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1. Introduction 

Two classical imbedding theorems characterize the restriction of  the Bessel 
potential space L~(R") and the Besov space A~,q(R n) to linear subvarieties of R ~. 
The space L~ (R") is defined in w 2.3, and concerning Besov spaces we recall here 
only that for 0 < ~ < 1 ,  l<-_p<~o, a function f belongs to A~'P(R ~) if and only 
if the norm 

IlfltA ,,,(R-, = Ilflt,+[ff, x_,,<l If(x)-f(y)l" axdy) lj" (1.1) 
lx-yl"+=p 

is finite. It turns out that L~ (R ") and A~' p (R ") have the same restriction space to 
linear subvarieties R d of  R ". The result is that 

A~'q(R")]Rd = A~'q(Ra), 1 <= p, q <= 0% 1 <= d < n (1.2) 
and 

L~(R")[R, = A~'P(Ra), 1 < p <~o, 1 <= d < n (1.3) 

where f l = o : - ( n - d ) / p > O .  
Here, by e.g. (1.3) we mean that if f ~ L ~ ( R " ) ,  then the pointwise restriction 

of f to R a (cf. w 2.4 below) belongs to A~'P(Rd), and conversely, that every 
fC A~, p (R a) can be extended to Rn so that it is a function in L~ (R"). Also, the 
imbedding operators involved here are continuous. For  a more precise statement 
we refer to [6], Chap VI, w 4. In its final form, (1.2) is due to Besov [2], and (1.3) 
to Stein [8], but these papers were preceded by papers considering various special 
c a s e s .  

In [4] and [5] the author in joint work with H. Wallin generalized (1.2) by con- 
sidering the restriction of A~'q(R ") t o  more general closed sets. The aim of this 
paper is to prove a similar generalization of  (1.3). For  more of  the background 
to these generalizations, and for a large list of references of interest in this con- 
nection we refer to [4] or [10]. 
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We are able to characterize the restriction of L~ (R ") to a large class of sets, the 
so called d-sets, whose definition is given in w 2.2. A linear subvariety R a is a d-set, 
and it can be shown that e.g. Cantor-sets, and thus some sets of non-integer dimension, 
are d-sets, and that sets which are minimally smooth boundaries of  open sets in 
the terminology of [6], p. 189 are d-sets (see [4], where also more examples 
are given). 

To each d-set F, there is in a natural way associated a unique "d-dimensional" 
measure # supported by F, which in case F = R  a is the Lebesgue measure on R a 
(see w 2.2). Now, let F b e  a d-set and # this measure. Then, for 0 < ~ < 1 ,  a function 
f belongs to the generalized Besov space B~(F) if and only if the norm (cf. (1.1)) 

(ff I f ( x ) - f ( y ) f  ,lip Ilf[Ip,~,F = IIf[Ip,~+ ix-yl<~ ]x--yl a+~p d#(x)d#(y)) (1.4) 

is finite. The general definition of  B~ (F) for non-integer c~ is given in w 2.2. 
The main result of this paper is that if F is a d-set, then 

L~(R")Ir:B~(F),  0 < d < n ,  l < p < ~ ,  (1.5) 

where fl=o~-(n-d)/p>O and fl non-integer (Theorem 3). Since R d is a d-set, this 
result contains (1.3) in case fl is a non-integer. Actually we prove more than (1.5); 
both the restriction part and the extension part of this theorem are given in a more 
general form (Theorem 1 and Theorem 2). In [4] we proved that A~'V(R")le= 
B~(F), 1 <--p<~, O<d<-n, so it turns out that A~'~(R n) and L~(R") have the same 
restriction to a d-set F, as long as 0 < d < n  and l < p < ~ .  

2. Definitions and statement of theorems 

2.1 The norm II-Itp,~,~,~. This norm, introduced in [4], is a generalization of  
the classical Besov-norm, suited for the study of Besov-type spaces on general 
closed sets. It may also be seen as a generalization of  the norm used in the Whitney 
extension theorem (see [4]). 

Let # be a positive measure on R", let O<d<-n, a > 0 ,  a noninteger, l ~ _ p < ~  
and let k be the integer such that k < a < k +  1. For  any collection {fj}lJl~_k, where 
the functions f j  are measurable with respect to # and defined #-a.e. on the support 
of #, define rj by 

fj(x) =~alj+li<=k ~ ( x - - y ) l + r j ( x ,  y), X, yEsuppB.  

Here we use the usual multiindex notation, J=(Jl,J2, .-., J,), l= ( l l ,  12 . . . . .  1,), 

l!=11!12! . . . .  In!, IJl=Jl +J2+.. +j,, and ~"=~l'h't~*2 -..*,'z"- 
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We now define the norm IlflIp,=,.,a of f={fJ}lJl~k by 

[rj(x, y)l p _ d , alp (2.1) 

where iI fjllv, u denotes the L p (/0-norm. 
2.2 The space B~ (F), F d-set. Following [4], we call a closed set F a d-set, 

if there exists a measure # support~ed by F, such that for some r0 > 0  

and 

#(B(x,  1")) <= q r  d, xER", r <= ro, (2.2) 

cz >= Iz(B(x, r)) >= c~r d, xE F, r <-_ r o. (2.3) 

Here cl and cz are constants, and B(x, r) denotes the ball with center x and radius r. 
(Of course, the upper bound c~ is superfluous in this definition, but we include it 
for future reference. Note also that the constant r0 may be taken arbitrarily big; 
we then just get different constants ca, c2 and e3.) We saw in [4] that measures p 
satisfying (2.2) and (2.3) give equivalent norms H" I[p,,,u,d, and that the restriction 
Ad Iv of the d-dimensional Hausdorff measure to F satisfies (2.2) and (2.3). Having 
this in mind, it is natural to define the generalized Besov space B~(F) in the 
following way: 

