) y_, Y;. (z)hr+o(h), as h—O0.
Then
DEr,(l'1 0)=| det[ij (), Y, (.’L‘)]l
We are now ready to state our version of Nagel-Stein—~Wainger’s representation
theorem for the d-balls.
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Theorem 4.1. Let KCR™ be a compact set. Then there exists three positive
constants vy, ¢1 and co depending on K, with cz<c) <1, such that, given an n-tuple
1, a point €K and a positive r<rq satisfying the inequality

(4.5) Dg, (z,0)r'™ > 1 max Dg,(z,0)r9),

the following assertions hold:
(a) if heQy(crr) then §Dg, (x,0)<Dg, (z, h)<4Dg, (x,0);
(b) B(z, car) C Ey(, Qulcrr);
(c) the function E,(z,-) is one-to-one on the set Qu(cr).

The proof of this theorem is very similar to that of Theorem 7 in [NSW] and
relies on a careful estimate of the derivatives of the map h+ Ey(z, h) obtained by
means of the Campbell-Hausdorff formula. We refer to [M] for a detailed proof
of this result. Theorem 4.1 contains all we need to show that condition (i) of
Theorem 2.1 is satisfied. Indeed, let B=B(zq,7) be a d-ball centered at o€ K and
of radius r<1cpro. For any n-tuple n=(Yj,,...,Y;,) we define

2r Y™ 1 2r \©
Q,,:{zeB:DEq(x,O)<a) >§m?xDE<(a:,0)(E;) }

At least one of the sets ), satisfies
1
4.6 > =

where N is the total number of n-tuples available. Let us choose one such 7 and
denote by @ the box

2
(4.7) Q= {heR“:||h||,,<%r}.
2
Then, by (a) and (c) of Theorem 4.1, the function
(4.8) Ep:QyxQ—R"

is an almost exponential map. Moreover, |B|<N|Q,| (see (4.6)) and BCE(z, Q) for
every &£y, since BC B(z, 2r) and B(z, 2r)C E,(z,Q), by the definition of 2, and
the assertion (b) of Theorem 4.1. Thus hypothesis (i) of Theorem 2.1 is satisfied.
We next prove that the map E,, in (4.8) is X-controllable with a hitting time T'<cr.
We would like to stress that the X-controllability of the map E,, seems to be much
easier than that of the maps ® studied in [NSW]. This is the only reason for which
we use the E,’s rather than the ®’s.
Our claim will be a straight consequence of the following lemma.
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Lemma 4.2. Let E;: ; xQ—R™, i=1, 2, be two maps with continuous first
derivatives such that Ey(z,h)CQy for any (z,h)€Q xQ. Let us assume that E; is
X -controllable with a control function ~v;: Q; xQ x [0, T;] - R™. Let also assume that
¥i(2, h,-) reaches E;(z,h) in a time T;(h) independent of z, i.e.

Yi(z, h,T;(h)) = Ei(z,h) for all (z,h) € Qi xQ.

Then
E:QquxQ-—R", E(z,h)=Ey(E(z,h),h)
18 X -controllable with a hitting time T=T,+T>.

Proof. Let us define v: Q; xQ x [0, T} +T2] = R"™ by

Y1(z, h,t), if 0<t<Ty(h),
Y(z, h,t) =1 Yya(Ei(z,h), h,t—Ty(h)), if T1(h) <t <Ti(k)+Ta(h),
Ey(E (x, h), h), if Ty (h)+To(h) <t <T)+Ts.

It is easy to see that v is a control function for E (note that z+ F;(z, k) is one-to-
one since z—v;(z, h,T1(h)) is one-to-one). [

The explicit form of the map E,(z,h) in (4.4) is

M
Ey(z,h)= H exp(|hx; |1/t 0; Xr; ) (%),
ij=1

where M=M(n) is a suitable integer, k;€{1,...,n}, r;€{l,...,m} , o;=%£1 (r;
and o; also depend on the sign of Ay, see (4.1)). Elementary standard results
of ordinary differential equation theory show that any map of the form (z,h)—
exp(|hkj|1/ T X, )(z) is controllable with hitting time |hs j|1/ ', Thus, applying
Lemma 4.2, M times, we conclude that the map E,, is X-controllable with a hitting
time

T <csup k], =or,
he@

where Q is the box defined in (4.7) and « only depends on 7, ¢; and ¢;. Thus, also
the hypothesis (ii) of Theorem 2.1 is satisfied.

Finally we remark that the dilation condition (iii) directly follows from the
doubling condition for the d-balls proved in [NSW, Theorem 1]. Then the Poincaré
inequality (1.1) holds on the ball B.
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5. A pair of non-smooth vector fields of step two

We consider, in R3, the pair of vector fields X =(X1, X2), where X;=0;,+
a;0;, and a; is a C'-function with bounded first derivatives, j=1, 2. We assume
that

(5.1) p:=X1a3— X320, >0

at any point of R3. Since [Xi, X2]=p8,,, (5.1) implies that the vector fields X;,
X3, and [X1, X] are linearly independent at any point.

Then (5.1) formally implies the Hérmander condition for (X7, X3). Neverthe-
less, due to the “minimal” regularity assumptions on the coefficients a;, neither
Jerison’s inequality, nor Nagel-Stein-Wainger’s representation theorem can be di-
rectly applied to the pair (X3, X2). On the contrary, our method naturally works
also in this case. The explicit statement of our result is the following.

Theorem 5.1. Let X;=0;,+a;0;,, j=1, 2, be a pair of C? wvector fields
in R3. Assume that (5.1) holds. Then, for any compact set KCR3 there are
positive constants A\, ¢ and Ry such that

(5.2) /BXBlu(z)—u(y){dmdyicrlBl/AB | Xu(z)|dz, uweC (AB),

Jor any ball B=B(zq,r) such that 1€ K and r<Rg.

