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Small angle scattering and X-ray
transform in classical mechanics

Roman G. Novikov

Abstract. We consider the Newton equation

(*) Ei=F(z), F(z)=-Vu(z), zcRY
where v € C2(R%, R), [8%v(z)| < ¢ (1+]x]) (@D
for |j|<2 and some a>>1.

We give estimates and asymptotics for scattering solutions and scattering data for the equa-
tion (%) for the case of small angle scattering. We show that scattering data at high energies
uniquely determine the X-ray transforms PF and Pv. Applying results on inversion of the X-ray
transform P we obtain that for d>2 scattering data at high energies uniquely determine F' and v.
For the case of potentials with compact support we give a connection between boundary value

data and scattering data and for d>2 we obtain, using known results, a uniqueness theorem in
the inverse scattering problem at fixed energy.

1. Introduction
Consider the Newton equation
(1.1) i=F(z), F(z)=-Vu(z), zcRY
(1.2) where v € C*(R%,R), |8v(z)| < ey (1+[z])~ @+

for |j]<2 and some a>1 (here j is the multiindex j€(NU{0})?, |j|:Z:IL:1 Jn)-
For the equation (1.1) the energy

E=13(t)*+v(z(t))

is an integral of motion.
Under the conditions (1.2), the following is valid (see [RS]): for any (p_,x_)€
R4, p_ =0, the equation (1.1) has a unique solution z€C?(R,R%) such that

(1.3) z(t)y=p_t+z_+y_(¥),
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where §_(t)—0, y_(t)—0, as t——oo0; in addition, for almost any (p_,z_)eR?,
p-#0,

(1.4) z(t)=pittz,+y, (1),

where p, #0, p,=a(p_,z_), z,=b(p_,z_), y.(t)—0, y, (t) =0, as t—+oc0.
The map S: R??—R? given by the formulas

(1‘5) p+:a(p,,x,), x+=b(p,,:c4)

is called the scattering map for the equation (1.1).

By D(S) we denote the domain of definition of S; by R(S) we denote the range
of S. (By definition, if (p_,z_)€D(S), then p_+#£0 and a(p_,z_)#£0.)

Under the conditions (1.2}, the map S has the following simple properties
(see [RS]): the sets D(S) and R(S) are open subsets of R??; Mes(R?4\D(S))=
0, Mes(R?\R(S))=0; the map S:D(S)—R(S) is continuous and preserves the
element of volume; if (p_,z_)eD(S), then (—p_,z_)eR(S) and if (p,,z,)ER(S),
then (—p,,z,)€D(S); a(p_,z_)*=p>.

If v(z)=0, then a(p_,z_)=p_, b(p_,x_)=z_, (p_,z_)ER?, p_#0. Therefore
for a(p_,z_), b(p_,x_) we will use the following representation

(I(p,,x_) :p_Jfasc(p—am—)a

(16) b(p77$7)2$,+bsc(p77m—)a

(p_,x_)€D(S).

The map S restricted to
Yp(S)=D(S)NXE, where Xg={(p ,z )eR*|ip> =E}, E>0,

is called the scattering map at fixed energy E.
We will use the fact that, under the conditions (1.2), the map S is uniquely
determined by its restriction to M(S)=D(S)NM, where

M={(p_,z_)eR*|p_+#0, p_z_=0}.

In particular, the map S at fixed energy F is uniquely determined by its re-
striction to Mg(S)=D{(S)NMg, where Mg=XgNM.

In Section 3 we give estimates and asymptotics for the deflection y_(¢) from
(1.3) and for the scattering data asc(p_,z_), bye(p_,z.) from (1.6) (Theorem 3.1}.
These estimates and asymptotics are of interest, in particular, when the parameters
¢, a, d, p_, x_ are fixed and |p_| increases or ¢, «, d, p_, &_ are fixed and |z_|
increases or, e.g., o, d, p_, x_ are fixed and ¢ decreases (where c;, a, d are
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constants from (1.2), c=max(cy,c3); p_=p_/lp_|, & =z_/|z_|). In these cases
sup;cr |0(t)| decreases, where 0(t) denotes the angle between the vectors &(t)=
p_+73_(t) and p_, and we deal with small angle scattering. Note that already, under
the conditions of Theorem 3.1, without additional assumptions, there is the estimate
sup;cp |0(t)|< 37 and we deal with a rather small angle scattering. The term “small
angle scattering” is adopted by us from Section 20 of [LL]. Note, however, that
in [LL] the small angle scattering is considered only for a large impact parameter
|z_| for the spherically symmetric case.
Consider
TSt ={(8,z) |0 S !, zcR?, fz=0},

where §91 is the unit sphere in R%. Note that TS '~Mpg, E>0.
Consider the X-ray transform P which maps each function f with the proper-
ties
FECRLR™), |f(x)|=0(|z] ), as |z| — oo, for some B> 1

into a function PfeC(TS? 1, R™), where Pf is defined by

+o0
Pf(ﬁ,a:):/ ft04x)dt, (0,z)eTS* 1

— o0

In Theorem 4.1 (Section 4) we give, in particular, the asymptotic formulas
PF(0,z)= lirf sasc(s0, 2),
S—>T 00
Py(f,z)= Iiin 520b.(s6,2)
S§—+00
with explicit upper bounds for the difference with the limit for s large. (These
results follow directly from Theorem 3.1.)

For d>2 Theorem 4.1 and methods for the reconstruction of f from Pf (see
[GGG], [Na], [FN] and Section 4 of the present paper) permit to reconstruct F and
v from scattering data at high energies.

In the present article we consider also the time delay

b_x_ —a(p_,ac,)b(p;,x,)
Ip_1? '

mp_,xz_)=

In Proposition 3.1 we give asymptotics for 7(p_,z_) for small angle scattering; in
Theorem 4.1 we give, in particular, formulas for the reconstruction of Pv from
T(p_,x_) at high energies.

To our knowledge the multidimensional inverse scattering problem (without as-
sumptions of spherical symmetry) for the Newton equation (1.1} was not considered
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before. However, for the equation (1.1) in a bounded open strictly convex (in the
strong sense) domain DCR?, d>2, with smooth boundary 8D the inverse boundary
value problem at high energies and at fixed energy was considered in [GN]. In [GN]
results are obtained using results of [BG2]. The work [BG2] is a detailed version
of [BG1]. The work [BG1] generalizes, in particular, [B]. Results similar to results
of [BG1] were given independently in [MR].