Let F be a d-set, and let d, ~, k and p be as in w 2.1. Then B~ (F) is the space 
of  all functions f={fj}ljl_~k with finite n o r m  Ilfllp,~,F given by JlfJIp,~,F= 

lIfIlp,~,A~l~,a- 
Since R" is an n-set, and A, is the n-dimensional Lebesgue measure it is obvious 

by comparing (1.1) and (2.1) that B~(R")=A~'P(R ") for e < l ,  and we proved 
in [4] that in the general case, the functions f j ,  I j I= > 1, are uniquely determined 
by f0 if {fj}lji~_kEB~(R"), by means of D J f 0 = f j ,  and that B~(R")=A~,P(R ") 
with equivalent norms. 

2.3 The space L~(R") o f  Bessel potentials is defined for ~ > 0  and l<=p<=~. 
It consists of all functions of the form f ( x ) = ( a . e . ) = f  G~(x-y)g(y)dy ,  where 
gELP(R"), and G~ is the Bessel kernel of  order ~. This kernel may be defined by 
its Fourier transform, (~(~)=(1 + [31~)-~12; for more details about G~, see w 2.7. 
The norm in L p is defined by ]lfllLg(R,~=llgllp. 

2.4 Since we consider the behaviour of  functions defined a.e. in R" on subsets 
of n-dimensional Lebesgue measure zero, we need the concept of  a strictly defined 
function f If  f is a locally integrable function on R ", we define the corrected 
function f by 

1 
f (x)  = lim f _  ~-o m(B(x,  r)) ~ ~(~,~)f(t)dt' 
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at every point where the limit exists. According to a fundamental theorem by 
Lebesgue, f = f  a.e. We say that f is strictly defined if f is redefined, if necessary, 
so that f = f  at every point where the limit exists. 

2.5 We now state the results of this paper. 

Theorem l .  (Restriction theorem) Let l < p < ~ ,  0 < d < n ,  f l = ~ - ( n - d ) / p ,  
k < [ 3 < k +  1, where k is a non-negative integer, and let # be a measure satisfying 
(2.2). Then, for all fEL~(R"), 

II{OJ f}ljl~_kilp, a,u,d <= C liflIL~R"), (2.4) 

where the partial derivatives DJf  are Strictly defined for Ij[<-k, and where the 
constant c depends only on c~, fl, I~, d and p. 

Theorem 2. (Extension theorem) Let 1 <=p< ~ ,  let ~, fl, d and k be as in Theorem 
1, let F be a closed set, and let It be a measure supported by F satisfying (2.3). Then 
there exists a linear operator E, such that for every f =  {f~}ljl=<k with []f]lp,~,u,a<~ 
we have 

(a) IIEfllLgeR,)<=c[lfllp, a,u,a, where c depends only on c~, [3, It, d and p, 
(b) E f  is an extension o f f  in the sense that the corrected functions DJ(Ef) 

coincide #-a.e. with f j  for Ijl<=k. 

If  F is a closed set supporting a measure # satisfying both (2.2) and (2.3), then 
clearly Theorem 1 and Theorem 2 give a complete characterization of  the restric- 
tion of L~(R") to F, and as a corollary to Theorem 1 and Theorem 2 we have: 

Theorem 3. Let F be a d-set, let 0 < d < n ,  l < p < ~ ,  [3=~- (n -d ) /p>O,  [3 
non-integer. Then 

L~(R")I v = B~(F), 

where the meaning of  the statement is that the conclusions in Theorem 1 and Theorem 2 
hoM with [I" [Ip,,,,,d replaced by ][-[]p,p,v. 

2.6 Remarks on the proofs. We carry out the proofs in detail only for [3<1, 
since the formulas are for [3 < 1 less heavy, and thus easier to read (the expression 
(2.1) for 11" [Ip, a,u,d is e.g. reduced to (1.4)). The case f l > l ,  however, is not much 
harder, and we explain in separate paragraphs which essential changes must be 
done to carry out the proofs in the general case. Also, the theorems in [4] were 
proved in full generality, and we are able to refer to [4] for same ideas and formulas 
needed in the case [3>1. 

The general idea of the proof  of the restriction theorem is the following. The 
essential part of the proof  is, when /~< 1, to prove that the double integral of (1.4) 
but with e in (1.4) replaced by [ 3 = e - ( n - d ) / p ,  is less than a constant times 

IlflfL.=llgllp, where f = G , ~ g ,  gCL p. 
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Writing the double integral in the form 

f f  Ix- yl"- d (Ix- yl-'lf ( G , ( x - t ) - G ~ ( y - t ) ) g ( t ) d t l ) P  dl~(X) d#(y), 

we see that this follows if we prove that the operator 

T: Z~(Rn)c-~ZP(Ix--yl "-~a d~(x) d~(y)) given by 

Zg(x, y)= Ix-yl-=l f (G=(x-t)-G~(y-t))g(t) dt I 

is bounded, and we want to show this using the Marcinkiewicz interpolation 
theorem. However, one runs into difficulties for some values of the parameters 
(cf. the remark after (3.13)), and to come over this, we have to make some 
preliminary calculations (w 3.2) before defining an operator which is proved to be 
continuous using interpolation. 

