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Toric residues 

David A. Cox 

The Grothendieck local residue symbol 

(gdxoA...Adxn~ _ 1 ~ f  gdxoA...Adxn 
(1) Res0 \ ~ ] (27~i) ~'+1 _ ~l=~ f0 ... f~ 

(see [13, Chapter 5]) is defined whenever g, f o , . . . ,  fn are holomorphic in a neigh- 
borhood of 0EC ~+1 and f0,-.- , f~ do not vanish simultaneously except at 0. In 
[19, 12.10], it was observed that when f0, . . .  , f~ are homogeneous of degree d and 
g is homogeneous of degree ~ = ( n + l ) ( d - 1 ) ,  the residue symbol has the following 
nice properties. 

Q u o t i e n t  p r o p e r t y .  The map 

induces an isomorphism 

Reso ( g dxoA...Adxn g 
\ fo... f~ ] 

C[~o, ..., ~,]J<fo ,..., A>~ --  c 

(the subscript refers to the graded piece in degree Q) uniquely characterized by the 
fact that the Jacobian determinant J=det(Ofi/Oxj) maps to d n+l. 

Trace  p r o p e r t y .  Cech cohomology gives a naturally defined cohomology class 
[wg]EH'~(P '~, ~ )  such that under the trace map Trpn :H'~(P n, ~t~)---C,  we have 

Res0 ( g dxoA...Adxn 
Y00-~ ) =~Pn([~g]) 

(We define [~g] in 01.) 
In this paper, we will show how these properties of residues can be generalized 

to an arbitrary projective toric variety. The paper is organized into six sections 
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as follows. In w we define the cohomology class [we]EH~(P n, ~,~),  and then 
w generalizes this to define toric residues in terms of a toric analog of the trace 
property. We recall some commutative algebra associated with toric varieties in 
w and w introduces a toric version of the Jacobian. In w we show that  the 
toric residue is uniquely characterized using a toric analog of the quotient property. 
Then w explores different ways of representing the toric residue as an integral, 
and an appendix discusses the relation between the trace map and the Dolbeault 
isomorphism. 

This paper had its origin in a series of conversations with David Morrison, and 
we are grateful to Morrison for asking the question that led to the results presented 
here. We also would like to thank Eduardo Cattani and Alicia Dickenstein for their 
comments on an earlier version of the manuscript. The research for this paper was 
supported by NSF grant DMS-9301161. 

1. T h e  D e f i n i t i o n  o f  wg for  p n  

Suppose that  f0,  ... , f,~ are homogeneous polynomials of degree d which do not 
vanish simultaneously on C n+l except at the origin, and let g be homogeneous of 
degree p-- (n+ 1 ) (d -  1). Then consider the n-form 

n 

(2) = Z ( -  dx0 A... AZxx  A... Adx . 
i=0 

As is well-known (see [12, w our assumptions on g and f0 ,... , f~ imply that 

g~ 

w e -  fo...f~ 

descends to a meromorphic n-form on P~, also denoted Wg. However, the affine 
open sets 

Ui = (x �9 P n :  f / (x)  ~0}  

form an open cover 5/ of P 'L Then w e is holomorphic on UoN...NUn, so it is a 
Cech cochain in C ~ ( U , ~ ) .  Further, since/.4 has n + l  elements, wg is a Cech 
cocycle and thus gives a class [we]eg~(l,t,~,~)=g'~(Pn,~,,~). This is the class 
[we] mentioned in the introduction. 

2. R e s i d u e s  o n  t o r i c  v a r i e t i e s  

We will work with an n-dimensional projective toric variety X over the complex 
numbers C. Thus X is determined by a complete fan Z in N R = R  n. As usual, M 
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denotes the dual lattice of N = Z  '~ and E(1) denotes the set of 1-dimensional cones 
in E. Each t)EE(1) determines a divisor D e on X and a generator neENNy. 
Standard references for toric varieties are [8], [9] and [18]. As explained in [7], 
X also has the homogeneous coordinate ring S=C[xe]  , which is graded by the 
Chow group A,~-I(X) so that a monomial Hex~ ~ has degree given by the class 
[EeaeDQ]EAn_I(X). Given a class aEAn-I(X), we let S~ denote the graded 
piece of S in degree a, and we write deg(f)=c~ when fES,~. 

Our strategy for defining toric residues is inspired by the trace property of 
the introduction. Thus we need, first, a trace map Hn(x, ~ ) - ~ C  and, second, a 
method that  uses polynomials gESe (for some QEAn-I(X)) to create Cech coho- 
mology classes [wg] EH'~(X, ~ ) .  Then the toric residue will be easy to define. 

We begin with the trace map. Since X need not be smooth, we cannot use the 
usual sheaf on n-forms on X. Instead, we use the sheaf of Zariski n-forms on X,  
which by abuse of notation will be written ~t~r (thus ~ r  = j . ~ ,  where j :  U---+X is 
the inclusion of the smooth part of X).  Since the toric variety X is Cohen-Macaulay 
with 9t~ as dualizing sheaf, we have a trace map Trx :Hn(X, ~: ) - - -C .  The duality 
theory used here can be found in [18, w 

Given an ample class 13EA,,-I(X), there is a line bundle Ox(j3) on X and a 
canonical isomorphism Sz~-H~ (.9x(/3)) (see [7, w Regarding f as a section 
of Ox  (fl), we can talk about what it means for f to vanish at point of X. For the 
remainder of the paper, we make the following assumption: 

(3) /3 E An-1 (X) is ample; f0 , . . .  , fn E S~ do not vanish simultaneously on X. 

Given f0 ,.-. , fn as above, we set Ui={xEX:fi(x)~O}. Assumption (3) implies 
that  the Ui form an affine open cover/g of X. As in w we can use this open cover 
to compute Hn(X, ~r by Cech cohomology, so that  every section of 9t~c over 
UoM...NU,~ is a Cech cocycle in Cn(bt, ~ ) .  Thus every wE~:(UoM...f3Un) gives 

eHn(X, 
It remains to study sections of [ ~  over U0 M... N U~. We begin by constructing 

an analog of the form (2). Fix an integer basis rnl ,... , rn,~ for the lattice M. Then, 
given a subset I = { ~ 1 , . . . ,  ~ } c E ( 1 )  consisting of n elements, define 

det (ni) = det ((rni, ne~ )1 <~,y < ~). 

