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On the Poincard inequality for vector 

E r m a n n o  Lanconelli  and Daniele Morbidelli(1) 

fields 

Abstract�9 We prove the Poincard inequality for vector fields on the balls of the control 
distance by integrating along subunit paths. Our method requires that the balls are representable 
by means of suitable "controllable almost exponential maps". 

1. I n t r o d u c t i o n  

In  this paper  we are concerned with the following Poincar~-type inequality, 

(1.1) fB• ABIXu(x)ldx' ueCI(AB), 

where B=B(xo,r):={xERn:d(xo,x)<r} is a ball of  the control distance d gen- 

erated by a family X=(X1, ... ,Xm) of locally Lipschitz continuous vector  fields 

Xj: R n - + R  n. By IBI we denote  the  Lebesgue measure of B,  whereas AB s tands  for 

the homothe t ic  ball B(x0,  Ar). Moreover, IXul denotes the euclidean norm of the 

X-grad ien t  of  u, i.e. Xu=(Xlu, ..�9 Xmu), Xju=(Xj, Vu), j = l ,  ... ,m.  

The  most  commonly  used definition of  control  dis tance is based on the  not ion 
of  subunit  curve. An  absolutely continuous pa th  7: [0,T] - + R n  is X-subunit if it 

�9 t ~ ~7. satisfies 7(  )=~-~j=l aj(t)Xj(7(t)), with )-~j=i aj(t) 2<- 1, for a lmost  every tC [0, T]. 

Assuming tha t  for each x, yCR n there exists at  least one X-subun i t  pa th  tha t  

connects  x and y one defines 

d(x, y) = inf{T > 0:  there  is 7: [0, T] -+ R "  subunit ,  with 7(0) = x and 7(T)  ---- y}. 

Then  (x, y)~-~d(x, y) is a dis tance on R n which is called the control (or Carnot- 
Carathdodory) distance related to  X.  We shall always assume tha t  the d- topology 

(1) Both authors were partially supported by the University of Bologna, funds for selected 
reseaxch topics. 
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is equivalent to the euclidean one, a condition that  is satisfied in many important 
contexts. 

As is well known, inequalities like (1.1) play a crucial role when studying eigen- 
value problems for ~ j  X~Xj with Neumann boundary conditions. Over the last six 
years it has been shown that  seemingly unexpected important results follow natu- 
rally from (1.1) making this inequality even more relevant. Indeed, let us assume 
that  the following dilation condition 

(1.2) 15BI < cSQIBI 

is satisfied, for any B and for every 6_>1, where c and Q are suitable constants inde- 
pendent of B and 6. Then (1.1) is essentially equivalent to the following Poincar6- 
Sobolev inequality 

(1.3) 
\l/q \l/v 

(/o,u uo v ) , 
where UB=fB u=(1/IBI)fB U, r is the radius of the ball B, and 1/p-1/q=l/Q. 
Significant references are Saloff-Coste [S], Biroli and Mosco [BM], Hajtasz and 
Koskela [HK], Maheux and Saloff-Coste [MS], Franchi, Lu and Wheeden [FLW], 
Garofalo and Nhieu [GN]. Franchi, Lu and Wheeden actually prove that  (1.1) and 
(1.2) imply a stronger estimate than (1.3), viz. an integral representation formula 
for U--UB in terms of Xu. Garofalo and Nhieu, assuming (1.2) and a slightly weaker 
inequality than (1.1), developed a general geometric theory of first order Sobolev 
spaces related to X. 

It is also remarkable that  the term AB in the right-hand side of (1.3) can be 
replaced by B, if (1.2) and (1.3) hold for any B. This important fact comes from a 
clever remark by Jerison [J]. 

In the euclidean setting, corresponding to the case in which Xu=Vu, i.e. Xj- -  
O/Oxj, j - - l ,  ... ,n,  inequality (1.1) is well known and can be proved starting from 
the identity 

(1.4) r u(x)-u(y)= ~ u  y+t dt. 
J o  

It is noteworthy that  the right-hand side of (1.4) is the integral of ~-~(Ou/Oxj) dxs 
along the "shortest" X-subunit path connecting x and y. 