(If we just wanted to prove the classical restriction theorem, the case when 
F is an hyperplane, using this approach, these difficulties could h av e  been over- 
come easily, using that we get an equivalent definition of Besov spaces using higher 
differences, (see [6], p. 153), and then the calculations in w 3.2 would have been 
essentially superfluous.) 

Concerning notation, it should be mentioned that in the proofs c denotes differ- 
ent constants at most times times it appears. 

2.7 Preliminaries. The following lemma, due to Calderon and Zygmund, is 
essential in the proof  of  the restriction theorem (see e.g. [3]). 

Lemma 2.1. Let uEL 1 and let 5>0.  Then we can write u = g + ~  gi, where 
[ ]g l [x+~ ~ ]lgil[a<=3llulla, Ig(x)l<=2% a.e., f gi=O, and for certain disjoint cubes 
Qi, gi(x) =0,  x~ Qi and ~ 1  m(Qi)<=6-Xllullx �9 

Here m(Qi) denotes the Lebesgue measure of  Qi. When reading the calcula- 
tions below, it will also be convenient to have the following simple lemma in mind. 

Lemma 2.2. Let O<d<-n, and let # be a positive measure satisfying (2.2). 
Then we have 

_f x-,,~_o l x - t t - rd l t ( t )  = O(aa-~) if  d > ?, a <= r o (2.5) 

and 

I x - t l - r  d~(t) = O(aa-r) if  d <  7, b <- r 0. (2.6) 

Here O stands for a constant depending on Ca, ?, and d. 

Proof. I f  we write 

f ,x_,,~= [x-tl-' d~(t) = f~r- '  d~(B(x,r)) 

and make a partial integration, we get (2.5). In a similar way (2.6) is proved. 
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Finally we list some properties of the Bessel kernel G~ (see e.g. [1]). The kernel 
G, is a positive, decreasing function of Ix], analytic on R"\{0},  satisfying, for a 
number c~ not depending on x, 

[DJG~(x)l <= cl[x[ ~-'il-" for a < n+ljl  (2.7) 

1 
IDJG~(x)I <= q log -yT ,  0 < lxl< 1, for ~ = n + l j l  (2.8) 

DJG~(x) is finite and continuous at x = 0  for ~ > n +  IJl (2.9) 

and, for all derivatives 

[DSG~(x)[ ~ Cl e-~d~l, 1 <= ]xl-<o~ for some c2 > 0. (2.10) 

3. Proof  of  the restriction theorem 

3.1. We assume that O < f l - = e - ( n -  d)/p< 1 (compare w 2.6 and w 3.4), and shall 
prove that 

I =ff ,  x-,l<l Ix-YI-~-~"(f I6=(x-t)-a=(y-t)f [f(t)f dt)"d#(x) dtt(y) ~_ cllfiI~, 
(3.1) 

and that f ]f G~(x- t ) f ( t )  dt]~ dl~(X)<=c ][fNv; these inequalities give (2.4) for 
f l<  1. The proof of the latter inequality is straightforward, and it can be found in 
[4], (Lemma 8.4), so we shall here concentrate on the main problem, the proof 
of (3.1). 

3.2. We shall first carry out some preliminary estimates for the left member 
I of (3.1) (compare w 2.6). Let 11, Iz and I3 be a s / ,  but with the t-integration taken 
over Ix-  t[<2fx-y],  2 Ix-y] ~ Ix-  t 1<2, and I x -  t ] ~ 2  respectively. 

If  ~ < n  (for the case ~ n ,  see w we have by (2.7) that IG~(x-t)-  
G~(y-t)i<=c(ix-t[~-"+[y-tI~-"), and observing that { t i l x - t l<21x-y[}c  
{t[ [ y - t [ < 3 1 x - y [ } ,  we deduce that 

I 1 ~ ~ f f  Ix -y l -~-" " ( f  Ix-tl~-"if(t) ldt)"d.(x)~.(y). 
l x - y l < l  I x - t i  <a  l x -  yl 

By writing the right member of this inequality on the form 

f +(x) Z,:o f._<,+.,~_,._.,<~_, ( ) dl~(y), 

it is easy to realize that 

4 <= cfdv(x)s (3.2) 

In order to estimate 12, we first observe that using the mean value theorem we get, 
for some 0 < 5 < 1 ,  [G=(x-t)-G~(y--t)l<-_lx--y{.]gradG=(x-t+a(y-x))l<-_ 



The  t race  of  potent ia ls  on  general  sets 

(by (2.7))<=clx-yl. ] x - t + g ( y - x ) l  . . . .  l~=clx_yl, l x_ t l  . . . .  1, where the last in- 
equality is valid if [ x - y l < l x - t [ / 2 .  Thus we have 

z2 <=c f f , ._ , ,<l fx-y l -"-a , ( Ix-y l  f,x_,,~_,._.,<=lx-tr . . . .  l l f(t)Idt)Pd#(x)d#(y), 

and similarly as above one obtains that 

,, <= c f a#(x) fio/~r-l-,,(rk~,._,,.=~lx-tl . . . .  llf(t)l~tl"ar. (3.3) 

For reasons which will be evident soon, we sometimes want a factor I x - t  [-r in 
this expression. 