Also set dxi=dxe~ A...Adxe~ and 2i=IIe(~ix~. Note that  de t (n i )  and dxx depend 
on how the QEI are ordered, while their product det(nx)dxi does not. Then we 
define the n-form ~ by the formula 

(4) ~ =  E de t (n i )~ i  dxz, 
I~l=,~ 



76 D a v i d  A.  Cox  

where the sum is over all n-element subsets I C E ( l ) .  This form is well-defined up 
to =t=l. 

Now consider the graded S-module ~ - - S - ~ t ,  where ~ is considered to have 
degree 

Iron] 
0 

Thus f i } ~ S ( - ~ o )  as graded S-modules. By [7, w every graded S-module gives 
A 

rise to a sheaf on X, and by [4, w the sheaf associated to f~} is exactly f l ) .  
Furthermore, we can describe sections of f~) with prescribed poles as follows. 

Proposition 2.1. Let aEA~-I  (X) be a Cartier class, and let Y c X  be defined 
by the vanishing of f ESa. Then 

H~ ( X, f ~  (Y) ) = { g-~ : g E S~-~o } ~- S~-~o . 

Proof. This follows from Proposition 9.7 of [4]. (Although [4] assumes that X 
is simplieial, the results of w and w of [4] apply to all complete toric varieties.) [] 

If we apply this proposition to f = f o  ... f~ES(,~+I)Z, we get an n-form 

gn E n?~(U0n...nU~) 
~g= f0... f~ 

for all gES(n+l)Z-Zo. To simplify notation, we set 

Q = (n+  1)/3-/3o. 

Hence there are classes [wg] EH~(X, ~ )  for all gESe. 
Now we can finally define the toric residue. 

Definition 2.2. If fo,... , fnESz satisfy (3) and gESe, the toric residue is 

Res (Wg) = Trx ([wg]). 

The first properties of toric residues are easy to prove. 

Proposition 2.3. 
(1) Res(wg) is C-linear in g and antisymmetric in f0, . . .  , fn. 
(2) Res(wg)=0 whenever gE (f0, . . .  , f~)e- 
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Proof. The linearity of the toric residue is clear. The isomorphism 
n n ~ n n n H (L/,~tp~)_H (P ,~p~) comes from the differential in the Cech complex and 

hence depends antisymmetrically on how we order the open sets U i = { f ~ 0 }  of b/. 
Thus the toric residue is antisymmetric in the fi. The second part of the proposition 
follows easily by considering the Cech coboundary & C n - ! ( L / , ~ ) - - * C ~ ( L / , ~ ) .  
We omit the details. [] 

As a corollary, we see that the toric residue induces a map 

Res: SJ(fo, . . .  , f~)e , C. 

In the next section, we will see that the quotient on the right is one-dimensional, 
and in w we will show that the above map is in fact an isomorphism. 

We should also mention that in the forthcoming paper [6], it will be shown that 
when X is simplicial, the toric residue Res(wg) can be expressed as a sum of local 
residues on X. Namely, given f0,... , f~ES~ which satisfy (3), let Di be the divisor 
f i=0.  Then for each 0<k<n ,  the intersection DoN...ADkN...nD~ is finite since it 
is contained in the affine variety X - D k .  This means for gESe, the meromorphic 
form 

02g-- 
fo"'A.. . fn 

has DoU...UDkU...UD~ as local polar divisor near xEDon...NDkN...NDn. Thus, 
for each such x, we can define the Grothendieck local residue symbol 

J 

Then the following equality is a special case of the results of [6]: 

Res(wg) = (-1) k ~ Resx ( ~ (g/fk)~ 

3. Some commutat ive  algebra 

The basic commutative algebra for our situation is given in [3, Theorem 2.10 
and Proposition 9.4]. In this section, we recast Batyrev's results in terms of the 
ring S and supply some of the details. 

We first study the subring of S determined by an ample class ~EAn-1 (X). 
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P r o p o s i t i o n  3.1. I f / 3 � 9  is ample, then the ring S . ~ = t ~ _ 0 S k  ~ 
is Cohen-Macaulay of dimension n + l ,  with canonical module given by ws.z=  

Proof. Write /3 as [~oaoDo]. Then A = { m e M a : ( m ,  ne)>_-ao} is an n-di- 
mensional convex polyhedron since/3 is ample. Let ~ C R x M R  be the cone over 
{1} xA.  The dual of 5 is a strongly convex rational polyhedral cone a c R x N R .  
Then a determines an (n+  1)-dimensional affine toric variety with coordinate ring 

Sz~ = C[#N(Z x M)] = C[t~tm: (k, m) e (~N (Z x M)] 

= C[t0kt'~ : (1,re~k) �9 {1} xA] 

= c [ t k o t  "~ : m �9 k A ] .  

Hence SA is Cohen-Macaulay by [8, Theorem 3.4] or [15]. But SA~-S,Z follows 
from the proof of [4, Theorem 11.5], so that S,Z is Cohen-Macaulay. 

We next determine the canonical module of S,Z (see [5] for more background 
on this topic). By [8, 4.6], the canonical module of the semigroup ring S/, is a 
certain ideal I(~ ) CSA (this is the notation of [3, w Then the proof of [4, Theo- 
rem 11.8] shows that  under the isomorphism S~"~S,z, the ideal I 2  ) CSA maps to 
t~k~=o (Hoxo}k ~ C S,~. This is isomorphic to (~k~__0 Sk~-~o since Hox o has degree/3o. 

Alternatively, notice that  S ,Z=(~__ 0 Sk~ has a natural grading and that 
X = P r o j ( S , z )  (see [3, w Then the canonical module is t~k~__0 H~ ft~c(k/3)) 
by [13, 5.1.8]. However, by Proposition 2.1, we can identify H~ with 
SkZ-Zo, which shows that  (~k~_0 SkZ-Zo is the canonical module. [] 

0 For a general Cohen-Macaulay variety X and ample/3, t~k=o H (X, Ox(k/3)) 
need not be Cohen-Macaulay, although some Veronese sabring will be (see [13, 
5.1.11]). 