The idea of estimating the difference between the value of u at different points 
by integration along subunit curves was also used in [FL1]. In that  paper, seemingly 
for the first time, the Poincar6 inequality was proved in a non-euclidean setting. The 
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class of vector fields studied in [FL1] however, is rather particular: the family X,  
indeed, was required to be diagonal, i.e. Xj=)~j(:O/Oxj, j =  1, ..., n, and the 2j 's  were 
required to satisfy some strong conditions. 

A much wider class of vector fields for which (1.1) holds was found by Jerison [J], 
who proved the Poincar6 inequality for any family X = (X1 .... , X m )  of smooth vector 
fields satisfying the HSrmander condition 

(1.5) Rank(E(X1, .... X m ) ) ( x )  = n for all x E R n. 

To the authors'  knowledge, the problem of finding other and different conditions 
assuring that  (1.1) is satisfied is still widely open. The aim of this paper is to give 
a contribution in this direction. We show that  the Poincar6 inequality (1.1) holds 
if the ball B is representable by means of X-controllable almost exponential maps 

(see the next section for the precise statement).  This hypothesis enables us to prove 
(1.1) starting from the idea of estimating u ( x ) - u ( y )  by integration along an almost 
d-shortest X-subunit  path connecting x and y. It should be immediately noticed 
that  our condition, unlike (1.5) and that  of [FL1] is not directly readable on the 
fields, it requires to know a "good representation" of the d-balls. However, for the 
vector fields studied in [FL1], this representation is already available, it was proved 
in [FL2]. For HSrmander's vector fields our conditions can be verified by slightly 
improving a well-known representation theorem of d-balls due to Nagel, Stein and 
Walnger [NSW]. 

This paper is organized as follows. In Section 2, after introducing our notion of 
X-controllable almost exponential map, we prove the main theorem of the paper. 
In Section 3 we apply our result to a diagonal case, thus giving a new proof of the 
Poincar6 inequality of [FL1]. In Section 4 we first show the previously mentioned 
improvement of the Nagel-Stein-Wainger's representation theorem. Then, by using 
our main theorem, we provide a new proof of Jerison's Poincar6 inequality. We 
want to stress that  the result of Section 4 answers a question raised by Jerison 
in [J] about  the possibility to demonstrate the Poincar6 inequality starting from an 
improvement of Nagel-Stein-Wainger's result. In the last section of the paper we 
show an application of our theorem to a pair of non-smooth vector fields in R 3. 
Such a pair, that  we call "of step two", naturally arises in studying non Levi-flat 
real surfaces in C 2. We directly refer to Section 5 for a few more comments on this 
application. 

Before closing this introduction we would like to quote two other papers which 
are related to our work. In [FL3] a "non-invariant" Poincar~ inequality is proved 
assuming that  a sufficiently rich family of subunit curves sweeps out from any point 
of R n. Although this hypothesis may be difficult to verify and may only lead to 
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a weak form of the Poincar6 inequality, our main theorem was partially inspired 
by [FL3]. Finally, by a technique similar to the one used here, Varopoulos [V] gave 
an easy proof of the Poincar6 inequality for vector fields which are left invariant on 
a homogeneous group. 

2. A l m o s t  exponent ia l  maps,  
control labil i ty and the  Poincard inequal i ty  

Let us consider, in R n, an open set fl and an open neighborhood Q of the 
origin. We will say that  a map E : f t x Q - + R  n is an almost exponential map of 
type a > 0  if E(x,O)=x for every x E ~ ,  E(x, .  ) is C 1 and one-to-one on Q and the 
jacobian determinant D(x, h) := ] det OE(x, h)/Oh] satisfies the estimate 

(2.1) 0 < 1D(x,  O) <_ D(x, h) <_ aD(x, 0) for all x E fl and h E Q. a 

A map E: ~ x Q - + R  n will be said to be X-controllable with a hitting time T > 0  
if there exists a function 7: ~ • Q • [0, T]-~R'* satisfying the following conditions. 