So, let 7>0,  and put the expression [x- t[  -v (r~+? f•-tl sV-i ds )= l  under 
the integral sign of f ,~_l~_tl<~Ix-t['-"-l]f(t)J dt, and reverse the order of in- 
tegration. Then we get 

f r~-Ix-tl<2 I x - - t [  . . . .  l I f ( t ) ]  d t  

_f 2%~-1 ds _f,~_lx-,i <2 lx - t l . . . .  1 -r lf(OI dt + r' f .~_,x_ --t l  < 2  I x  - -  t l . . . .  1 -~ If(t) l dt 
(3.4) 

Put A(s)=Ts~-~f~<=lx_t1<~]x-t]~-"-~-r]f(t)]dt if s<=2, and A(s)=0,  s=>2. 
Hardy's inequality then gives (see e.g. [6] p. 272) 

f2/~r-l-"+'( f2 A (s)as)" dr <= f o  ~-~- ~'+'(f.= A (s)as) ~ Mr 

<= c ~  (rA(r))'r-1-aP+P dr = c f2  m - l - a , + , ( f  ,~,x_,~<~ lx- t  t . . . .  i- '[f(t)] dt)P dr. 

Combining this with (3.3) and (3.4) we see that 

h <= c f d a ( x ) f ~ r - I - a " f r ' + l f  [x-t] . . . .  1-r[f(t)I dt}Odr. (3.5) 
d d 0 ~ d r~_[x--tl<2 

From the mean value theorem, we obtain in the same way as above, but now using 
(2.10) as an estimate for the derivatives of G~, that ]G~(x-t)-G~(y-t)]<= 
c[x--y[e -e21x-tll~ if ]x--y]<=lx--t[/2 and ] x - t [ ~ 2 .  Using H61der's inequality 
we obtain e.g. 

Iz = f f l x -  y l -~ -aP( f  j~_ t ,~2 lG, (x - t ) -G, (y - t ) l  If(t)l dt) p dtt(x) dp(y) 

<: c f f  Ix-yla-aP+Pfl~_tl~2e-*~l~-tlp/' If(t) f dt d#(x) d#(y). 

Recalling from [4], (formula (2.1)) that #(B(x, r))~=cr ~, r>=ro, we can easily show 
that the last integral above is less than cl[fll~, so we have Ia<=cllfl[~. 

We collect the estimates above in the following way. Let 0 < r < 2 ,  ? =>0 and 
~<n,  and define a function K, depending on e, n, 7, r, for s > 0  by K( s ) = s  ~-", 
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s<-r, K(s )=rr+ts  " - " - r - t ,  r~s<=2, K(s )=rY+12"-" - r - I (3 - s ) ,  2 ~ s ~ 3 ,  
K(s)=0,  s>=3. For future reference, we remark here that we have 

and 
K(s) <-- c r T + l s  ~ - n - ~ ' - I  -~= crs ~-n-x "~- CS e-n, r <= s, 

and 

(3.6) 

I c /  [ 
t_~s K(S)[ <= crr+l s . . . .  r-2 ~ c s . . . .  1, r < s, s r 2, s T~ 3. (3.7) 

Clearly, by (3.2) and (3.5), both Ix and 12 are less than a constant times 
f d#(x)  f2 o r - l - P P ( f  K([x- - t  [)Lf(t)[ dt) p dr, and since the left member I of (3.1) 
satisfies I<-c(I~+Iz+I~), and since la__=cLIf[Iv, (3.1) follows if we prove that 
(recall that fl = o~- ( n -  d)/p) 

f dr(x) f ~  r - I +"-~ ( r - ~ f  K(Ix-t l )If(01 d') p dr <_-c tlfll.". 

3.3. Thus, by the argument in w 3.2, our task is to prove that the operator 
T: LP(R")--,-LP(Iq) given by 

r f ( x ,  r) = r-= f K(Ix-t3 lf(t)I dt 

is bounded, where we have put 

d#a = r -x+"-d d r ( x ) d r ,  r -< 2. 

This follows from the Marcinkiewicz interpolation theorem (see e.g. [9], Chap. V), 
if we prove that T is of weak type (p ,p)  for all p with O < ~ - ( n - d ) / p < l ,  i.e. we 
shall prove that 

/h{(x, r) lTf(x ,  r ) >  a} < (cltfllq. (3.s) 
= U - Z - ,  

for all a~-0, where c is a constant, independent of f~LP(R ' ) .  Using H61der's in- 
equality we see that, with 0 < a < l ,  we have 

]rf(x, r)?' <= r-=~ f K(lx- tD"P[f( t ) I  p dt ( f  K(lx-tD o-o,,' d,) "/ ' ,  
1 1 where ~ + 7 = 1 .  By integrating over I x - t [ < r  and [x-tl>=r separately, using 

in the latter case that K(s)~=crs =-"-x, s>=r, one immediately verifies that 
f K(lx- t l ) (a-")P 'd t  is less than r "-("-a)(1-a)p" if 

n 
0 < ( l - a ) p  - - - - - 7  ( n - ~ )  < 1, 

which gives 
(Tf (x ,  r))P I-= cr-" +"v(" - ~, f K([x--  t I) 0~ ] f ( t ) f  dt. 

Denote the right member of (3.10) by H(x ,  r). 

(3.9) 

(3.10) 
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Now we apply Lemma 2.1 with u=l f [  p and 6=aVCo 2-", where c 0 is a con- 
stant to be chosen later, and thus write [ f l  p on the form g + ~ g i ,  where 
Igl<_-Co~ p. Let Hi(x, r) and H~(x, r) be the right member of (3.10) with [ f l  p re- 
placed by g and ,~g~ respectively. We then have 

/./I{(X, r)l T(X, r) > a} = px{(x, r) l Z(x, r) p > tr p} 

~ I { ( X ,  r)lH(x , r) >GP}~I{(X, F)[HI(x , r)>aP/2}+#l{(X, r)[H2(x, r) >aP/2}. 

To prove (3.8), it is thus sufficient to prove that 

and 
['~I{(X, T) I H  1 (X, F) > aP/2} = 0 

].L 1 {(X, r) i n  2 (x, r) > trP/2} < -  ( c  Ilfllp/aF. 