We next bring f0,. . .  , fn E SZ into the picture. 

Proposition 3.2. If  fo,... , fnES~ satisfy (3), then: 
(i) fo,... , f~ is a regular sequence in S,~ =(~k~=0 Sk~. 
(ii) R=S,~/( fo , . . .  , f~) is a zero-dimensional Cohen-Macaulay ring. 
(iii) The canonical module of R is w,=(a;s.~/(fo,. . .  , fn)cos.~)[n+l] (where 

the [n+l] indicates a shift in grading). 

Proof. Since fo , ... , fn define the empty subvariety of X, R=S .~ /  (fo , ... , f~) 
has dimension zero. Then (i) and (ii) follow from [5, Theorems 2.1.2 and 2.1.3], and 
(iii) follows from [5, Corollary 3.6.14]. [] 

We can now determine So/(fo,.. .  , f,~)o, where as usual 0=(n+1)/3-/30. 
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P r o p o s i t i o n  3.3. There is a natural isomorphism S J ( f o , . . .  , f7%}~C. 

Proof. This follows from local duality for graded Cohen-Macaulay rings 
(see [5, 3.6]). In the zero-dimensional case, local duality is a natural isomorphism 
of graded R-modules 

wR -- Homc (R, C). 

In particular, (WR)o~_Homc(Ro, C ) _ C  since Ro=C.  By Propositions 3.1 and 3.2, 
we have 

(WR)o = ( w s . J  (fo , ... , fn>WS.~)7%+1 = S ( n + l ) 1 3 - 1 ~ o /  ( f o  , . . .  , f n ) ( n + l ) / ~ - - / 3 o ,  

and the corollary follows. [] 

Note that  when/3--/30 (so X is a Fano toric variety), we have WR~--R[n], so 
that  S.Z0 and R are Gorenstein (see [5, 3.6.11]). This case is of interest in mirror 
symmetry. 

4. Toric  J a c o b i a n s  

This section will define a "Jacobian" of f0, . . .  , f~ E S~ which is closely related 
to the Jacobian det(Ofi /Oxj)  when X=P7%. Here is our main result. 

P r o p o s i t i o n  4.1. I f  fo, . . .  , f7%ES,, then there is JGS(7%+l)~-~o such that 

7% 

E(-1)ifi d f o A . . . A d f  i A . . . A d f 7  % = Jl2. 
i = 0  

Furthermore, 
then 

if I={~1 , . . .  , ~7%}CE(1) and n ~ , . . .  , n ~  are linearly independent, 

(5) J = d e t  

f 0  . . .  fn 
Ofo/OX~, ... OA/OxQ1 

: " . o  : 

Ofo/OXe~ ... Of  7%/Ox~ 

/det (ni )2~.  

Proof. Note that  we assume nothing about the ampleness of a or the vanishing 
of the f/ 's. This proof was suggested by Eduardo Cattani and Alicia Dickenstein. 
We can assume fo#O, so that  

n 

E ( - 1 ) i f i  dfoA...Adf iA...Adfi~ = f?+l d ( f l / f o ) A . . . A d ( f ~ /  fo). 
i = 0  
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Let ml  , ... , mn be the basis of M used in the definition of ft, and set 

ti = HQX~ m~'nQ). 

Then tl  ,... , tn axe coordinates for the torus T c X  (see [4, w and each f i / f o  is a 
rational function of the ti since fi and f0 have the same degree. Hence 

d ( f l /  f o ) A . . . A d ( f ~ /  fo) = J ( t l  , ... , t~) dt l  A . . .Adtn  

for some rational function J ( t z , . . . ,  t~). However, the proof of Proposition 9.5 in [4] 

shows that  
dr1 ^ ^ dt~ 

f~ = H~x~ ~ / \  ..... tn ' 

and it follows easily from the above equations that  

n 

Z(-1)Vi dIoA...A f i = Ja,  
i = 0  

where 
n - J - i  �9 \ tl " ' "  t n  

J =  f~ J ( t l , . . .  , tn) ~ I T ~  . 

This equation shows that  J has degree ( n + l ) a - ~ 0  as a rational function of the x~'s. 
If I c E ( l )  has I I l=n,  we let D( fx )  denote the determinant in the numerator 

of (5). Then one easily computes that  

n 

Z(-1)V, d/oA...A f  A...Ad/n = Z D(f , )  dx,. 
i = 0  JZl=n  

Since the right hand side equals J~ ,  it follows that  

J det(nz)21 = D( / I )  

for all I .  This gives the desired formula (5) for J.  
It remains to show that  J is a polynomial in the xe's. If we write J as a 

quotient of relatively prime polynomials in S, then (5) shows that  the denominator 
divides 21 for every I with det (nz ) r  0. Since the fan of X is complete, every Q e E (1) 
is in some such I (9 lies in an n-dimensional cone a, and I can be chosen to be 
an appropriate subset of a(1) containing 9)- It follows that  the 2 i ' s  are relatively 
prime, which forces the denominator of J to be a constant. Since we have already 
seen that  J has degree (n+  1)a-/3o,  it follows immediately that  J ES(n+l)a-#o,  and 
the proposition is proved. [] 

In light of this proposition, we make the following definition. 
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Definition 4.2. Given fo , . . .  , f~cS~, the polynomial JcS(~+l)~-~o satisfying 

n 

E(-1)ifi dfoA. . .Ad f  iA . . .Ad fn  = JR 
i=O 

is called the toric Jacobian of f0 , . . .  , f,~. 

For example, suppose X = P  n and fo, . . .  , fn are homogeneous of degree d. If 
I is given by Xl, ... , xn, then applying the Euler formula fj = ( l /d )  ~-~i~o xiOfj/Oxi 
to (5) shows that  the toric Jacobian is given by 

J = det 

= det 

fo ... A \ 
O f o / O X  1 ...  Ofn/Oxl ) : ".. : / X o  

Ofo/OXn ... Ofn/OXn 
d-lxoOfo/Oxo ... d-lxoOf~/Oxo 

Ofo/OXl ... Of~/Oxl 
: *.  : 

Ofo/OXn ... Ofn/OXn 

1 det(Of~/Oxj). / xo  = 

In [19, 12.10], it was assumed that  J=det(Ofi/Oxj), which caused the residue for- 
mula given there to have an extra factor of d. 