In Section 5 we obtain the following results: we give a connection between the
boundary value data from [GN| and some other boundary value data (Lemma 5.1);
for the case

ve C*(R4R), suppvCD

(where D has the properties mentioned above), we give a connection between bound-
ary value data and the scattering data (Theorem 5.1}, and for d>2 we obtain (using
results of [GN]) that the scattering data and D uniquely determine v (Theorem 5.2)
at fixed, sufficiently large energy E>E(v, D).

Let Q(D)CTS%! denote the set of all rays which do not intersect D (with the
properties mentioned above). Let C3(R% R)={fcC?(R% R)|supp f is compact}.

Conjecture A. If veC3(R%,R), d>2, and at fized E>0 the identities
a(V2E6,z)=V2E0, b(vV2E0,z)=x for (0,x)€Q(D) hold, then suppvCD.

Conjecture A is a generalization of the Cormack—Helgason support theorem
from the theory of the X-ray transform (see [Na]). (We have a proof of Conjecture A
for the case of the Born approximation and for the case v(z)>0.)

Conjecture B. Under the conditions (1.2), d>2, at fized sufficiently large
energy E>E(v), the scattering data S uniquely determine v.

Concerning the works on the inverse problem for the equation (1.1) in dimension
1 we can mention [A], [K], [AFC]. Concerning the works on the inverse scattering
problem for the multidimensional equation (1.1) with spherically symmetric poten-
tial we can mention [Fi], [KKS], where this problem was considered in dimension 3
at fixed energy for the case of monotonous decreasing potential in |z|.

As related preceding works we would like to mention also the works that deal
with asymptotics of scattering data at high energies for the Schréodinger equation
and with the inverse scattering problem for this equation, see, e.g., [F], [R], [EW],
[N1], [N2], [N3] and references given there.

2. A contraction map

If 2 satisfies the differential equation (1.1} and the initial condition (1.3}, then
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x satisfies the integral equation

(2.1) x(t)zp,t—}—:v,*r/_ /j F(z(s))dsdr, where F(z)=-Vuv(z), p_#0.

For y_(t) this equation takes the form
y- () =4z (y)(1),

2.2 t
(2.2) where A, . (f)(t) :/ / F(p_s+xz_+f(s))dsdr, p_#0.
From (2.2), (1.2) and from y_cC(R,R%), y_(t)—0, as t——o0, it follows, in par-
ticular, that
(2.3)
y () eCTRRY and |5 (1)) =0, ly_(6) = Ot @=V), as t o0,

where p_#0 and z_ are fixed.
Consider the complete metric space

Mr,, ={f € C*(J=00, T|,RY) | ||l <7},
where |flr —<max(_sup 1@, _sw 17(0)-tf()])

t€]—o0,T] te]—oo,

(2.4)

(where for T=+o00 we understand |—o00, T as |—o0, +o0[). From (2.3) it follows
that, at fixed T'<+co,

(2.5) y_(t) € My, for some r depending on y_(f) and 7.

Lemma 2.1. Under the conditions (1.2), the following is valid: if feMr,,
0<r<1, p_x_=0 and |p_|>V2r, then

1Ap_ o (T <or(d,ci,a,|p_|,[z_]|,7)
de 22 (|p_|/vV2+1-7)
(a=1)(lp_|/V2 —rf (1+]z_|/V2 —(lp_l/V2-7)T)"

(2.6a) =

for T<0,

”A:D—,-Ta (f)”T < Q(dr €, &, Ip7|7 ‘CE_‘,T‘)
dei2°2(jp_|/V2 +1-1)

(2.6b) _ / _
(a=1)(lp_|/vV2 —r) (1 +]z_|/V2)
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for T <+oc;
if f1, f2€Mr,, 0<r<1, and |p_|>V/2r, then

(2.72) [Ap_ 2 (f2) =Ap_ o (f)llr <Ar(d; 2,0 p-|; lz_|,7) | fa=full,

22042 (Ip_| V2 +1—r)
(@=1)(Ip_1/v2 —r) (1+]e_|/vV2 —(Ip_| /2 —r)T)"

AT(d; C2, &, |p—|a |.’17,|, T) =
for T<0,
(2.7b) [ Ap_ o (f2) = Ap_o_ (f)lr SA(ds 2,0, [p_| Jz_|, )| fa— frllr

d2203(Ip_| V2 +1=1)
(a=1)(lp_|/v2 —r) (1+|z_| V2

>‘(d> C2, &, Ip—l7 I$~I7T) =

for T<+4oo.
Note that
o (ZLBLAPLIELD 304y, 1) )
(288’) < :LLT(dv G Q, |p— |7 |l',_i,’f’)
_ 222 (|p_| /V2 +1—1)
r(a=1)(Ip_|/V2 =1 (1t [z_|/V2=(Ip_I/V2 =) T
for T'<0,

max(@(d, 1, @, |7Iq)—y7 I-TLI,T),/\(d, ca, ||, {m_[,r))

(2.8b) <wpd,c,a,lp_|,|z_],7)
_ d?c2o3 (|p_|/V2 —|—1—7‘)2
ra—1)(Ip_|/V2 —r) (1+]o_|/v2)"

for T<+o0, where c=max(cy, ¢;), 0<r<1, |[p_|>V27.
From Lemma 2.1 and the estimates (2.8) we obtain the following result.

Corollary 2.1. Under the conditions (1.2), 0<r<1, p_z_=0, |p_|>+/2r, the
following result is valid:

if prd,c,o|p_|,|z_|,r)<1, then A, . is a contraction map in Mg, for
T<0;
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if u(d,c,a,|p_|,|z_|,7)<1, then A, , is a contraction map in Mg, for T<
+0o0.

Taking into account (2.5) and using Lemma 2.1, Corollary 2.1 and the lemma
about contraction maps we will study the solution y_(¢) of the equation (2.2)
in MT,r~

We will use also the following results.