(3.11) 

(3.12) 

Estimates on Ha. Integrating over l x - t l < r  and Ix-t[>=r separately, using in 
the latter case the first estimate in (3.6), we clearly get ! n , ( x , r ) l  <- 

c r  -n+ap(n-=) Co o-~ f K(Ix-tl)apdt<=CCoaP=aP/2, where the equality is valid if the 
constant Co in advance is chosen to be equal to 1/2c. The calculation is valid if 

0 < n / a p - ( n -  ~) < ? + 1. (3.13) 
This gives (3.11). 

Remark (cf. w 2.6). In general, the constant a can not be chosen so that this 
is fulfilled with ? =0.  

Estimates on H~. Recall that Ha is the right member of  (3.10) with I f  [ p replaced 
by z~=a gi, where the functions gi satisfy f gi=O, g i=0  outside a cube Qi, 
whose diameter and center we henceforth call r i and ml respectively, ~r~<_ - 

(2 l/-~)"flf[f~/coaP, and ~' l lg,  lll~cllf[I p. 
Put E =  wEi, where Ei={(x, r) I Ix--mil<2ri, r<ri}. We shall below show 

that 

f fce Ins(x, r)] dlq (x, r) <-_ c llf[]~ (3.14) 

which gives pl{(X, r)~CE[ ]H=(x, r)i>aP/2}<=c(l]fJ[Ja) p. Observe next that, since 
r))<=J, 

pl(E) < (x r"-a-l dr <= c ~.ai=l- i = c(][fllp 
= 1 z < r i  

Note that here we used that d is strictly less than n. Together with (3.14), this 
gives (3.12). 



10 A. Jonsson 

In order to prove (3.14), we take the sum sign of ~ g i  outside the integrals, 
and then use that CEcCEt, and get 

ffcE ]a2(x' r)[ dpl ~ c  ~i~=lffcEi r-n+ap(n-~) f g ( I x - t l )  ~ gi(t)dt d#l 

= cZ?=l (at+Bt), 

where in At and Bt the integration with respect to Pr is taken over {(x, r)[ri~=r<2} 
and {(x, r)[ [x-mi[~=2rt, r<rt}, respectively. Since f gt(t) dt=O, we may sub- 
tract K([x-mt l )  "v from the integrand in the t-integration when estimating At, 
and after changing the order of integration we get 

At ~= f~, Igt(t)l at f~ r -~-"+o'('-~) dr f ]K(ix-tl)"- K(Ix- lntl) ap] dct(X). 

Here we first perform the integration with respect to dct(x), and integrate over 
I x ' t [ < 2 1 t - m t l  and ]x-t[>=2]t-mli separately. If  ]x - - t [~2I t -mi[  we have 
[g(Lx- t l) ~ <-]t-mtt supr ]grad h (r where h(x) = K(]xl) ap and L 
is the line segment between x - t  and x - m r .  Since, by (3.6), (3.7) and the 
definition of K, K(s)<=cs ~-" and ]dK(s)/dsl-~cs ~-~-1, s r  s r  s r  we have 
idK(s)aP/ds[ <= CS(,-,)(ap--1)+,-,--1 = CS(,-,)~p-a which gives Igrad h (~)I<= c 1~ [(,-,),p-1. 
This gives (see below), for tEQi, r<2 ,  

f rx-,~-,r,-.., Ig(lx- t l ) " P - g ( l x -  m'l)"pl dct (x) 

c It-- mtI f (Ix--t[/2) (=-n)"p-a dct(x) <= c I t -  rntl a+ (=-")'. ,J 2lt-mil~_lx-t[~4 

We also have 

f ,~_,, <~ ,,- -,~ IK(lx - t 1)"~' - K(  Ix - ml I)"P{ act (x) 

<= ~ f ~_,,<~,,_m,, [x-tl(=-")~" dct(x)+c f l~_,,,,<zl,_~, I lx-mtt(=-")"P dct(x) 

~= c I t -mtl  a+(~-")"p. 

The integrations here may be performed by means of Lemma 2.2, and the calcula- 
tions hold if O < d - ( n - a ) a p < l ,  which is satisfied if 

0 < d / a p -  (n - a) < 1, (3.15) 

since d - ( n - c O a p < l  is trivial if ap>l ,  since then d - ( n - ~ ) a p < c ~ - ( n - d ) <  
~ - ( n - d ) / p = f l < l .  Clearly, since I t -m i l~r i ,  under (3.15) this gives At<= 
c f Igi(t)] tit. 

Bt is estimated more straightforwardly, we have (since ]t-mtl<=ri) B i~  
c fa, Igt(t)I dt fo' r-l-d+ap(n-~)dr f,,~t~-,~ <~ r~e Ix- t l ( . . . .  ~)"P dct(x)<=c f [gt(t)l dt if 
(3.15) holds. 
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Thus Z;~ Ilg, lll<=Cllfll~, and (3.14) is proved, if we 
show that the constant a may be chosen so that (3.9), (3.13) and (3.15) are satisfied. 
Clearly, (3.13) holds if (3.15) holds and y is chosen big enough, and the fact that 
a can be chosen to satisfy (3.9) and (3.15) was proved in [4], p. 86, so we omit it 
here. This completes the proof  of  the theorem under the assumption that 
o~<n, f l<l.  