The toric Jacobian is also related to the hyperdeterminant of an m • (re+p- 
1) xp  matrix A=(a~jk), as described in [10, w of Chapter 14]. From A, we get m +  
p - 1  bilinear forms fJ=~-~ik aijkxiyk in variables Xl,. . .  , x,~, Yl,.. .  , Yp. Thus X =  
p ro -  1 • p p -  1 and f j  E $1,1, where S =  C [xi; Yk] has the usual bigrading. The toric Ja- 

cobian J of f l  ,... , fro+p-1 has degree ( r e + p -  1)(1, 1) - (m, p) = (p -1 ,  m - l ) .  In [10, 
Chapter 14], J appears in equation (3.20), and in Theorem 3.19, the coefficients of 
J are used to compute the hyperdeterminant of A. Also, Proposition 3.21 gives an 
interesting combinatorial interpretation of the coefficients of J .  

As our final example, let f=x2z2+x2w2+y2z2+y2w2+AxyzwEC[x,y;z,w]. 
Then f has degree (2,2), so that  the toric Jacobian of f, x fx ,z fz  has degree 
3 ( 2 , 2 ) - ( 2 , 2 ) = ( 4 , 4 ) .  Since ~ = ( x d y - y d x ) A ( z d w - w d z )  for p l •  we know 
the det(n• and one computes that  the toric Jacobian is given by 

4( Ax4z2w2 +4x3yzw3 +4x3yz3w+ Ax2y2 z 4 

+ Ax2y2w 4 +4xy3z3wW4xy3zw 3 + Ay4z2w2). 

Other examples are equally easy to compute. 
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5. U n i q u e n e s s  o f  to r ic  res idues  

Putt ing together what we proved in the previous sections, we can now state 
the main theorem of this paper. 

T h e o r e m  5.1. Let X be a complete toric variety, and let /~EA~_I(X)  be 
ample. I f  f o,... , f~ESZ do not vanish simultaneously on X ,  then: 

(i) I f  ~ = ( n + l ) ~ - ~ 0 ,  the torie residue map Res: Se / ( fo , . . .  , f ~ ) e -~C  from w 
is an isomorphism. 

(ii) / f  J E S  e is the toric Jacobian of fo , . . .  , fn  from w then 

Res(wj) = n! vol(A) = deg(F), 

where vol(A) is the normalized volume of the convex polyhedron A c M R  associated 
to 1~ (see the proof of Proposition 3.1) and F :X- -*P  n is the map defined by F ( x ) =  

(f0(x), . . . ,  f~(x)). 

Proof. We know from Proposition 3.3 that  Se / ( fo , . . .  , f~}e has dimension 
one. Hence (i) is an immediate consequence of (ii). To prove (ii), note that 
F = ( f 0 , . . . ,  fn): X--~P n comes from n + l  sections of an ample line bundle. Since 
the sections never vanish simultaneously and d im(X)=n ,  F is defined everywhere 
and is finite and surjective. 

We now proceed as in [19, 12.10]. By the definition of the toric Jacobian, we 
have 

n 

J ~  = E ( - 1 ) i f i  dfoA.. .AdfiA.. .Adfn 
i=0  

) =f*  (-1)~z~ dxo/\.../\~A.../\dx~ =f*(f~p~). 
" i = 0  

Thus 

02J --  fo'"------~n \ Xo . . .  Xn ] 

Denote the n-form in parentheses by wl. Then the map 

n ~ ~ n F*: H n ( p  n, f~p~) H (X, f tx)  

satisfies F*([wl])= [w j] (this is easy to see using Cech cohomology). Since F is finite 
and surjective, standard properties of the trace map imply that  

Res(wj) = Trx ([w j]) -- Trx (F* ([Wl])) = deg(F) Trp~ ([wl]) =- deg(F) 
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(see [14, Chapter III]). 

To complete the proof, we need to show that  deg(F)=n!  vol(A). If D is the 
divisor of a section of the line bundle Ox (/3), then it is well-known that  

D ~ = n! vol(A) 

(see [18, Proposition 2.10]). Note that  when X is singular, we use the intersection 
number D n as defined in [16, Chapter I] or [18, w Since F: X---~P ~ is finite and 
F*(Op~ (1))-~Oz(/3), it follows from [16, Proposition 6 of Chapter I, w that  

D n = deg(F)H n = deg(F),  

where H c P  ~ is a hyperplane. Thus deg(F)=n!vol(V), and we are done. [] 

Hence toric residues have both the quotient and trace properties mentioned in 
the introduction. Note also that  the toric residue is uniquely characterized by these 
properties. 

When X = P  n and f 0 , . . . ,  fn have degree d, we saw in w that  the toric Ja- 
cobian is J=(1/d)det(Ofi/Oxj). Since F = ( f 0 , . . .  , fn)  has degree d n, if we set 
g=det(Os then 

Res(wg) = d Res(wj) = d deg(F) = d n+l. 

However, for this choice of g, the Grothendieck residue symbol (1) is the local 
intersection number of the divisors in C n+l defined by f~ =0, which is also d n+l. 
Thus 

[ gdxoA...Adxn ) 
Res(wg) = ~es0 ~ fo.~. f--~ ' 

and from here, one easily sees that  equality holds for all gESe (see [19, 12.10]). 

For another application of our theory, suppose that  f cSz ,  where/3 is ample 
and f is nondegenerate in the sense of [4, Definition 4.13]. In this situation, f 
defines a hypersurface Y c X ,  and the ideal 

Jo(f) = (xeOf /Oxe) C S 

is closely related to the mixed Hodge structure of the affine hypersurface YNT, 
where T c X  is the torus of X (see [3, w or [4, w Then we get the following 
proposition. 
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P r o p o s i t i o n  5.3. Given fESZ, suppose that ne~ ,... ,nQ~ are linearly inde- 
pendent. Then Jo (f) = (f, x~ Of~Oxen,... , x ~  Of /Ox~ ). Furthermore, 

f is nondegenerate r xeOf/Ox ~ do not vanish simultaneously on X 

r f, xe~Of /Ox~ do not vanish simultaneously on X.  