(C1) For any (x,h)Ef~• t~-+7(x,h,t) is an X-subunit  path connecting x 
and E(x, h), i.e. 7(x, h, O)=x, 7(x, h, T(x, h)) =E(x,  h) for a suitable T(x, h) <_T. 

(C2) For any (h, t)EQ • [0, T], x~+7(x, h, t) is a one-to-one map having contin- 
uous first derivatives and jacobian determinant uniformly bounded away from zero, 
i.e. 

(2.2) b :=  inf , v l  0_~L [ > 0. 
QxQx[O,T] OX I 

We will call any function 7 satisfying (C1) and (C2) a control function of E.  

Roughly speaking, our main observation is that  the Poincar~ inequality relies 
on the representability of the d-balls by means of X-controllable almost exponential 
maps. 

The following theorem makes this assertion precise. 

T h e o r e m  2.1. Let B=B(xo,  r) be a fixed d-ball. Assume that there exists an 
open set f~C_B, an almost exponential map E: f~ • Q-+ R n and two positive constants 

and t3 satisfying the following conditions: 
(i) IBi__~lf~] and BC_E(x,Q) for every xEf~; 
(ii) E is X-controllable with a hitting time T<_ar; 
(iii) I((~+1)BI_<131B]. 
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Then there exists c>0  such that 

(2.3) f.x lu(x)- (y)ldxdy< lBIJo+,) lXu(z)ldz, ueCl((a+l)B) .  

The constant c depends only on a and fl, on the type o] E (the constant a in (2.1)), 
and on the constant b in (2.2) (related to a control ]unction "y of E). 

Proof. We first prove some simple consequences of the hypotheses (i), (ii) 
and (iii). Let ~,: ft • Q x [0, T ] - + R  n be an X-control function of E such that T<ar 
(hypothesis (ii)). Since t~-+'y(x, h, t) is a subunit curve and "y(x, h, 0) =x, 

(2.4) d(x, 'y(x,h, t))<t<T <ar, xEft.  

Then, keeping in mind that E(x,h)=~(x,h,T(x,h)) for a suitable T(x,h)<T, 
E(x, Q)CB(x, ar)CB(xo, (c~+l)r). From these inclusions and by also using (iii), 
we obtain 

(2.5) [E(x,Q)[<fl[B I for all x E ~ .  

On the other hand, by (2.1), 

[E(x, Q)l =/Q D(x, h) dh >_ la [D(z, O) I IQ I. 

Then we have D(x, O)<flalBI/]Q I which, together with (2.1), implies 

(2.6) D(x, h) < ~ [B[ for all x Ef t  and h e Q. 

We are now in a position to prove (2.3). We denote by c any positive constant 
only depending on c~, fl, a and b. For any function uECI((a+I)B) we have, using 
(i), (2.6), (C1) and that "), is subunit, 

/BxB [u(x)-u(y)[ dx dy < /BxB 'u(x)-uam dx dy+ JB• lu(y)-un[ dx dy 

=2[B[ .In ]u(y)-u~[ dy 

21BI 
<- -V V lu(=)-u(y)l d= dy 

(2.7) lu( )-u(y)I yd  
(=,Q) 
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<clBl f f 
- IQI J~ JQ I~(=)-u(E(=, h))l dhd= 

d t)) dt dh dx JQIJ0 -~u('r(x, h, 
< [B I T --cF~[ ~ /Q fO [(Vu(~f(x'h't))';r(x'h't))l dtdhdx 

<clB I T - ~ / Q  fo ~ [Xu(~f(x'h't))ldxdtdh" 

We then use (C2) to estimate the last integral by means of the change of variable 
z='y(x, h, t). Keeping in mind that  [ det 07/c3xl >b and noticing that  "r(x, h, t) e 
B (x0, ( a +  1)r) for every (x, h, t ) � 9  f~ x Q x [0, T] (see (2.4)), we have 

1 
IXu('Kx, h,t))ldx<_ -b fm=o,(~+,)-)IXu(z)ldz. 

This estimate, together with (2.7), gives 

/BxB 'u(x)--u(y)' dx dy <-- c [~Q[[ T /Q ~(~+ I)B 'Xu(z)' dz dh 

< crlBI ~(~+I)B IXu(z)l dz, 

using that  T<_ar. This completes the proof. [] 

Remark 2.2. Under the same hypotheses as Theorem 2.1 we can directly prove 
the L p version ( l < p < c ~ )  of inequality (2.3), 

B [u(x)-u(Y)tPdxdy<crPlBlj((a [Xu(z)lVdz' ueCl((a+l)B)" 
x B +I )B  

We only have to modify, in an obvious way, the proof of Theorem 2.1. 