3.4. The case a>n, f l < l .  The only place in the proof  above where we used 
the assumption a < n  was in the estimation of 11, and consequently it also affects 
the definition of  K. Since f l=c~- (n -d ) /p<l  we have a < n + l ,  and if n < a <  
n + l  it is known that IG~(x--t)-G~(y-t) l<=clx-yl  ~-~ for Ix - t l~_2 lx -y l  
(see e.g. [4], p. 82). Using this estimate, we obtain 

f ( ) I1 <-- dl~(X r -1-pp r~-" f [f(t)l dt p 
0 d l x - - t l < 2 r  ' 

and if we now define K for s<= r by K(s)= r "-", the proof  runs essentially as before. 
The case k < f l < k + l ,  ~ non-integer. The desired inequality (3.1) is now re- 

placed by inequalities of type 

f f lx-yl<x I x -  y[-a-~a-IJl)p (f  IA (x, y, t)l [f(t)l dt)P dp(x) dp(y) <- c llfllg, 

where As(x, y, t )=DiG~(x-t)--~lj+tl~k DJ+ZG~(y--t)(x--y)t/[!. The terms 
corresponding to 12 and 1~ are estimat'ed as before, the only essential difference 
being that the use of the mean value theorem in w 3.2 is replaced by an 
application of  the Lagrange remainder in Taylor's formula. When e < n +  ]Jl the 
term corresponding to /1 in w 3.2 is estimated in a similar way as 11: Each 
term in Aj (x, y, t) is estimated separately. When ~ >n  + [j [ the term corresponding 
to 11 must be given a more careful treatment, compare [4], pp. 181--182. This 
leads to defining K by e.g. K(s)=r k-ljl~'-~-k, s<=r, and 

K(s) = rk-ljl+r+ls~-"-k-~-l, S >= r, if a <  n+k. 

The case e>=n, ~ integer. This case may now be obtained from the case e non- 
integer using complex interpolation. If  ~ is an integer, k < f l = e - ( n - d ) / p < k +  1, 
choose c~, i=1 ,  2, ei non-integer, k < f l i = e i - ( n - d ) / p < k + l  so that e l < e < ~ .  
We consider the case k =0.  Then the operator T: L~, (R")F~LPIx--Yl -d-a,p dl~(x)d#(y) 
given by T f = f ( x ) - f ( y )  is bounded by what is already proved. Let t be given 
by e = t e l + ( 1 - t ) e  2. Then, from the general theory, see e.g. [9], Chap V, Section 5, 
in particular w 5.4 and w 5.7, T is bounded from L~ to LPlx-y l  -~ d#(x) dlz(y), 
where ? = (d + fllp) t+ ( d + fl2p) (1 - t) =d + flp. 
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4. Proof  of  the extension theorem 

4.1. The extension operator. We assume throughout the proof  that 0 < f l =  
c~-(n-d)/p<l;  for a comment on the general case, see w We use exactly the 
same extension operator of  Whitney type as in [4], and to define it, we need the 
same partition of unity as in the Whitney extension theorem. This partition is 
obtained in the following way (see [6], Chap VI, Section 2). 

Let F be a given closed set. Then there exists a collection of  closed cubes Qk, 
with centers Xk and diameters lk, and sides parallel to the axes, with the following 
properties: 

a) CF= u Ok 
b) The interior of the cubes are mutually disjoint. 
c) For  a cube Qk, let d(Qk, F) denote its distance to F. Then 

lk <= d(Qk, F) <- 4I,. (4.1) 

This partition also has the following properties: 
d) Suppose Q, and Qv touch. Then 

IJ4 <= lv <= 41k. (4.2) 

e) Let e be a fix number satisfying 0 < e < l / 4 ,  and let Q~ denote the cube 
which has the same center as Qk, but expanded by the factor 1 + e. Then each point 
in CF is contained in at most N o cubes Q2, where No is a fixed number. Furthermore, 
Q~. intersects a cube Qv only if Qk touches Q~. 

Let O next be a C=-function satisfying 0<_-0<= 1, O(x)=  1, x~Q and 0 ( x ) = 0 ,  
xq{ (1 +e )Q where Q denotes the cube centered at the origin with sides of  length 1 

parallel to the axes. Define 0k by Ok(X)=O((X--Xk)/Sk), where Sk=lk/I/n is the 
side of  Qk, and then qo k by ~Ok(X)=Ok(X)/~Ok(X). Then ~0k(X)=0 if xCQ2, 
~q)k(X)= l ,  xE~F, and it is easy to show that for any multi-index j we have 

IDJ q~k(X)I <= Ajl~JJJ, (4.3) 

where / l j  is a constant. 
Let now/z be a measure, supported by F, satisfying (2.3), and let f be a func- 

tion defined on F and summable with respect to /~ on bounded sets. Define an 
operator E '  by 

E'f(x) = ~ i  q)i(x)c, f tt_x,l~t,f(t)d#(t), xECF, (4.5) 

where c i is defined by c?x=l~(B(xl, 611) ). 
For  convenience, we will below often denote the function E ' f  by f .  It should 

be noted, that E ' f  is defined a.e. on R ~ by this formula, since a set F carrying 
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a measure satisfying (2.3) must have Lebesgue measure zero, see the proof  of 
[4], Prop. 1.1. 

We note here, for future reference, that the lower bound in (2.3) for # allows 
us to get an upper estimate for ci in the following way. From (4.1) we see that 
there exists a point Pi E F with I p, -- xi[ <-- 5l~. This gives # (B (x~, 6//)) >= It (B (Pi, 1~)) >-_ 
c217 if l i<_-r0 or 

c i = (fl(B(xl, 6li))) -1 <-- c~aIf a if I i <- r o. (4.6) 

Next fix a function ~o such that tp~C =, ~p(x)=l if d(x, F)<=3, ~p(x)=0 if 
d(x, F)_->4, and such that DJ~o is bounded for every j. The extension operator 
E used in the theorem is now defined by Ef(x)=q~(x)E ' f (x ) .  