Lemma 2.2. Under the conditions (1.2), feMp,, 0<r<1, p_z_ =0, |p_|>
V2r, the following is valid:

Ao (DO C(dserya[p-,fo-|,r,1)
dC12a+1

(29) "ol /V2 ) (L e IVE (V2 )i
‘AP—JL (f)(t)l S f,(d, Cl7a7 ‘p7|7 |x~"’r7 t)
(210) - a2
ala—1)(1p_1/v/2 17 (1+la_l/vZ —(p_|/v2 1))
for t<T, £<0;

(2'11) Ap_,zﬁ (f) (t) - kpﬁ,a:f (f)tJrlp_,z, (f)+H;D7,$, (f) (t)»

where

+oo
(2.122) by o () = / Flp_ stz +f(s)) ds,
?OOO T
(2.12b) lp_» (f)= 3 / F(p_s+x_+f(s))dsdr
oo+ogoo+oo
—/0 / F(p_s+z_+f(s))dsdr,
(2.13a) lkp_ o (H)I<2¢(d,c1,0,lp_|, |z-|,7,0),
(2.13b) |lp—793— (<28 (der,a,|p_|, z_[,7,0),
(214> IHP—Jf (f)(t)1 S C+(da Cla O{, ]pflﬁ ]LL’_I, Ta t)
_ d612a+1
aflp |/V2 —r) (L+]z |/V2+(Ip-|/vV2 —7)t)"
(2'15) |HP77$7 (f)(t)| S§+(d7 C, &, |p7|’ |x_l,r, t)
d012a+1

" ala-)(p V2 —r) (1l V2 (p-|/vVZ )
for T=+c0, t>0.
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Lemma 2.3. Let the conditions (1.2) be valid, y_ € My, be a solution of (2.2),
T=+00, 0<r<1, p_z_=0, [p_|>V2r, then

|kp7,m7 (y*>_kp7,w7 (O)| <eqld,c o [p_|, |x_|,7‘)
_ P2 (p_| V2 +1-r)old,cap | 2|7
allp |/V2 —r) (1+|z_|/vV2)
oo () Lo o (O <4(d, 0, [p_], 2 |,7)
_ 223 (lp_|/V2 +1-1)o(d,c, 0 [p |, |z_|.7)
ala—1)(lp_|/V2 ) 1+l |/V2) T

(2.16a)

(2.16b)

where c=max(cy, ¢c2).

Proofs of Lemmas 2.1, 2.2, 2.3 are given in Section 6.

3. Small-angle scattering

Under the conditions (1.2), for any (p_,z_)€R??, p_+#0, the equation (1.1)
has a unique solution z€C?(R, R?) with the initial conditions (1.3). Consider the
function y_(¢) from (1.3). This function describes deflection from free motion.

Using Corollary 2.1 the lemma about contraction maps, and Lemmas 2.2 and
2.3 we obtain the following result.

Theorem 3.1. Let the conditions (1.2) be satisfied, p(d,c, o, |p_|,|z_|,7) <1,
(p_,z_)eR?, c=max(c;,c2), 0<r<1, p_x_=0, [p_|>v2r. Then the deflection
y_(t) has the properties

(3.1) y_€Mr,, T=+o0;

(3.2) lg_ ()] <¢_(d, 1, 0 |p_|, |z_]|, 7, 1),

(3.3) ly_ ()| <E_(d,c1, e [p_|, x|, 7, t) fort<0;
(3.4) y_(t)=as.(p_,x Yt+bse(p_,z_)+h(p_,x_,1t),

where, with p_=p_/|p_|,

1 [t
(3.5a) asc(p,,x,)~‘p/|/ F(p_s+z_)ds| <eq(d,c,a,|p_|,|z_|,7),
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(3.5Db) 1 . .
bgc(p_,a:_)—|p—‘|—2(/Oo [mF(ﬁ_s+m\)d8dT—/0 /T F(ﬁ-s+:v)dsd7')

<ep(d,c, o, [p-|, |z, 1),

(3'63) |asc(p45m‘)|§2<7(d’ a,Q, \p—|’|x7|a7’70>’
(3.6b) ‘bSC(pﬂx»)lng—(dvclvav {p,','l'_l,T,O),
(37) !h(p\ﬂw—>t)]§<.+(dvclaaa ipfla]l‘—lvrvt)a
(38) lh(p‘amfvt)‘§€+(d’clvav lpf\ale\ﬂ",t)
for t>0.
We remind that
d2c90+3 (Ip_|/v2 -r+1)2
3.9 d,c,on |p_|,lx_|,r)= —1 ,
(3.9) 11( lp-1,lz-|,7) e Dt VB (p I3 1T
292 —7r 2
(3.100) ldcalp o )= — — o2 ()R]
ala—1)(1+|z_|/v2) (lp-1/v2—r)
d36222a+5 (|p,|/\/§ *1"4—1)2
3.10b d,c;anlp |z _[,r)= — ,
( ) e lp_{,[z_[,7) a(a—1)2(1+|x,1/\/§)2a (|p7|/\/§_r)5
(3.11a) 2% (dse,onlp |, o |, 0) = €27 !
. - g ’p*7 — 1% ‘a(1+|x_|/\/§)a |p_|/\/§;'r7
(3.11b) 286 (d,e,a,|p_|,\z_|,7,0)= de2*7* — 1 35
ala=1)(1+lz_{/V2) (Ip-/V2 )
_ de 2017 1
G e e e VA b Ve
d612a+1
3.13 ¢x(d, ey, a0 p_|, |x_|, 7, t) = -
19 e T Ve = (o V3 i
X—l—‘Q.
(Ip-|/vV2—r)

We will use the following observations.
(1) Let neN, m,leNU{0}, [+m<n, then

si(s1/V2 —r+1)m - sh(sa/vV2 —r+1)"
Yo N N

(3.14)
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for \/§T<81<82, O0<r<l;
st(s/V2 —r1+1)m - st(s/v2 —r2+1)m
(s/V2—11)" (s/V2—r2)"

for V21 <\/§r2<s, 0<ri1 <1, 0<ry <1,
(2) Let z=2(d, ¢, a,|z_|,7) be the root of the equation

(3.15)

(3.16) pld, e,z z_|,r) =1, 2€]V2r, +oof

(where the assumptions about d, ¢, a, |z_|, r are the same as in Theorem 3.1).
Then

(3.17) p(d,c,on s, |z_|, 1) <1, s€lV2r,+o0] <= s>z(d,c,a,|z_|,T).