3. A d i a g o n a l  case  

In this section we will apply Theorem 2.1 to the case in which X=(X1, ..., Xn), 
Xj=Aj(x)O/Oxj, j - - 1 , . . . , n ,  and the Aj's are continuous functions on R "  with 
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continuous first derivatives outside l-I--{(xl,.. . ,  x,):xlx2 ... x,~ =0}. Moreover, A1 = 
1, Aj--)~j(xl,... ,x j -1)  and 

(3.1) O<XkOO@k <_OAj in RnkH,  

if 1 <k<j <n. Under these hypotheses, the following results were proved in [FL2]. 
(D1) There exists at least one X-subunit path connecting any pair of points x 

and y in R n. 

(D2) The X-control distance d is continuous with respect to the euclidean 
topology and the d-balls satisfy the dilation condition (1.2) with c and Q only 
depending on the constant 0 in (3.1). 

(D3) There exist n continuous functions A1, ..., An: Rn • +c~[---~R, with con- 
tinuous first derivatives in RnkH,  such that  

B(x, r) C { x + h :  h -  (hi,  ..., hn), Ihjl _< rAj(x, T)} 

for every x e R  n and r > 0  (in the notation of [FL2], Aj(x,r)=Fj(x,r)/r).  
(D4) There exists a > 0  such that,  defining 

(3.2) Ft = f~B := {x E B(xo, r ) :  Aj(x0, r) < a~j  (x)} 

for any d-ball B=B(xo, r), then 

(3.3) IBI < c~lf~ I. 

The last assertion is not explicitly stated in [FL2], but it can be deduced from 
(3.1) by elementary computation. With (D1)-(D4) in hand it is easy to show that  
the hypotheses of Theorem 2.1 are satisfied. Indeed, let B=B(xo, r) be a fixed d- 
ball. Define Q:={h=(hl,... ,hn):lhjl<2rAj(xo,r), j = l , . . .  ,n} and E:ft• n, 
E(x, h)=x+h. Obviously E is an almost exponential map and, thanks to (3.2), 

(3.4) BC_{xo+h:lhjl<_rAj(xo,r)}C_{x+h:lhjl<2rAj(xo,r)}=E(x,Q) 

for every xEB. Thus, also keeping in mind (3.3), the condition (i) of Theorem 2.1 
holds. Let us now check (ii) assuming n=3 for sake of simplicity (the general 
case can be handled in the same way). For every (x,h)EftxQ we define the path 
7(x, h,- ) as a sum of three paths, i.e. 
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where 

73(x, h, t) = (xl, x2, x3 q-t/~3), 

~/2 (x, h, t) = (xl, x2 +t/~2, x3 q-h3), 

~'1 (x, h, t) = (Xl + t/~l, x2 + h2, x3 + h3), 

0 ~ t ~ Ih3Fk3h 

0 < t < Ih2/h2l, 

0 < t < Ih,/~,ll, 

and/~i=(sgn(hi)/a)A~(xo, r), i=l ,  2, 3. Then, if we define 

T(x, h) :-- Ih3//~31 + lh2/s I§ l, 

~/(x, h, O) =~/3(x, h, O)=x and "~(x, h, T(x, h)) ='h (x, h, Iht I/A1) =-x+h. Using the 
definition of Q the hitting time T=sup~, h T(x, h) can be estimated by 6~r. 