Finally, if/3 is ample and f is nondegenerate, then S~/Jo(f)~-C (L)--(n+l)/3- 
/3o), and the toric Jacobian of f, xe~Of /Oxe~ ,... ,xe~ Of /Ox~n represents a nonzero 
element of S~/Jo(f)e. 

Proof. We will use Euler formulas. Recall from [4, w that  8=~--]Q bQxeO/Oxe is 
an Euler vector field provided ~ ben~=O. Further, such a 0 determines a constant 
0(/3) such that the Euler formula 

0(/3) f= Zb x OS/Ox  
Q 

holds for all f E SZ. 
n Now, given any 6, there is a relation ne+~i=l binQ~=O since the ne~ are a 

basis over Q. The resulting Euler formula shows that  xeOf/Oxs E (f, xe~Of/Oxe~}. 
We also have fEJo(f)  (see the proof of [4, Lemma 10.5]), and it follows that f and 
the xs~Of /Oxe~ generate Jo(f). 

The argument of [4, Proposition 3.5] adapts easily to show that  f is nondegen- 
erate if and only if xeOf/Oxe do not vanish simultaneously. This proves the first 
equivalence of the proposition, and the second equivalence is now trivial. 

Finally, when/3 is ample and f c S z  is nondegenerate, we can apply Theorem 5.1 
to f, x~lOf/OxQ~ ,... , XQnOf/Ox~n. This gives the final part of the proposition. [] 

An example of this can be found in w where X =p1  • p1 and f=x2z 2 +x2w2+ 
y2z2+y2w2+AxyzwES=C[x, y; z, w]. One can check that  f is nondegenerate pro- 
vided A#0, +4, so that  the toric Jacobian of f ,  xOf/Ox and zOf/Oz (displayed at 
the end of w is a nonzero element of S4,4/Jo(f)4,4~-C. 

In general, the isomorphism SJJo(f)e~_C was previously known to Batyrev 
and is related to the cup-product pairing 

Hn-I(YNT, C)|  C) ) C 

(see [3, w or [4, w If we assume in addition that  X is simplicial, then the ideal 
quotient 

Jl(f) = Jo(f):Hexe 
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also plays a role: it is related to the Hodge structure on the primitive cohomology 
(as defined in [4, 10.9]) of the hypersurface YCX defined by f ,  assuming fESz is 
nondegenerate and/~ ample. In this case, multiplication by Hexe induces a natural 
injection 

S(n+I)Z-2Z0/J1 (f)(~+l)~-2Zo n~xf Se/Jo(f)Q, 

and the composition 

(6) S(,~+l)f~-2Zo/Jl(f)(,~+l)Z-2Zo n~xf SQ/Jo(f)~ R~) C 

is closely related to cup product on the primitive cohomology of Y. In fact, if the 
primitive cohomology of Y is nontrivial, Poincarg duality implies that  (6) is an 
isomorphism. This is used in [17, w where the toric residue is interpreted as an 
"expectation function" arising in mirror symmetry. 

Is there an explicit formula for a polynomial that  gives a nonzero element in 
the left-hand quotient of (6)? In the case of X=P ~, the Hessian det(O2f/OxiOxj) 
is such an element. It would be very interesting to have a toric generalization of 
the Hessian. 

Another question is what happens if f0,- . .  ,f~ES are homogeneous, do not 
vanish simultaneously on X, but  have different degrees. One can still define the 
toric residue in this case, but none of the results of this paper apply. However, if X 
is simplicial and deg(fi) is ample for all i, then a version of Theorem 5.1 still holds. 
This will be discussed in [6]. 

6. I n t e g r a l  r e p r e s e n t a t i o n s  

In this section, we will explore several ways of representing the toric residue as 
an integral. In order to do this, we will assume that  X is a projective simplicial toric 
variety. Thus X is an orbifold (or V-manifold), so that  by [2], we have a Dolbeault 
isomorphism Ho 'n (X) ~ H n (X, 12~). 

Our first set of formulas use the Dolbeault isomorphism to express Res(wg) as 
an integral. We begin with fo,... ,fnESf~ which satisfy (3). As in w we get the 
open covering U of X and the Cech cocyle wgECn(Lt, f~)  for gESe. Now let 

If l 2 
Qi = [f012+...+lf~[ 2 

for 0 < i < n .  Since the fi all have the same degree and do not vanish simultaneously, 
the Qi are C~176 on X which sum to 1. 
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P r o p o s i t i o n  6.1. The class of the C r162 (n ,n)- form 

h 

n i 
= 

d foA . . .Ad] iA . . .Ad fnA~  
( I f o I 2 + . . . + ] f n l 2 )  n+l  

maps to under the Dolbeault isomo hism 

Remark. This proposition gives a more precise version of a formula in [11, 
Chapter 5]. There, the factor (--1)n(n+l)/2n! appears as a constant C~. 

Proof. We first show that  ~g lives on X. Since X is simplicial and complete, 
we can write X as a geometric quotient (C ~ ( 1 ) - Z ) / G ,  where Z c C  ~(1) is a proper 

closed subvariety and G = H o m z ( A n - I ( X ) ,  C*) (see [7, w This is also a quotient 
in the real analytic category, so that  the form ~g on C ~ ( Z ) - z  descends to X if 
and only if it is invariant under G and is annihilated by all real vector fields to G. 
From [4, w we know that  the complex Lie algebra of G, denoted Lie(G), consists of 
the Euler vector fields 0 = ~ e  bexeO/Oxe described in the proof of Proposition 5.2. 

The form ~g is clearly invariant under G since all fi  have the same degree. To 
see that  it is annihilated by all real vector fields to G, it suffices to show that 

for all 0ELie(G). However, Proposition 4.1 implies that  ~]g is a C ~ multiple of 
~A~t. Thus we need to prove that  

0 J ~ = 0 J ~ = 0 J ~ = 0 J ~ = 0 .  

The last two of these are trivially zero, and the vanishing of the second follows from 
the vanishing of the first. Hence it remains to show that  0_J 12=0 for any 0ELie(G). 
This will follow immediately from the following observation of Batyrev. 