Theorem 3.1 gives, in particular, estimates and asymptotics for the scattering
process when the parameters ¢, a, d, p_, z_ are fixed and |p_| increases or, e.g., ¢, &,
d, p_, &_ are fixed and |z_| increases. In these cases sup,.g |6(t)| decreases, where
6(t) denotes the angle between the vectors #(t)=p_+¢_(¢) and p_, and we deal
with small angle scattering. Note that already under the conditions of Theorem 3.1,
without additional assumptions, there is the estimate sup,cg |0(t)|< 7 and we deal
with a rather small angle scattering.

Using Theorem 3.1 we can obtain asymptotics and estimates for small angle
scattering for functions which are expressed through a(p_,z_) and b(p_,z_). Con-
sider, e.g., the time delay

p_z_—alp_,z_)b(p_,z_)

T(p_,z_)=

lp_|*
3.18
(319 P bl 7 )= aselp 3 ) —ase(p, 5 Yool ,2)
lp_|?
and the function
_p—bsc(p—)x—)
3.19 _—
(3.19) lp_|*

for (p_,z_)eD(S).
Remark. To recall the physical sense of 7(p_,z_) note that

2R

B0 e i (Tee R-20) o) en(s)

where T'(p_,z_, R) is the total time during which the solution z(¢) of (1.1) and
(1.3) satisfies |#(t)] <R. Note that if v(z)=0, then 7(p_,z_)=0 for (p_,z_)eR?,
p-#0.
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Proposition 3.1. Under the conditions of Theorem 3.1, the following formu-
las are valid:

—P-be(p-,z) 1 +°°v p_T+x_)dT
o) [t A [ i )

Eb(dv G Q, |p—17 IZL'_|,7’)

<

bl

—oo lp_|
1 +oo
T(p_,x_)—w(ux\vh)/ o(p T4z )dr
<o(d,c,a,p_|,|x_],7)
(3.22) ~eyld, e 0 lp_], |z |,7) N lz_lea(d,c, 0, |p_|, J2_],T)
lp_| lp_|2
+4C,(d, ¢ o, |p7‘a |$7|7T7 0)57(d’ c, &, lp—|v |CC_\,T‘, 0)
lp_ |2 '

where if, in addition, |p_|>2v2, then

const d3¢222«

(12 (1+]z_|/v2 V" 2 it

(3.23) o(d, ¢, p_|,|z_|,r) <

Proof. Under the conditions (1.2), for (p_,z_)eR??, p_#0, the following for-
mulas are valid:

—ﬁ,/ Fp s+ Yds=v(p t+z_),

— o0

+o0
ﬁ_/ F(p stz )ds=v(p_r+z_),

4] T +o00 p4oo
—p_ (/ / F(p_s+z_)ds d’T—/ F(p st+z_)ds dT)
—o0 J —co 0 T
(3.24) o
=/ v(p_T+z_)dr,

— 00

+oo oo
_/ F(gﬁ‘s—}-x,)ds:VL/ v{p_s+z_)ds,
(3.25) o0 o0

P (vz_ /m v(p_s+z_) ds) —0.
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Under the conditions of Theorem 3.1, from (3.5b), (3.24) we obtain (3.21) and the
formula
(3.26)

fm_asc(p_,a:*) 1 oo |m7’5a(dvcaaa |p_j,|:v,|,7")

— z Vg v(p_s+zx_)ds| <
L P U ) L

Under the conditions of Theorem 3.1, from (3.18), (3.21), (3.26) and (3.6) we obtain
(3.22).

Under the additional condition that [p_|>2+v/2, the estimate (3.23) follows from
the formulas for €., €5, {_, &_.

4. Inverse scattering at high energies

Consider
TS ={(0,z)|0e 8%, zeR?, z=0},

where S9! is the unit sphere in R%. We interpret 7'S®! as the set of all rays in R.
As a ray | we understand a straight line with fixed orientation. If [=(0,z)eTS% !,
then [={y€R?|y=t0+z, tcR} (up to orientation) and  gives the orientation of I.

Consider the X-ray transform P which maps each function f with the proper-
ties

(4.1) feC®RLR™), |f(z)|=0(z|™?), as |z| — oo, for some B> 1

into a function Pf€C(TS% 1, R™), where Pf is defined by
(4.2) Pf(0,z)= / f(t0+z)dt, (0,x)cTS4 1.

Properties of the X-ray transform P and, in particular, the problem of recon-
struction of f from Pjf were being investigated in many works (see, e.g., [Naj,
[GGG], [FN]).

In this section, when considering Pf we always assume that f satisfies, at least,
(4.1), although one can extend P to less regular functions.

The simplest property of P is

(4.3) Pf(0,z)=Pf(—0,z), (#,z)eTS* "

Some other simple properties of P are given in the following lemma.
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Lemma 4.1. Let

(4.4a) feC*(R%R),

(4.4b) [f(@)] <e(f)(1+|z]) 72O,

(4.4¢) 2 f(x) = O(|z| P03y, as |z| — oo, for |j|<n,
(4.4d) B(s)>1, §=0,...,n.

Then

(4.5a) PfeCc™(TS* ' R)

and, in particular,

2v2e(f)
BO)-1) (1+z|/v2 O

(4.5b) [P0, )] <

for (0, )T 841,

(4.5¢) 83 £(0, Agy) = O(ly*PUiD),  as |y — o0,

for |j1<n, for 6€S%1, yeRI™ where Ap is a linear isometric map of R*! on
Xo={x€R?*0x=0} (as on a subspace of RY).

To prove (4.5b) and (4.5¢) we use the formulas

[to-+z| > (jt|+z])/V2 for x € X,

/*‘X‘ dt B 2v/2
~eo (LH(sl+l2)/V2) (1) (1+|zl/VEY Y

o>1.

For reconstruction of f from Pf for d>3 there is, in particular, the following
well-known scheme based on the methods of reconstruction of f from Pf for d=2.
To reconstruct f at a point z’€R? we consider in R? a two-dimensional plane Y
containing z’. We consider in 7'S¢~! the subset 7S (V') which is the set of all rays
lying in Y. We restrict Pf on T'S'(Y) and reconstruct f(z') from these data using
methods of reconstruction of f from P f for d=2.