Moreover, noticing that  

/~i X 

we can assert that  "y(x,h,.) is X-subunit since Ai(xo, r)<aAi(x) for any xEf~ 
(see (3.2)). Finally, for every fixed heQ and tE[0,T], x~-~/(x, h, t) is a smooth 
function having jacobian determinant det 07/Ox-1.  Thus, also keeping in mind 
(D2), all the hypotheses of Theorem 2.1 are satisfied and the Poincard inequality 
(1.1) holds, in this case, for every d-bail B. 

We would like to close this section by quoting a paper by Franchi IF] containing 
a Poincard inequality for diagonal vector fields more general than ours. However, 
the rePresentation theorem for the d-balls proved in IF] could be seemingly used to 
prove that  the hypotheses of Theorem 2.1 are satisfied in that  more general case, 
too. 

4. HSrmander  vector  fields and Jerison's  Poincard inequal i ty  

In this section X=(X1 ,  ... ,Xm) will be a family of smooth vector fields on 
R n satisfying the HSrmander condition (1.5). It is well known that  the control 
distance d related to X is locally HSlder continuous with respect to the euclidean 
distance (see [FP]; see also [VSC], for a simpler proof). By using a representation 
theorem of the d-balls that  slightly generalizes and improves a well-known result by 
Nagel, Stein and Wainger, we will show that  the hypotheses of our Theorem 2.1 are 
satisfied for every d-ball with small enough radius. This will provide a new proof 
of Jerison's Poincard inequality. 



On the Poincax6 inequality for vector fields 335 

We begin by introducing some notation and definitions. If I=(i l ,  ..., i v) is a 
multi-index such that  l_<ij <m,  we set 

x ,  = [ x , , ,  [x ,2  ... [x,,_l, x , ~ ]  ...]], 

and ]I[ =p.  We shall say that  X1 is a commutator  of length ]I[ and we assume that  
each of the vector fields Xj  is a commutator  of length 1. 

If S1, ..., SIE{X1, ..., Xm}, for any a E R  we set 

C l ( a ,  $1 )  = e ~ s l  , 

C2 (ix; S1, $2) : e - ~ S ~ e - ~ S ' e ~ S 2 e ~ S ' ,  

Ct(a;S1, . . . ,St)=Cl_l(a;S2, . . . ,Sl)- le-~'S 'ct_l(a;S2, , . . . ,St)e  ~s', l>2,  

and 

exp .(aS) = f CI(a'/'; S,, ... , S,), if a > O ,  (4.1) / Ct([a[1/t;S1,...,St) -1, if a < 0 ,  

where S denotes the commutator  [$1, [$2 ... [Sl-i ,  St] ... ]]. By the Campbell-Haus- 
dorff formula (see [NSW, Lemma 2.21]) we have 

(4.2) exp*(aS)(x) =x+aS(x)+O(lall+l/ l) ,  as a - ~ 0 ,  

which in particular means that  exp* (aS)(x) is a perturbat ion of the exponential 
map exp(aS)(x). 

Let now K be an arbitrary compact subset of R n. By the Hhrmander condition 
(1.5) there exists a positive integer u=u(K) such that  

span {Xi(x)  :[I[ _< u} -- R n for all x E K. 

Denote by Y1, .-., Yq an enumeration of the commutators of length _<u. The length 
of Yj will be denoted by lj. Given an n-tuple ~?-- (Yjl, . . . ,  Yj,), we finally let 

t(n) = l~, + . . . + l j . ,  

(4.3) [[hI[n= max [ha[1/tJk i f h = ( h l  .... ,hn), 
k=l,...,n 

Qn(r) = {h E R n :  ][hl[ n < r}, if r > 0 

and 

(4.4) En(x, h) = exp* (hlYj,) . . .  exp* (hnYj.)(x).  

By using (4.2) it is easy to see that  E,(x,h)=x+~-~k= 1Yjk(x)hk+o(h), as h-+O. 
Then 

DE,  (x, 0) = [ det [Yj~ (x), ..., Yj, (x)][. 