L e m m a  6.2. Let O] ,... ,Or be an ordered basis of Lie(G), and let d x = A ~  dx Q 
for some ordering of the xe 's. Then there is a nonzero constant c such that 

(01A... A0r) -J dx -- c a  

(where J denotes interior multiplication). 

Proof. Consider the map ( ~  Cx~O/Oxe--*Nc which sends x~O/Oxe to nQ. 
This map is onto since X is complete, and the kernel consists of the Euler vec- 
tor fields, which as above form the Lie algebra Lie(G). Thus we have an exact 
sequence 

(7) 0 ----* Lie(G) ~ @ C  xeO/OxQ ) N c  ) O. 
Q 
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We first compute (01A...A0~)J dx. Write O~=~b~xQO/Ox e for l < i < r ,  and 
if I C E ( l )  has cardinality n, let 

det(/~,) = det(b~ : 1 < i < r, Q ~ I). 

The matrix (b~) is square since r = l Z ( 1 ) l - n  by (7). Then one computes that  

(01A.,.A0r) J dx = ~ (--1) '  det(/~,)2, dx,, 
II1=~ 

where 2i dx~ is as in w and ( -1)  ~ is the sign of the permutation of E(1) which puts 
the ~EI  at the end but otherwise preserves their order (see [20, p. 21]). 

To relate this to s we compute the determinant (as defined in [10, Appen- 
dix A]) of the exact sequence (7) with respect to the following ordered bases. First, 
01, ... , 0~ give an ordered basis of Lie(G), and the ordering of the xe gives an ob- 
vious ordered basis of the middle term of (7). Finally, recall that  in w we picked 
an ordered basis ml , . . .  , rnn of M. So we let rn~,... , m~ be the dual basis of N. 
Then, by [10, Appendix A], the based exact sequence (7) has a determinant cEC*. 
We claim that  

(s) c det(nr) = (-1)  I det (/~r) 

for all I C E ( l )  with IIl=n. Comparing the formula (4) for ~ to the above formula 
for (01A...A0~)J dx, the lemma will follow immediately once (8) is proved. 

Let I={Q1 , . . . ,  Qn}. First note that  (8) holds when he1 , . . . ,  ne~ are linearly de- 
pendent, since det(n~)=0, and det(bx)=0 is also true as any relation ~ % 0  binQ~=O 
must be a consequence of the relations ~ e  b~n~=O. On the other hand, if nel ,... , 
n ~  are linearly independent, consider the ordered basis of ~ CxeO/Ox~ where the 
xeO/Oxe for 0EI  all appear at the end (but otherwise we preserve their order). 
Using this basis and the bases 0i and m* for the other terms of (7), Proposition 11 
of [10, Appendix A] expresses the determinant as a quotient of two determinants, 
where the numerator is the r • r determinant obtained using the 0~ and the xeO/Oxe 
for 0~I ,  and the denominator is the n • n determinant using xQO/Ox~ for QEI and 
the m*. Hence the determinant of this based exact sequence is 

c ' -  det(bi) 
det(ni)" 

However, c and c r differ by the change of basis determinant for the middle term of (7) 
(see Proposition 9 of [10, Appendix A]), so that  c = ( - 1 ) t c  ', and (8) is proved. [] 
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To continue the proof of Proposition 6.1, we next recall the Dolbeault isomor- 
phism. As in [13, p. 45], we have the exact sequences 

0 ) Z  n ' n - p - 1  )r n ' n - p - 1  ~ Z n ' n - p  ) ) O, 

and the Dolbeault isomorphism Ho'~(X)~-H~(X,  ~ )  is obtained by composing 
the coboundary maps 

5p: HP(X, Z n'n-p) ) H p+I (X, zn'n-P-1) .  

To prove the proposition, it suffices to show that 5n-1 . . . . .  50(~g)=[wg]. 
We will use the following notation. Given 0_< i0 <... < ip < n, let Uio...i~ = Uio A 

...AUip. Also, let j l< . . .< j~ -p  be the complementary indices, so that {i0,... ,ip}U 
{j l , . . .  ,Jn-p}={O, ... , n} is a disjoint union. Finally, let E(i0,... ,ip) be the sign 
of the permutation sending 0,. . .  , n to i0 ,... , ip,j l  ,... , jn-p respectively. 

We now define some Cech cochains. First, let 7p�9 A ~''~-p) be given by 

(~p)io...ip = ~(io , ... , ip)Ogj~ A... AOQj,,_p Awg. 

Note that each 0Qj is divisible by f j ,  so that  0QjlA...Ac~j~_p is divisible by 
fjl ... fj,~_p. This implies that "7pECP(Lt, .An'~-P). Second, let ~pECP(Lt, .A ~'n-p-1) 
be given by 

n--p 

(~p)io...ip = ~(io, . . . ,  i p ) E  ( -  1)s- '  QJ, c~Qj, A... A (0~j, A... A cg~)j~_p Awg. 

As above, we have ~pECP(bl, .A'~,~-P-1). 
It is easy to see that 

(9) 0~p = (n-p)"/p, 

and, if 5 is the coboundary in the Cech complex, then 

(10) 5% = ( -  1)p+l p+1 

(we omit the straightforward but cumbersome proof). 
From (9) and (10), we get a class [Tp] � 9  X,  Z'~'n-P), and then a standard 

diagram chase, also using (9) and (10), tells us that 

5p((n-p)  [Tp]) = ( -1 )  p+I [Vp+l] �9 HP+I (X, Zn'n-P-1). 



Toric residues 89 

It follows that n![70] maps to (-1)~(n+~)/217~ ] under the Dolbeault isomorphism. 
1 However, 7n=(%)O...,~=Wg, and using ~i=o Pi = , one can verify that  70 is given 

by 

h 
~0 = ~01 A . . . A ~ o n A o g g  = ( f 0  " "  GE~_0(-1)~f, dfoA. . .AdLA. . .Adf~ 

where the second equality follows from [13, p. 655]. From here, the proposition 
follows immediately. [] 

By Proposition A. 1 in the appendix, we know that Trx([wg])= (-1/27ri) n f z  ~lg. 
Hence we obtain the following integral representations of the toric residue. 