Remark. As coordinates on Y we take the Euclidean coordinates (with respect
to the structure induced from R%) with centre at the point which is the nearest to 0
in R%. In such coordinates y on Y the following is valid. If f satisfies the conditions
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(4.4), then the restriction fly satisfies these conditions in y with the same constant

in (4.4b).
For reconstruction of f from Pf for d=2 there are, in particular, the formulas
%) 0
4.6 =——1I —1I
(162)  fle)=—-ha(a) 5 hi(a),

(4.6b) Liz) = <%)2 /S K2 <p.v. /_ :O fﬁ(ﬁ:])q dq> 49, j=1,2,
(4.6¢) 9(6,¢) = Pf(8,q8"),

where 0=(01,02), 0+ =(-—02,61) and df denotes the standard Euclidean measure
on St
In addition,

hz)= Im(% //R2 (0} +iy2f(?921 +iz2) o dy2> 7
Ix(z) :Re(% /./112 y1+iy2ﬂ?:l):1 i) dy: dy2>.

Using Lemma 4.1 and some properties of the Hilbert transform H,

1 oo
Hg(8)=;p-V-/ %dq,

(4.7)

we can show, in particular, the following:

(1) under the conditions (4.4) with n=0, d=2, Pf determines I;(x) by the
formulas (4.6b) and (4.6¢) as a function from L} (R?) for any p>2;

(2) under the conditions (4.4) with n=1, d=2, Pf determines I;(z) by the
formulas (4.6b) and (4.6c) as a function from C(R?).

The system of formulas (4.6), (4.7) differs somewhat from well-known formulas.
In fact, the system of formulas (4.6), (4.7) is similar to the formula (1.12) from [FN].

Consider PF and Pv. We assume that the conditions (1.2) are valid. Some
simple properties of PF and Pv follow from (4.3) and Lemma 4.1. The functions
PF and Pu arise in leading terms of asymptotics of scattering data for small angle
scattering (see Theorem 3.1 and Proposition 3.1). In addition, scattering data at
high energies determine PF and Pv uniquely.

Theorem 4.1. Let the conditions (1.2) be valid, c=max(cy, cz), (0, 2) €T S,
rel0,1].
Then

(4.8a) PF(,z)= ligrn sas.(s0,x)
S— oo
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and, in addition,

d3c?2%a5 s(s/v2 77‘—#1)2
a(a~1)(1+]x]/\/§)mgl (s/\/i—r)4

(4.8b) |PF(0,z)—sag.(s8, )| <

for s>z(d,c,a, ||, 7);
(4.9a) Pu(0,z)=_lim 5%0bg.(s0, x)
and, in addition,

d3c?220+5 s?(s/V2 —r1)
a(a=1)2(1+el VY (s/v2~r)

(4.9b) |Pu(6, 2) —s%0bsc (50, )| <

for s>z(d,c,a, |z, 7);

(4.10a) Pu(8,z)= —é |:\OC <1+qd%)Pv (G,q‘%) dg, |x|#0,
(4.10b) (1+q; )Pv(@ q1 ]) —Sginoos 7'(50 qix|>

and, in addition,

(4.10¢) 1<1+q%>Pv<9 q, I) T(s@,q,%)]< " IC;IZSI‘G_qu/\/Z’;a i

for s>max(z(d, ¢, a,q,7),2v/2), where ¢>|z|.

The function z(d, ¢, o, |z|,7) is defined by (3.16). Some properties of the func-
tions ) )
s(s/vV2 —r+1) q s2(s/V2 —r+1)
-~ and ————F ——~
(s/V2—r) (52 17

from the right-hand sides of (4.8b) and (4.9b) are given by (3.14) and (3.15).
Theorem 4.1 follows from Theorem 3.1 and Proposition 3.1.
For d>2 Theorem 4.1 and the methods for the reconstruction of f from Pf
permit the reconstruction of F' and v from scattering data at high energies.
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5. The inverse scattering and inverse boundary value problems

Let DCR? be a bounded, open, strictly convex (in the strong sense) domain
with smooth (say, infinitely smooth) boundary &D (without singular points). Let
D=DudD. Consider the equation (1.1) in D, where

(51&) UEC”(E,R), n:37
or
(5.1b) veCY(D,R), n=2,

(Cp(D,R)={veC™(D,R)|suppvCD}).

Under the conditions (5.1a), at fixed sufficiently large E (i.e. E>E(v,D)>
sup,p v(x)) solutions z(t) of the equation (1.1) in D have the following properties
(see |GN]):

for each solution z(t) there are #1,%2 € R, #; <{f2, such that
(52) HAS CnJrl([tl, tz], Rd), ZB(tl), I’(tQ) €oD, x(t) eD fort G]tl, tz[,
x(s1) £ x(s2) for 81,82 € [t1,12], s1F# s2;

for any two points qo, g€ D, go# ¢, there is one and only one solution
(5.3) z(t)==z(t, E,qo, q) such that z(0) =qo, z(s)=q for some s >0;
(0, E, qo,q) € C" 1 ((Dx D)\G, R%), where G is the diagonal in Dx D.

Remark 5.1. In this statement one can replace the conditions (5.1a) by the
conditions (5.1b).

Let E>E(v, D). Consider the solution z(t, F, qo, q) from (5.3) for go,q€0D,
go#q. Let s=s(F,qq, q) be defined as the root of the equation

w(S,E,QO,q):q, 5>0.

Let ko(E,q0,9)=%(0, E, g0, 9), k(E, g0, q) =%(s(E, g0, 7), E, 90, 9)-

The functions s(F,qo,q), k(E,qo,q) for E>E(v, D), (g0,q)€(0D x9dD)\0G,
were taken as boundary value data in [GN].

For d>2, under the conditions (5.1a), using the Maupertuis principle and re-
sults of [BG2] it was shown in [GN] that s(F,qo,q) on 0D X0D at high energies
E uniquely determines v(z) in D and that k(E,qo,q) on (0Dx0D)\OG at fixed
energy E>FE(v, D) uniquely determines v(x) in D.



Small angle scattering and X-ray transform in classical mechanics 157

Remark 5.2. In these results from [GN] one can replace the conditions (5.1a)
by the conditions (5.1b).

Note that

lko(E, g0, )| = v/2(E ~v(q0)),
(54) |k(an07q)‘: V Z(E—v(q)),
ko(E, q0,9) = ~k(E,q, ),

E>FE(v,D), (¢,90)€(0D xdD)\0G.
For x€0D we define

0; ={0eS5* " [z+tf € D for t€]0, ¢ for some & >0},
0 ={0e S " |z+td e R*\D for ¢ >0}.