We are now ready to state our version of Nagel-Stein-Walnger's representation 
theorem for the d-balls. 
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T h e o r e m  4.1. Let K c R n  be a compact set. Then there exists three positive 
constants ro, cl and c2 depending on K,  with c2 <Cl < 1, such that, given an n-tuple 
~l, a point x E K  and a positive r<_ro satisfying the inequality 

(4.5) DE, (x, 0)r l(u) _> �89 max DEr (x, 0)r l(~), 

the following assertions hold: 
(a) if heQu(Clr) then �88 (x, O) <_n~, (x, h) <4DE, (x, 0); 
(b) B(x, c2r) cE,7(x, Qn(clr)); 
(c) the function Eu(x,. ) is one-to-one on the set Q,(cyr). 

The proof of this theorem is very similar to that  of Theorem 7 in [NSW] and 
relies on a careful estimate of the derivatives of the map h~E,7(x, h) obtained by 
means of the Campbell-Hausdorff formula. We refer to [M] for a detailed proof 
of this result. Theorem 4.1 contains all we need to show that  condition (i) of 
Theorem 2.1 is satisfied. Indeed, let B=B(xo,  r) be a d-ball centered at xoEK and 
of radius r <  �89 O. For any n-tuple 7/=(Yjl,. . . ,  Yj~) we define 

~)v { EB:DE, (X ,O) (2r~  l(') 1 ( 2r~l(')~ = X - -  > DEr �9 \ c 2 /  ~ mcax \ c 2 /  ) 

At least one of the sets ~v satisfies 

(4.6) ]•] _> 1]BB, 
where N is the total number of n-tuples available. Let us choose one such ~7 and 
denote by Q the box 

2Cl r (4.7) Q:--  h E R n : H h [ [ , < - -  
c2 )" 

Then, by (a) and (c) of Theorem 4.1, the function 

(4.8) E , :  l ) ,  • Q - -+ R n 

is an almost exponential map. Moreover, IBI _<Ntl2,[ (see (4.6)) and BC_E(x, Q) for 
every xEl2,,  since BC_B(x, 2r) and B(x, 2r)C_E,7(x , Q), by the definition of ~u and 
the assertion (b) of Theorem 4.1. Thus hypothesis (i) of Theorem 2.1 is satisfied. 
We next prove that  the map E u in (4.8) is X-controllable with a hitting time T_<cr. 
We would like to stress that  the X-controllability of the map E ,  seems to be much 
easier than that  of the maps (I) studied in [NSW]. This is the only reason for which 
we use the E , ' s  rather than the (I)'s. 

Our claim will be a straight consequence of the following lemma. 
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L e m m a  4.2. Let Ei:~i xQ-~R  n, i=l,  2, be two maps with continuous first 
derivatives such that El(X, h) C~2 for any (x, h) Cf~l x Q. Let us assume that Ei is 
X-controllable with a control function 3'i: f~i x Q x [0, Ti]--~R n. Let also assume that 
q'i(x, h,. ) reaches Ei(x, h) in a time Ti(h) independent of x, i.e. 

~/i(x,h,T~(h))=E~(x,h) for all (x,h) E f~xQ.  

Then 

E : ~ x Q  ~R n, E(x,h)=E2(El(x,h),h)  

is X-controllable with a hitting time T=T1 +T2. 

Proof. Let us define 3': f~l x Q x [0, T1 +T2] --+R n by 

{ ~/l(x,h,t), 

~/(x,h,t)= "r2(El(x,h),h,t-Tl(h)), 

E2(E1 (x, h), h), 

i fO<t<Tl(h) ,  

if T~(h) <_ t < Tl(h)+T2(h), 

if T~(h)+T2(h) <_t<_T~+T2. 