4.2. Lemmas. The first lemma below gives the fundamental estimates on the 
extended function in terms of the given function f on F. It is a variant of  
[4], Lemma 5.2, and thus essentially proved in [4], but we include a proof  here also, 
since the mechanism of  the lemma becomes more clear here, due to the fact that 
we have stated the lemma with less generality. Recall that CF= u Q~, where Q~ 
are cubes with diameters I~ and centers xi. Below the center of Qt is also sometimes 
denoted by Yi. 

Lemma 4.1. Let F be a closed set, let # be a measure supported by F satisfying 
(2.3), l i t  f be defined It-a.e. on F and summable with respect to It on bounded sets, 
let l < = p < ~ ,  and let f : E "  f be given by (4.5). Let also xEQi and yEQv be points 
with distance from F not greater than 4, and put 

J ( x , ,  y v )  = f f . ,  _ x ,  - If (t) --f(s) [P dIt (t) dIt (s). 

a) Then for any multiindex j with [ j l > 0  we have 

[DJ f(x)l"  <- cl? IJlp-d l~-d J(xi,  YO" (4.7) 
b) We have 

] f (x ) - f (y ) ln  <= clFd lydJ(xl, y~). 

Proof. The assumption that the distance from x and y to F is bounded by 
a fix constant, will allow us in the proof  not to bother about the constant r0 
appearing in (2.3), as ro may be assumed arbitrarily big (see after (2.3)). For  con- 
venience, we first make the following change of  notation: We assume that x6Qt  
and y~ QN, and shall consequently prove that the lemma holds with i and v replaced 
by ! and N, respectively. 

We first prove statement a). Recall that ci=It(B(xi, 6//)) -1. Since ~'~0i(x)= 1, 
x~CF, we have ~iDJ~pi(x)=O, j r  and we can write 

D j f (x) = ~ i  Dj q~i (x) c i ft,- x,l~_ e,, ( f ( t )  - f (s))  dIt (t), 
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and using H61der's inequality we obtain 

]OJ f(x)] <= ~ ,  ]OJ rpi(x)] cl/p(f [f(t)-f(s)lP d#(t)) tip. 

Let Qi be a cube touching QI- Then by (4.6) and (4.2) we have 

c~ <= c~t l7 a <= el f  d, 
and by (4.2) 

It-x~l <= I t -x i l+lx l -x l l  <- 61~+I~+1i<= 301~ if Tt-xil <- 61~. 

Since ~pi(x)#O only if xEQ*, and xEQ'{ iff Qi and Q1 touch, it follows that these 
estimaties hold for the at most No numbers i such that ~oi(x)r Together with 
(4.2) and (4.3) this gives 

[DJ f(x) l  p <: clid-ljlP f l If(t)-f(s)]P dlz(t). 
t - -  x i [ ~ 3 0 1  x _  

Integrating this inequality with respect to d#(s) over B(y  u, 301N) we obtain the 
desired estimate (4.7), since clearly, by (4.6), #(B(Yu,  30ly))>=cl~. 
Next we prove b). Since ~ 'g0i(x)=l ,  we clearly have 

f ( x )  - f ( ; )  = Z rPi (x) e i f ,,_ ~_ o,, (f(t) - f ( y ) )  d# (t) 

= Z i  Z v  (pi (x) q~v (y) e i c~ ,,-,v,~-,,v ( f ( t ) - f ( s ) )  d# (t) d# (s). 

Using H61der's inequality and estimating as in part a), we immediately arrive at 
the desired formula. 

Remark. For j = 0  we have, instead of (4.7), the easily provable estimate 
[f(x)lP<=cli -n flt-~,l=301, [f( t ) l"  d~(t). 

The next lemma is our main tool when we shall put the local estimates of 
Lemma 4.1 together, in order to show that our extension belongs to L~ (R"). For 
a proof of the lemma, see [4], the proof of the formulas (5.16) and (5.17). 

Below, we put h t = 2 - I  and At=- {xlht+~<=d(x, F)<ht},  I integer. The follow- 
ing observation will be needed later. If  i and I are such that Q~ intersects AI, we ob- 
tain from (4.1) that (h~+~-li)/4<=li<=ht, and hence 

hl/lO<=l i<=hz if Qic~AI~0.  (4.8) 

Lemma 4.2. Let F, I~, f , p ,  and J(xi,  y~) be as in Lemma 4.1, and let J~(xi, y,) 
be as J(xi,  y~), but with the number 30 replaced by a>0 .  

a) I f  g is given by g(x)=J~(xi ,  xi), xEint Qi, then 

f g(x) <= chyr f f tt_sl<~,h, [ f ( t ) - f (s) l  t' dla(t) dla(S). (4.9) 
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b) I f  g is given by g(x,y)=J(xi ,yO, xCintQi, yEintQv,  then for h I, 
hN~cohr we have 

f f x,az, y aN, ~x-r,<hK g(x, y) dx dy ~ chTh"s f f ~t_sl<(l+62co)hx__ {f(t)-f(s)]" dlt(O dl~(S). 
(4.10) 

p n 4.3. When we prove that our extension belongs to L~ (R),  we shall use the 
following equivalent characterization of  L p (see [7]). Let 0<c~<2 and l < p < o o .  
Then fEL~(R n) if and only if fELP(R ") and 

D~,f(x) = f ltl~_, ltl . . . .  ( f ( x+O- f (x ) )d t  

converges in L p as e ~ 0  to a limit D , f  Also, then ell[fHLg<=llfllp+][D, fl[p<= 
e~IIfllLg. This characterization may be used for all c~>0, if one makes a reduc- 

tion using the following fact ([6], p. 136). A function f belongs to L~, 0 < m < e ,  
m integer, if and only if DJfEL~ ... .  Ijl<=m, and we have 

cxllfllLg <= Zt~l=~,, IlO~/llLg_,, <= c2 [If[lLg. 