T h e o r e m  6.3. If  X is simplicial and f 0 , . . . ,  f~ E SZ satisfy (3), then forgE S e, 
we have 

A 

Res(wg) = (-1)'~(~-1)/2n! / g ~ - o  (-1)~9~ d foA...Ad f iA.. .Ad fn Aft 
(27ri) n Jx  (IfoI2+"'+lfnl2) n+x 

Furthermore, if J is the toric Jacobian of f0,  ... , f~, then 

( - 1 ) n ( n - 1 ) / 2 n ! / z  g J ~ A f ~  
Res(wg) = (2~.i) ~ (ifo12 +...+lf~12)~+1. [] 

Before giving our second set of integral formulas, we review some symplectic 
geometry. As above, X is a projective simplicial toric variety, so that  X is a geomet- 
ric quotient (C~(1)-Z) /G.  Now let Grt=Homz(An_l(X) ,  S ~) be the compact Lie 
group associated to G. This group has Lie algebra Lie(Grt)=Homz(An_l(X),  R).  
The action of GR on C ~'(1) is Hamiltonian, which gives the moment map 

#: C ~(1) ~ Lie(GR)* 

(see [1, Chapter VI, w For us, the key property of # is that if {eLie(Grt)  *~  _ 
H2(X, R) is in the Kghler cone of X,  then GR acts on #-1(~), and there is a natural 
isomorphism 

Z 

(see [1, Chapter VI, Proposition 3.1.1]). 
When X = P  n, the moment map is #(x0, . . .  ,Xn)~-I(IxoI2-~-...-~'-IXnl2), SO 

that #-1({)  is the sphere S 2 n + l  of radius r = v ~ ,  and the map #- l (~)__.pn 
is the Hopf fibration. Another example is X = P 1 x P  1, where #(x ,y ; z ,w)= 
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1 - # (~1, ~2) = S t  1 • S~,  where r i - - v / ~ .  In general, 2([X]2§ 2, [Z[2§ 2) and -1 3 3 

#-1(~) is a real manifold of dimension ]E(1)[+n, and we call the map 

- - + x  

the generalized Hopf fibration of X. When X is smooth, this map is a genuine 
fibration with fiber GR, but in the simplicial case, this is only true generically. 

Using the generalized Hopf fibration, we get two more integral formulas for the 
toric residue. 

T h e o r e m  6.4. If X is simplieial and fo , ... , fn ES~ satisfy (3), let dx=A~ dx~ 
for some ordering of the x~'s. Then #-i(~)  can be oriented so that for gES~, we 
have 

n! [ g~n_o(-1)if i  d foA . . .AdLA. . .Ads  
Res(oJg)-  (27ri) IE(1)I ~,-1(r (If012+...§ n+l 

Furthermore, if J is the toric Jacobian of f0, . . .  , fn, then 

n! ~ gJf~Adx 
Res(wg)-  (27ri)W4x)l -1(~) (Ifo]2+...+lfnl2) '~+1" 

Proof. The first step is to relate Lie(Grt) to the Euler vector fields considered 
earlier. Each #CLie(GR) comes from a relation ~ benQ=O where b e ER. The Euler 
vector field 0 = ~ Q  bexoO/Ox ~ is a holomorphic vector field tangent to G-orbits, and 
we also have a real vector field v~ tangent to GR orbits. These are connected by the 
formula 

= i (0-0) .  

To see why, let t be a real parameter. If xo=uo+iv o gives real and imaginary parts, 
then at the point (xo)EC r41), we have 

= = 0 

Using real coordinates, t g = E e  b~(-veO/Oue+uQO/Ove), which implies 0= i (0 -~ ) .  
Now suppose that  V~l ,... , #r form a basis of Lie(Grt), where r =  I E(1) l -n .  The 

corresponding Euler vector fields are 0x, ... , 0r, and we claim that  

(11) (z~l A...A~)r) J (~Adx) - - - -  cir(--1)nr~A~-~, 
where c satisfies (01A...A0r)J dx=c~ as in Lemma 6.2. To prove this, first note 
that  0j J f t=0  by Lemma 6.2, and thus 0j J ~=i(Oj-~j )J  ~=0 .  Hence, 

v~j J (~Adx) = (--1)n~A (v~j J dx) = i ( -1 )n~A (0j J dx), 

and (11) now follows easily from Lemma 6.2. 
We next express "integration over the fiber" in terms of interior multiplication. 
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L e m m a  6.5. Let ~ be a GR-invariant form on #-1(~) of degree IE(1) l+n,  

and let 01 ,... ,@r, r = l E ( 1 ) l - n ,  be a basis of Lie(GR). Then we have the product 

formula 

v~A...Av 9., 
--1(~) R 

where ~ , ... , O* is the dual basis of O1, ... , Or, regarded as invariant 1-forms on GR. 

Proof. Since we can remove sets of measure zero, we can replace #-1(~) with 

a GR-stable open set W where GR acts freely with quotient X o C X .  Then, by 
a parti t ion of unity argument,  we can replace X0 with an open set U such that  
the fibration is diffeomorphic to a product  over U. We can also assume that  U 
has local coordinates u l , . . .  ,U2n. Since our product formula is invariant under 
diffeomorphism, we can replace the total  space by U • GR. For a small open set 
V c G R ,  we can find local coordinates tz ,... , tr such tha t  0 i - - 0 / 0 t i .  Then 

= f ( u l ,  ... , u~) dtz A. . .AdtrAdUl A... Adu2n 

since ~/ is invariant under GR. Hence the product  formula holds on U x V, and 
another parti t ion of unity argument  shows tha t  it also holds on U x GR. [] 

Returning to the proof of Theorem 6.4, we can apply Lemma 6.5 to the G- 
invariant form 

gJ f~Adx  

v =  (if012+...+lAi2) +l 
and use (11) to obtain 

( i f o 1 2  �9 R 

If we can prove that  

(12) c/G = 

R 

then the theorem will follow immediately from Theorem 6.3, provided we adjust 
the orientation of # - l ( f )  to make the sign disappear. 