It is easy to see that  ~. is a control function for E (note that  x~-~El(x, h) is one-to- 
one since x~+~/l(X,h, Tl(h)) is one-to-one). [] 

The explicit form of the map E,(x, h) in (4.4) is 

M 

E,(x, h) = H exp(lhk~ 
j= l  

where M=MO? ) is a suitable integer, k jE{1, . . . ,n} ,  r jE{1 , . . . ,m}  , a j=•  (rj 
and aj  also depend on the sign of hko, see (4.1)). Elementary standard results 
of ordinary differential equation theory show that  any map of the form ( x, h)~-~ 
exp([hko [1/lkj Xro)(x) is controllable with hitting time [hko [1/zkj. Thus, applying 
Lemma 4.2, M times, we conclude that  the map E ,  is X-controllable with a hitting 
time 

T < c sup I[hll,7 = ar, 
hcQ 

where Q is the box defined in (4.7) and a only depends on I/, Cl and c2. Thus, also 
the hypothesis (ii) of Theorem 2.1 is satisfied. 

Finally we remark that  the dilation condition (iii) directly follows from the 
doubling condition for the d-balls proved in [NSW, Theorem 1]. Then the Poincar~ 
inequality (1.1) holds on the ball B. 
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5. A pair of  n o n - s m o o t h  vector  fields of  s tep  two 

We consider, in R 3, the pair of vector fields X=(XI,X2),  where Xj=ax~+ 
ajO~ 3 and aj is a Cl-function with bounded first derivatives, j=l ,  2. We assume 
that 

(5.1) p := X l a  2 - X 2 a l  > 0 

at any point of IR a. Since [X1,X2]=pOx3, (5.1) implies that the vector fields X1, 
X2, and IX1, X2] are linearly independent at any point. 

Then (5.1) formally implies the H5rmander condition for (X1, X2). Neverthe- 
less, due to the "minimal" regularity assumptions on the coefficients aj, neither 
Jerison's inequality, nor Nagel-Stein-Wainger's representation theorem can be di- 
rectly applied to the pair (X1,X2). On the contrary, our method naturally works 
also in this case. The explicit statement of our result is the following. 

T h e o r e m  5.1. Let Xj=Ox~+ajOxa, j= l ,  2, be a pair of C 1 vector fields 
in R 3. Assume that (5.1) holds. Then, for any compact set K C R  a there are 
positive constants )~, c and Ro such that 

(5.2) f ,  x lu(x)-u(u)ldxdy<~lBL ~slXU(x)ldx,  ueCl(AB),  

for any ball B=B(xo,r) such that xoeK and r <Ro. 

Proof. Let us consider the map exp*(a[X1, X2]), obtained by setting l=2 and 
S=[X1, X2] in (4.1). By means of elementary computations we obtain 

(5.3) exp* (o [Xl ,  X2])(x)  -- (Xl, x2, x3-{-P(x, 0")), 

where 

(5.4) P(x, a) =p(x)a + R(x, a) 

and 

for any fixed compact set K cP~  3. 

We now define 

as cr ---+ O, 

E(x, h) --exp* (h3 IX1, X21) exp(h2X2) exp(hy X1)(x), 
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and Q(r)={heR3:llhll<r}, where Ilhll=max{Ihll, Ih2h 1h311/2}. Keeping in mind 
(5.3) it is easy to see that  

E(x, h) = (X 1 +hi, X2 + h 2 ,  

(5.6) 

x3+~ohlal(erXl(x))dTT~oh2a2(erX2eh'X'(x))dr+p(eh2X2ehlX~(x),h3)). 

Let KCR 3 be a compact set. By using (5.1), (5.4), (5.5) and (5.6) we can find 
three positive constants r0, 5 and/~ such that  

E(x, Q(ro)) D {y E R3:  Ix-yl < 5} for any x E g (5.7) 

and 

(5.8) IE(x,h)-xl_>~lhl for any xEK, hEQ(ro). 

Since tF-~exp(tXj)(x) is a subunit path, from the definition of E we have 

(5.9) d(x, E(x, h) ) < Ihll+lh21+41h311/2 <_ 611hll. 

Putt ing together (5.7), (5.8) and (5.9) we get 

d(x,y) <c]x-yl 1/2 for all xEK and yER  3 with Ix-yl <~, 

where c only depends on # and r0. As a consequence the distance d is well defined 
and locally Hhlder continuous with respect to the euclidean distance. 