Proof. Let us consider the map exp*(o{X;, X3]), obtained by setting /=2 and
S=[X1,X5] in (4.1). By means of elementary computations we obtain

(5.3) exp* (o] X1, Xa])(z) = (21, Z2, 23+ P(z, 7)),
where

(5.4) P(z,0)=p(z)o+R(z,0)

and

(5.5) :1612(‘5351%(:5, o) +|R(:z,o)|) —0, aso—0,

for any fixed compact set K CR3.
We now define

E(z, h) =exp*(h3[X1, X2]) exp(h2 X2) exp(h1X1)(z),
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and Q(r)={h€R?:||h||<r}, where ||| =max{|hi], |hzl, |hs|'/*}. Keeping in mind
(5.3) it is easy to see that

E(z,h)= ($1+h1,$2+h2,

(5.6)
h

.'lcg;—i-/oh1 a;(e™X1 (:1:))d'r—{—/0

Let K CR3 be a compact set. By using (5.1), (5.4), (5.5) and (5.6) we can find
three positive constants rg, § and u such that

as (e"x"’ et X (x)) d‘r+P(eh2X2 eMX1 (z), h3)) .

(5.7) E(z,Q(ro)) 2 {yeR>:|x—y| <6} foranyzeK
and
(5.8) |E(z,h)—z| > plk| for any x € K, h€Q(ro).

Since t—exp(tX;)(z) is a subunit path, from the definition of E we have
(5.9) d(@, B(w, h)) < [ha|-+Iha|+4lhs |2 < 6]lA].
Putting together (5.7), (5.8) and (5.9) we get

d(z,y) <clz—y|"/? for all z€ K and y € R3 with [z—y| <6,

where c only depends on 4 and rp. As a consequence the distance d is well defined
and locally Holder continuous with respect to the euclidean distance.
We next prove the following inclusions:

(5.10) E(z,Q(3r)) € B(z,7) CE(z,Q(6r))

for any x€ K and 0<r<ry. Here 0 denotes a positive constant only depending on
K and ry. The first inclusion in (5.10) is a trivial consequence of (5.9). To prove the
second one we argue as follows. Given a point z€ B(z,r), there exists an absolutely

continuous path < on [0,1] satisfying v(0)=z, v(1)=z2, "y(t)=2?=1 c; (1) X;(x())
and

(5.11) le;(t)] <r forae tel0,1], =1, 2.

The second inclusion in (5.10) will be proved if we show the existence of a point
heQ(0r) such that E(x,h)=2. Using (5.6) we see that this equation is satisfied if
and only if

1
(5.12) hj=/ c(tydt, j=1, 2,
0
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and

P(eh2XzemXi(z) py) = Z/{; ¢j()a;(v(t)) —a;(x)] dt

(5.13) + " [a1(z)—a1 ("X (z))] dt
0

+ - [a2(z) —az(e"*2e™ ¥ ()] dt.
0

The equations (5.12) uniquely determine h; and h; in such a way that, due to (5.11),
{h1|, |h2|<r. Moreover, if r is small enough (we may suppose this condition being
satisfied if r<7¢), there exists a unique hz=hs(z, h1, h2) satisfying (5.13). By using
(5.4) and the Lipschitz continuity of a, and a2, we obtain |h3|<6r? for a suitable
60=0(K,10)>0. Thus (5.10) holds.

In view of the second inclusion in (5.10) we infer that the set

Ky:= U B(z,1g)
€K

is a compact subset of R3. Following the argument described before we get
(5.14) B(z,r)C E(z,Q(0'r))

for any z€ Ko, 7<go (¢’ and g are suitable constants and we may assume that >0
and gp< %ro). Moreover, we may also assume the existence of a positive constant
a>0 such that, for any z€ Ky, the map h— E(z, h) is a one-to-one map on the box
Q(2¢' 9o) and

1 OE
5.1 —<idet —

<a for all z € Ko and h € Q(20' o).

We are now ready to prove the Poincaré inequality (5.2) by using Theorem 2.1.
Let B=B(zq,r) be a d-ball centered at a point €K and having radius r<go.
Define now
Q:=B and Q:=Q(20'r).

By the triangle inequality and (5.14) we get
Bc B(z,2r)C E(z,Q)

for any z€Q. In view of (5.15) the map E:QxQ—R" is an almost exponential
map X-controllable with a hitting time T<128'r. We explicitly remark that the
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constant a:=126', together with the type of E and the constant related to the
control function (i.e. the constants in (2.1) and (2.2), respectively) are independent
on r<gg.

Finally, by using the inclusions (5.10) and the estimates (5.15), we easily prove
the existence of a positive constant 3, independent of r, such that |(a+1)B|<g|B|
if 0<r< Ry, where Ryg<pp is a suitable constant only depending on &, a and go.
Then all the hypotheses of Theorem 2.1 are satisfied and the Poincaré inequality
(5.2) holds with A=a+1. O

We close the section by giving a motivation for our interest in the vector fields
X: and X satisfying (5.1). Let f be a real C? function defined on an open set
OCRS3. Define the functions

_fitl_fzzfa:a _ f:cz+f:t1fz3
a = 5] ) az = — 2 3
1+f$3 1+f13

where f,,=0f/0z;, i=1, 2, 3. Then the C'-vector fields X;=0,,+a;0;,, j=1, 2,
satisfy (5.1) if and only if the Levi curvature of the graph of f is strictly positive
at any point (see [C, p. 519]). This last property plays an important role in the
analysis of the classical and viscosity solutions to the prescribed Levi-curvature
equation (cf. [C] and [CLM}).
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