Consider the functions v(qo), ¢(F,qo,00), 0(E, qo,60), s(E, qo,0y) for E>E(v, D),
qo€ID, €O, , where g=q(E, qo, o) is defined as the root of the equation

ko(E,q0,9) = v E-v(q0) 0o, q€dD\qgo,

and

0(E, q0,00) = k(E, g0, 9(E, q0,00)) /v 2(E—v(¢(F, g0, 00))) ,

S(Ea q0700) :S(E7 QO7Q(E7C10790))-

One can take the functions v(qo), (¥, g0, 6s), 0(F, qo, 60), s(F, 4o, 00), g0 €ID, Oy
04, as boundary value data instead of the functions s(E, qo, q), k(¥, q0,9), (90,9) €
(0D x8D)\OG, E>E(v, D).

Lemma 5.1. Under the conditions (5.1a), (or (5.1b)), at fized E>FE(v, D)
the functions s(E, qo,q), k(E,q0.4q), (g0, q) (0D xOD)\OG, uniquely determine the
fU’I’LCt’l;OTLS U(QQ), q(an0790)7 9(E7q0’00); S(Ea(IOaHO); %EaD, 9069;0 and vice
versa.

The direct statement of Lemma 5.1 follows from (5.4) and the definition of
Q(E, qo, 60); Q(Ev 40, 00) and S(Ea q0, 00)

To determine the functions in the converse statement we proceed in the follow-
ing way: we determine 6y=00(F, qo, q) as the root of the equation

q(an()aaO):(I) 006@;0
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and we use the formulas

k(Ea quQ) =V 2(E—’U(q>) 9(E> qo, 90<E’ qoaQ))v

S(E7 quq) :S(Ev QO)QO(EJ qo, Q))

Let us consider CZ(D, R) as a subspace of C2(R?,R) (extending each function
f from C2(D,R) by zero outside of D).

Let veC2(D,R)CCZ(R%,R). Consider for the function v the boundary value
data (}(E,Qo,eo), O(E,QQ,Q()), S(E, g0, 00), gD, 906@;0 (note that in this case
v(go)=0, go€ID); consider for v also the scattering data (as defined in Section 1)
a(p_,xz_), b(p_,z_), (p_,z_)EME where E>E(v, D).

Theorem 5.1. Let veC2(D,R)CCZ(R*, R). Then at fired E>E(v, D) the
scattering data a(p_,x_), b(p_,x_), (p_,x_)EMEp, uniquely determine the bound-
ary value data q(E,qo,600), 6(E,q0,60), s(E,q,0), q€dD, 6,€0,,, and vice
versa.

Proof. 1. The direct statement.
Consider the system of equations

(5.5) p_t+z_=q, p /V2E =6

for determination of (p_,z_)EMEg and tcR through g€dD, 6,€0,. One can
solve this system by the formulas

(5.6) p-=V2Efy, z_=q—(q00)00, t=1_(E,qo,00)=/(q000)/V2E.
Consider the equation
(5.7) at+bedD
for determination of {€R. through |
(a,b) €eSg={(a,b)eR*|1a’=E} and 0D.

There are functions x(a,b), 71 (a,b), v+ (a,b) depending on 9D such that x(a,b)=0
if and only if the equation (5.7) has no solutions, x(a,b)=1 if and only if (5.7) has
one and only one solution, x(a,b)=2 if and only if (5.7) has two different solutions;
the functions 7y (a, b) are defined if and only if x(a,b) >0, in addition, the function
7_(a,b) denotes the minimal solution of (5.7) and the function 7, (a,b) denotes the
maximal solution of (5.7); v (a,b)=ary(a,b)+b.
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Let us observe that if z(¢) is the solution of (1.1) with initial data (1.3), where
(p_,z_) is given by (5.6), then the equation

z(t)edD forteR

has two different solutions t=t_(F, qo,60p) and t=7,(a(p_,z_),b(p_,z_)).
Using this observation and the formulas for solving the systems (5.5) and (5.7)
we obtain the formulas

q(E,q0,00) = (alp_,z_),b(p_,z)),
0(E,q0,00) = a(p_,x_)/V2E,
s(E, qo,00) =7 (alp-,z_),b(p-,z_))—t_(E,q0,60),
where
p.=V2Ef, z_=a—(q0)b.

Thus the direct statement is proved.

II. The converse statement.

For determination of the functions in the converse statement there are the
formulas for (p_,z_)eMEg,

{ alp_,z_)=p_,
b(p_,z_)=z_,
if x(p_,z_)<L,
alp_,z_)=V2E0(E,v_(p_,2_),p_/V2E),
b(p_,x)=q(E,y_(p_,z_),p_/V2E)
—(m_(p_,x_)+s(B,y-(p_,z_),p_/V2E))a(p_,z_),
if x(p_,z_)=2.

The proof of Theorem 5.1 is completed.

As a corollary of Remark 5.2, Lemma 5.1 and Theorem 5.1 we obtain the
following result.

Theorem 5.2. Let veCZ(D,R)CCZ(R% R), d>2. Then at fized E>E(v, D)
the scattering data a(p_,xz_), b(p_,x_), (p_,x_)EME, and the domain D uniquely
determine v.

Remark 5.3. Suppose that v satisfies the conditions (5.1a) and v|sgp#0. Let
us extend v by zero outside D. Consider the scattering data for v (generalizing the
definition from Section 1). In this case the formulas connecting the scattering data
and the boundary value data are more complicated than in Theorem 5.1, one needs
to take into account the boundary refraction.
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6. Appendix: Proofs of Lemmas 2.1, 2.2 and 2.3

Proof of Lemma 2.1. The property
(61)  A(HeC(-00,T|,RY) for feMr, (0<r<1, r<|p_|/V2)

follows from (2.2) and (1.2).
Consider

H) = (x_+p_s+f(s))dsdr,
(6.2) / / for f e Mr,.

d

Ga0= [ B tp s

We shall prove that

2a+1

aflp_|/V2 —r) (1+|z_1/VZ —(lp_1/v/2 —r)t)"

030 [FAU0|<

for t<T, t<0;

01204—1—2

allp_|/vV2Z =) (1+]z_|/v2)

for t<T (without assuming that $<0).
From (6.2) and (1.2) it follows that

(6.3b) {d%Aj(fxt)} <

(6.4) ‘%A](f)(t)}gcl‘/—l (1+]z_+p_s+f(s)]) @V ds.