We will prove (12) using coordinates to compute the integral explicitly. First 
pick a subset I = { Q 1 , . . . ,  Qn}CE(1) such that  the ne~ are linearly independent. If  

] is the complement of I in E(1), then we have an exact sequence 

(13) 0 ~Z| ~ A n - I ( X ) - - - - ~ F  ~0, 
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where F is a finite group. Applying H o m z ( - ,  R),  we get Rr=Homz(Z |  R)-~ 
Lie(Ga),  and composing with the exponential map Lie(GR)---~G0, we get a covering 
map R r--oG ~  Here, G ~ C GR is the connected component of the identity. For later 
purposes, note that 

(14) [art :  GO] = IAn-l(X)torl. 

Each vector field ~i on GR is determined by a relation ~-~.Q b~ne=O. If te, Q~I, 
are the obvious coordinates on R r, the pull-back of ~i to R"  is ~ t I  b~O/Ot~. Thus 

~1A...A~, pulls back to det(bi)Ae~tI O/Ote, where det(/~x) is as in Lemma 6.2, and 

it follows that ~A...Azg* pulls back to det(/~i)-ldt,  where d t=A~r  dte. 
We have an exact sequence 

0 ~ Homz (A=_I (X), 27rZ) , Lie(Grt) ----+ G O ,0, 

and under the isomorphism Lie(Grt)---R ~, the lattice H o m z ( A . _ l ( X ) ,  27cZ) maps 
to a sublattice L ' c (27 rZ)~=Homz(ZQI ,  27rZ). Applying H o m z ( - ,  Z) to (13) gives 
the exact sequence 

0 ~ L' ~ (27rZ) ~ ~ Ex t l (F ,  Z) ~ Ext~ (A~_I (X), Z) ~ 0, 

which implies 

IFI 
(15) [(27rZ)V : L'] : ]An-l(Z)tor]" 

Finally, the map Z|  of (13) embeds in a commutative diagram 

z e f  = z e f  

0 ~ M ---* ZQE(1)  , An- l (X)  ~ 0 

where the bot tom row is exact (see [9, w Since Z |174174 
the snake lemma and (13) imply 

(16) ]F] = ]coker(M ~ Z |  l = ]det(ni)], 

where det(ni)  is as in the definition of ~. 
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Using (14), (15) and (16), we see that f a r  ~)~A...A~)~* equals 

IA,~-l(X)to, I/Go~;iX...iX~*=+lA.-i(X)torl i .. iL, det(bs)-ldt 

IAn-l(X)torl 
= • d e t ~ :  L'] i m / ( 2 # z F  dt 

- :L ( 2 ~ ) 9 F I  _ • ( 2 ~ ) r l  d e t ( n , ) l  

det(bs) det(/~i) ' 

where the sign +1 depends on whether Rr---+G ~ is orientation preserving or not. 
Hence 

c f c  ~/x. . .A~; = +e (2~)9 det(ni)l = • cdet(nD _ j:(2~)r, 
R det(/~s) det(bs) 

where the last equality holds by (8). This completes the proof of the theorem. [] 

The simplest example is where X = P  n. Here, we have seen that #-1(~) is a 
sphere S 2~+1, and then Theorem 6.4 tells us that  Res(wg) is given by the integral 

n! L g~]'~-~176176 
(2~i) ~+~ ~+, (If012+...+lf~12) ~+1 

This formula appears in [11, Chapter 5] and [21, w 
We should remark that the theory of toric residues, as given above, is not quite 

complete: one still needs to investigate whether the Grothendieck local residue, as 
defined in (1), generalizes to the toric case. This problem will be discussed in [6]. 

Appendix. The D o l b e a u l t  i s o m o r p h i s m  a n d  t h e  t r a c e  m a p  

In this appendix, let X be a variety which is a compact orbifold (or V-manifold). 
As in w this gives a Dolbeault isomorphism Ho'n(X)~-Hn(X, fl~). Such a variety 
is also Cohen-Macaulay, so that  we have maps 

Trz: Hn(X, fl~r ) --+ C, the trace map, 

ix: H~ integration (n, n)-forms. (Z)  C, of  ---@ 

These maps are related as follows. 
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P r o p o s i t i o n  A.1.  Let X be a compact orbifold variety, and suppose that 
the (n, n)-form ~ corresponds to [w] e H n ( Z ,  ~ ) under the Dolbeault isomorphism. 
Then 

( - l ) ' / x  = 

Proof. Consider the map T: Hn(X,  Ft~)--+C defined by T([w])=fx ~h where ~/ 
corresponds to [w] under the Dolbeault isomorphism. This map has all of the formal 
properties of the trace map, except for the normalization condition, which says it 
takes the value 1 on the class 

[OJ1]= [ QP~ ] EHn(pn, Q~). 
[x0 . . .xnj  

It follows that  T and Trx agree up to a constant, and furthermore, the normalization 
condition implies the constant is T([wl]). By Proposition 6.1, T([wl])=fp~ ~h, 
where 

Qp~ A ~ p n  
~1 ~- (--1) n(n+l)/2n! (ix012+...+lx, 12),+1. 

Hence, to prove the proposition, it suffices to show that  fpn ~h = (-27ri) n. 

If C n C p  n is the open set where x0#0,  then fp~ ~ l = f c ~  r h. On this open set, 
we can use t i=xi /xo as coordinates. Since ~pn=x~+ldtlA.. .Adtn,  we have 

p ~1 = (-1) n(n+l)/2n! /C dtlA.. .Adt~AdtlA.. .Adtn 
~ (l+]tl]2+...+[tn[2) n+l 

Denoting real and imaginary parts by t j=u j+iv j ,  we have dt jAdt j=2idujAdvj .  
Thus dt~ A... Adt~ Adtl A... Adt~ = (2i) n ( -1)  ~(~-1)/2 du~ Advl A ... Adun Advn, so that  

p ~1 "~ (--2i) nn! f d u l A d v l A . . . A d u n A d v n  
2 2 2 2 n+l" J C  ~ (1-t-Ul-~-Vl-4-...-~-Un-~Vn) 

Since dulAdvlA.. .AdunAdvn is the volume form on C n, the above integral is a 
standard multiple integral. Using polar coordinates for each uj and vj, the multiple 
integral equals ~n/n!, and it follows that  fp~ ~1=(-27d) n. This completes the 
proof. [] 

For the reader curious about the signs in Propositions 6.1 and A.1, we suggest 
checking Trp1 ([wl])=(-1/27ri)fp~ ~/1=1 in detail. 
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