We next prove the following inclusions: 

(5.10) E(x, Q( ~r) ) c B(x, r) C_ E(x, Q(Or) ) 

for any xEK and 0 < r < r 0 .  Here 0 denotes a positive constant only depending on 
K and r0. The first inclusion in (5.10) is a trivial consequence of (5.9). To prove the 
second one we argue as follows. Given a point zEB(x, r), there exists an absolutely 

�9 2 continuous path ~/ on [0, 1] satisfying "y(O)=x, ~/(1)=z, "y(t)=Y~j= 1 cj(t)Xj('y(t)) 
and 

(5.11) Icj(t)l _< r for a.e. t E [0, 11, j = 1, 2. 

The second inclusion in (5.10) will be proved if we show the existence of a point 
hEQ(Or) such that  E(x, h)=z. Using (5.6) we see that  this equation is satisfied if 
and only if 

/o (5.12) hj = cj(t) dt, j=  1, 2, 
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and 

2 1 

p(eh2X2ehlX~(x)'ha)= ~ ~o cj(t)[aj(~(t))-aj(x)]dt 

(5.13) + [a~ (x) - a~ (e ~xl (x))l  dt 

+ f0 h" [as (x) - a~ (e ~x' e h' x~ (x))l  dr. 

The equations (5.12) uniquely determine hi and h2 in such a way that ,  due to (5.11), 
Ihll, Ih21<_r. Moreover, if r is small enough (we may suppose this condition being 
satisfied if r<_ro), there exists a unique h3=ha(x, hi, h2) satisfying (5.13). By using 
(5.4) and the Lipschitz continuity of al and a2, we obtain Ih31<Or 2 for a suitable 

0=0(K, r0)>0. Thus (5.10) holds. 
In view of the second inclusion in (5.10) we infer tha t  the set 

Ko:= U B(x, ro) 
x E K  

is a compact subset of R 3. Following the argument described before we get 

(5.14) B(x, r) C E(x, Q(O'r)) 

for any xEKo, r<_~0 (0' and Y0 axe suitable constants and we may assume that  0~_>0 
and ~0_< �89 Moreover, we may also assume the existence of a positive constant 
a > 0  such that,  for any xCKo, the map h~-+E(x, h) is a one-to-one map on the box 
Q(20~00) and 

(5.15) - _ h) _< a for all x �9 Ko and h �9 Q(20'oo). 
a 

We axe now ready to prove the Poincax~ inequality (5.2) by using Theorem 2.1. 
Let B=B(xo, r) be a d-ball centered at a point xo�9 and having radius r_<~)0. 
Define now 

f ~ : = B  and Q:=Q(20~r) .  

By the triangle inequality and (5.14) we get 

B C B(x, 2r) C E(x, Q) 

for any xCgt. In view of (5.15) the map E:I2xQ--~R n is an almost exponential 
map X-controllable with a hitting time T<_120'r. We explicitly remark that  the 
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constant c~:=120 ~, together with the type of E and the constant related to the 
control function (i.e. the constants in (2.1) and (2.2), respectively) are independent 
on r_<Q0. 

Finally, by using the inclusions (5.10) and the estimates (5.15), we easily prove 
the existence of a positive constant/~, independent of r, such that  I ((~+ 1)B I _< f~lBI 
if 0 < r < R 0 ,  where R0_<Q0 is a suitable constant only depending on 0 ~, a and Q0. 
Then all the hypotheses of Theorem 2.1 are satisfied and the Poincard inequality 
(5.2) holds with A=c~+l.  [] 

We close the section by giving a motivation for our interest in the vector fields 
X1 and )(2 satisfying (5.1). Let f be a real C 2 function defined on an open set 
O C R  3. Define the functions 

a l -  l+ f23  , a 2 -  1+123 , 

where fx~ = O f  /Oxi, i--1,  2, 3. Then the Cl-vector  fields Xj=Oxj  +ajO~ 3, j = l ,  2, 
satisfy (5.1) if and only if the Levi curvature of the graph of f is strictly positive 

at any point (see [C, p. 519]). This last property plays an important  role in the 
analysis of the classical and viscosity solutions to the prescribed Levi-curvature 
equation (el. [C] and [CLM]). 
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