If feMp ., then

(6.5) If(s)| <rls|+r for s<T.
Let

(6.6) f(s)=g1(s)+92(s);

where

g1(s)=(FIsN T (s),  gals)=Isl(1+]s) 7 f(s).
From {6.5) and (6.6) it follows that

(6.7) lg1(s)| <7, lg2(s)| <rls| for s<T.
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Asz_p_=0,
(6.8) |o_+p_s|> (1/v2) (jo_|+Ip-| ls)).
From (6.6), (6.7) and (6.8) it follows that

2(14+lz_+p_s+f(s)]) >2+|z_+p_s+g1(s)+g2(s)]
(6.9) >2—r+lz_+p_s+g2(s)|
> 14|z |/V2+(lp_|/V2 —7)]s|

for s<T (0<r<1, r<|p_|/v2). From (6.4) and (6.9) it follows that

(6:10) ’%Aﬂf ><t>] <art [ ;(1+1mw5 +(lp-1/v2 —r)ls)) Y ds
for t<T.
If a>0, b>0, 5>1, then
/too(ﬁb}sl)ﬂ do= (5—1)b(clz-bt)ﬁ—1 for ¢ <0;
(6.11) f (atbls) ™ ds= (ﬁ—l)zbaﬂ—l _ (ﬂ;l)b(clwrbt)ﬁ—l
= (5_1)21)@,34 for 0< 1.

The formulas (6.3) follow from (6.10) and (6.11).
We shall prove that
(6.12a)

d 012a+1
A (D) —t = A; ()] < 2 -
D=t A0 (=)o V2 - (4o V2= (- V2 =r))f

for t<T, t<0,

C12a+2

(6.12b) ) a1
(a=1)(Ip-I/vV2—r) (1+|z_|/v2)

(0= 5 A()0)] <

for t<T.
For t<0 we shall use that

d

61 |40~ ADL] <4 OOH A
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From (6.2) and (6.10) it follows that

(6.14) |Aj(f)(t)|§clza+l/) [ (1|2 1/V2+ (fp_|/V2 )]s dsdr

for t<T.
If >0, b>0, §>2, then
t T 1
-3 _
615) [ [ oD asar = o

for ¢<0.
From (6.14) and (6.15) it follows that

812a+1

a(a=1)(Ip-/VZ=r} (4] |/V2~(Ip-|/V2-r)t)]

(6.16)  [4;(NHB)I<

for ¢+<T, £<0.
From (6.3a) it follows that

cl2a+1

a(lp-1/v2 =) (1+[2_| V2 = (Ip-|/V/2 -r)t)" "

011 EAO0|<

for t<T, ¢t<0.

The estimate (6.12a) follows from (6.13), (6.16) and (6.17). For 0<t<T we
shall use the formulas
(6. 18)

HE / / (z_+p_ s+f(s))dsdr+// Fi(x_+p s+ f(s))dsdr
=A;(f) 0)+// (x_+p_s+f(s))dsdr

/O/T Fi(z_+p_s+f(s))dsdr,

619 ANO-tZA4OO =400~ [ [ B ars@)dsin

For A;(f)(0) we use the estimate (6.16), i.e.

C120¢+1

ala—1)(lp_|/VZ—r) (1 +]z |/V2)

(6.20) [A;()(0)] <



Small angle scattering and X-ray transform in classical mechanics 163

We estimate the second term on the right-hand side of (6.19) in the following way,

(s))dsdr

(6.21) o
et [ [ @l 11+ V2 -r)s) D dsar
0JT

If a>0, b>0, >2, then

/ot/:“*bs)ﬁ dsdr= (o g
(6.22) - (ﬂ_l)(ﬁ_2)1b2(a+bt),3—2 B (,641)b(ctz—|—bt)5*1
<
Thus,
c 201!

(6.23)

t pt
/ Fi(z_+p_s+f(s))dsdr| <
0Jr

a(a—l)(]p_|/\/§ —r)2 (1+|m,|/\/§)a¥1

The estimate (6.12b) follows from (6.12a), (6.19), (6.20) and (6.23).
From (6.3) and (6.12) it follows that
0} -

d012°‘+1(|p |/V2+1— 7’)

(6.24a) _
(a D(Ip_l/vV2 —r) (1+]z_|/v2 - (Ip-|/V2 —7)1)
for t<T, t<0;
wax(| AU || A0~ A 0))
(6.24b) < d612a+1(|p,1/ﬂ+1—T)
" (a=)(lp_|/V2 1) (14| /v
for t<T.

The statements of (2.6) follow from (6.1) and (6.24).

Consider now A;(f2)(t) ~A4;(f1)(t), (d/dt)(A;(f2)()—A;(J)(B) for fr, f2€
Mr, (0<r<1, r<|p_|/V2).
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We shall prove that
(6.25a)

%<Aj(fz)<t)~Aj(fl><t)) o a2 (p |/V2H1-7)|f2- fillT

i " a(lp_|/V2 —r) (14| V2 — (jp_|/V2 —7)t)"

for t<T", £<0;

dea2°3(Ip_|/V2 +1=7) || fa= fillz
alp-l/VE -} (1+le | /V2)

(6.25b) lgi(Aj(fQ)(t)Aj(fl)(t))‘ <

for ¢t<T.
‘We shall start with the estimates
(6.26)

AEO-BO)|< [ Bt st st i) ds

|Fy(z_+p_s+fa(s))—Fj(z_+p_s+ fi(s))]

(6.27) < X IVFj(x_+p_s+(1—e) fr(s)+ef2(s))] [ f2(8) = fr(s)];
lVF;(x_1 ;Lp_s+<1~e>f1(s)+efz(s))l
(6.28) < des(1+|m_+p_s+(1—€) f1(s)+efals)]) @+,

Further, for s<T', €€0, 1] the following estimates are valid

(6.29) |(1—¢) fr(s) +efa(s) <r(1+[s]),
(6.30) 21+ [z +p_s+(1—e) fu(s)+efals))) 2 1+]w_|/V2+ (Ip_|/V2 —7) s,
(6.31) IVFj(x_+p_s+(1—¢)f1(s)+efa(s))]

< dep2* 2 (14 [z_| V2 +(Ip_| /2 =) s,
(6.32) [fa(s) = fr() <l f2—Fullo(1+]s]).
Using (6.26), (6.27), (6.31) and (6.32), we obtain

’%(Aj(fz)(t)—/i;(ﬁ)(t))’
(6.33) t 2
Sd022a+2/_ (1+1z_/V2 +(Ip_l/V2 =) |s)) 2 (1+(s)) ds| f2— fi |17

If >0, b>0, §>2, then

4

(6.34) /t (a+b|s[)_'3(1+fs])ds§/t (a+b[s{)'5ds+/ b1 (a-+bls))~ D ds.

— 0
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Using (6.34) we obtain for a>1,

(6.35)
fJ“*b'S‘)_ﬁ(”'s')dSS e e
< T =0
/too(aerlsl)ﬂ(l—Hsl)dsg (5—3%%——2’ £>0.

The estimates (6.25) follow from (6.33) and (6.35).
We shall prove that

A )0 A Ot S A0~ A (1))

(6.36a) - (l0220‘+2(|p»’/\/§ +1—T) I fo—fullr
T a1 (Ip-1/V2 =1V (V2 (Ip- | /V2 =)t

for t<T, t<0;

MO~ A0) = (A0~ A5(7))

(6.36b) o 4222 (p |[V241-7) | fa= hllr
T (p V2P (e VRS

for t<T.
For t<0 we shall use that

AEIO-A )01 A0 A1)
(6.37)
<IAENO~AO A0 A0

From (6.2) and (6.25a) we obtain

de22°72 (|p_|/vV2+1—7)
|45 (f2)(#) = A;(f1) ()] < 3
AR allp_|/v2 )

¢ dr
XlOO (1_{'|x‘|/\/§ - (\pi}/\/i _7,)7_)04 | fa—fillr
(6:11) dea2° 2 (|p_|/V2+1-7)| fa— frllT
a(a=1)(lp-|/vZ—r) (Lt]z_|/V2~(lp-|/v2 —r)e)"

(6.38)
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for t<T, t<0. From (6.25a) we obtain
(6.39)
‘ d

€227 (- —r)iJ2—hllT
t&(Aj(fz)(t) )] < dez222 (Ip_|/V2 +1—=7) | fa— full

alp_|/V2—rf (1+]z_|/vV2—(p_1/vV2 1))

for t<T, t<0.
The estimate (6.36a) follows from (6.37), (6.38) and (6.39).
For 0<t<T using (6.19) we obtain

Aj(fz)(t)—A-(ﬁ)(t)—ti(A'(fz)(t)—A'(fl)(t)) <14;(/2)(0)—A;(f1)(0)]

(6.40)

// (_+p_s+fao(s))—Fj(x_+p_s+fi(s))) dsdr|.

Due to (6.38) we have
dex2° 2 (Ip-|/V2 +1-7) | fa—Frllr
3 a—1"
ala—1)(Ip_l/VZ ) (1+lz_|/¥3)
Due to (6.27), (6.31) and (6.32) the second term on the right-hand side of (6.40)

admits the estimate

// T_+p_stfas))—Fi(x_+p_s+fi(s)))dsdr

(6.41) |14;(f2)(0) = 4;(f1)(0)] <

642 <deer? | / (Lt | V2 + (Ip- /2 —r)s) P (15 dsll fo ful

If a>0, >0, 8>3, then
(6.43)

// (a+bs)7P(145) dsd7'<// (a+bs) ﬂdsdTJr// b~ (a+bs)" PV dsdr.

Using (6.43) we obtain

t pt B 1 1
// (atb) P (149) ds 7 < Gy gypar =+ (G=2) (=3)55a7
< b+1
=2 (B—3)Pa?

(6.44)

for t>0, a>1. Thus,

/t/b (z_+p_s+fas))—Fi(z_+p_s+fi(s)))dsdr

dea2°t2([p_| /V2+1=7) | fo— fillT .
T ala-1)(Ip 1/V2-r) (1| vE )T

(6.45)
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The estimate (6.36b) follows from (6.36a), (6.40), (6.41) and (6.45).
From (6.25) and (6.36) it follows that
(6.462)

max (

AU~ AW | AU~ A0 5 A0 -A))))

3 d2022a+2(lp\l/\/§ +1—7°)2||f2*f1||T
" (a=1)(Ip_|/V2 =1V (1 ]z_|/V2 (I /2 =)t

for t<T, t<0;
(6.46b)

max 4
di

(A(f2) (1) = A(f1)®))}, A(fz)(t)A(fl)(t)*ti(A(fz)(t)*A(fl)(t))D

d2022“+3(|10 |/vV/2+1— 7") | fa—fillr
= (o D l/V2 1) (Lrle_l/vay "

for t<T.
The statements of (2.7) follow from (6.46). Lemma 2.1 is proved.

Proof of Lemma 2.2. The estimates (2.9) and (2.10) follow immediately from
(6.3a) and (6.16). Further, we have
(6 A7)

/ / (o +p s+f 5))dsdT+// Fy(e_+tp_s+/(s))ds dr
/ / (o +pstf( ))dsdﬂ—/ " B p s f(s)) dsdr
_ / / T By tp_ s f(s) dsdr

—t/+OOF(:v Fp_stf( s))ds+/ / (z +p st f(s))dsdr
- /0 " joo Fi(z_+p_s+f(s)) dsdr

+oo p+oo
+/ Fij(x_+p_s+f(s))dsdr.
i T

Thus, we obtain {2.11) and (2.12), where

+oo ptoo
(6.48) H(f)(t):/t F(z_+p_s+f(s))dsdr.
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Using (2.12), (6.48), (6.2), (6.3a) and (6.16) and the observations

(6.49)

/joo o(s) ds:/q o(—s)ds, 720,

—_—

feMr,, T=+o00, g(s)=f(-s) = geMr,

we obtain the estimates (2.13), (2.14) and (2.15).
Lemma 2.2 is proved.

Proof of Lemma 2.3. Using (2.2) and (2.6b) we obtain

(6.50)

ly-=0llr =y llr <old, ¢, a, |p_|, |z_|,7), T =4oc0.

Using (2.12), (6.2), (6.25a) and (6.38) for t=0, (6.49), (6.50) we obtain the esti-
mates (2.16).
Lemma 2.3 is proved.
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