(Actually, the term in the middle of this inequality may be replaced by 
z~ljr<,, IlDifll~+ZIjl=m [IDJf[lLg-,,' this may e.g. be seen using various inclusion 
results for L~ and Sobolev spaces.) Here D~f denotes derivatives in the distribution 
sense. 

In order to prove that D~f converges in L p, it is clearly sufficient to prove 
that S, f (x )=f  Itl -"-= [A~f(x)ldt belongs to LP(R"), where A~f(x) denotes 
f ( x + t ) - 2 f ( x ) + f ( x - t ) ;  then we also have IlD,(f)Ilp<=~[lS~fl[p. Also, if 
fELl', by Minkowski's inequality, we at once have ]]fltlm It] . . . .  IA~f(x)[ dtl],<= 
f ~,~ ~_~ It I -'-~' ItA2tf (x)I] t, dt~= e II flit,. 

4.4. We are now ready to prove the extension theorem. Let f be as in Theorem 
2, O<fl=o~--(n-d)/p<l, and let the integer m be given by m §  if 
cc=>l, and m = 0  if c~<l. We shall show that the function Ef  defined in w 
satisfies the conditions of  Theorem 2. We showed in [4] that Ef is an extension 

of  f in the sense of part b) of Theorem 2, and that IlEfilag(R.)<=cllfllt,,a,,,a, 
and thus in particular that IIDJ(Ef)llp<-cl[fllt,,a,,,a, Ijl<-m, and, consequently, 
also that the distribution derivatives DJ(Ef) coinside a.e. with the pointwise derivat- 
ives. By the argument in w 4.3. it remains to show that 

f(ft,,< ltl . . . .  ljl<-m, (4.11) 

where D j means pointwise derivatives. 
Recalling that Ef=O if d(x, F ) > 4  and the definition of A t given before 

Lemma 4.2, we see that the left number of (4.11) is less than or equal to 
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Z~'=-3 f x~A, 2p-I(A'(x)  p + B*(x) p) dx, where 

A , ( x )  -= ltl-"- § IA~DJ(Ef)(x)] dt, xE A, 

and B t is the same integral over h,/4<=lt[<l. Note that in At(x ) and Bl(x ), for 
I=>--1, we have A2tDJ(Ef)(x)=A~DJ(E' f)(x)=A~Dif(x)  for all points in the 
domain of integration. Also Bi (x)=0 ,  1 = - - 2 , - - 3 .  We consider first At(x ) for 
I =  > - 1  (for the case I = - 2  and 1= - 3 ,  see the comment after the formula (4.12)). 
Using the mean value theorem twice, we see that 

IA~OJf(x)r <= c It 12 Zjzl=2 supr IDJ+'f(~)l, It l <= h,/4, xCA x, 

where L is the line segment between x - t  and x+t .  If  xEA~nQi  and, say, 
~CQvo, one can realize that (see [4], w for details) hx/20<lvo<-5hJ4, and that 
[t-x~ol<=3Olvo implies It-xi]<=400l~. In view of  this, it follows, using part a) of  
Lemma 4.1 with i = v = v  0, that 

2dip I . IA~OJf(x)l <= c ]t[2hi -(Ijl+2)- (J (~i, xi)) x/~, xEA,  n a i  

where J'(x~, x~) is as J(x~, x~), but with 301~ replaced by 400//. Thus we have 

J (xl, ~i) (A , (x ) ) ,  <=c Itl , . ,  

<= (since m > ~ - 2  and [j] <- m)<= chi-'p-2dj'(xl, xi), x E A i n Q i .  

By (4.9) we obtain that 

~a, (A~(x))pdx ~= ~"~ J J I,-~l~_800h~ If(t)-f(s)IP d#(t)dl~(S)" (4.12) 

We remark here that one can see that a similar formula holds for I = - 2 ,  I = - 3 ,  
and that this formula immediately gives f.<a.(Az(x))Pdx=_llfllp, a,.,d, I = - - 2 ,  
- 3 .  (However, the term (D~+~rp({))(f({)) which appears when using the mean 
value theorem is estimated a little differently, and formula (5.13) in [4] is useful 
in this connection.) Performing the summation of (4.12) with respect to /, it 
is not hard to see (compare [5], Lemma 5.3 and Remark 3.1) that 

~ = - 1  (AI(X)) p <= c f f [t-sl-cLp+n-2a if(t ) _f(s)[p d#(t) d#(s) <= cllfll~,e,~,d. 

To estimate B~, we first make the following estimates, where ~>0, and where 
we use H61der's inequality in the second inequality 

(B,(x)).~2,(f. Itl . . . .  +mtDJf(x+t)--DJf(x)ldt)P 
t/4~_ltl<1 

-~= c h y  f .  ltl . . . .  P+mP+~PlD3f(x+t)-DJf(x)lPdt 
z/a~_ltl<l 

_~ ,_~p ~,,+1 ~-,_~p+~p+,p f ioJ f (x+t)_DJf (x) l~dt  
CtlI  - ~ K = 0  t tK ,J i t l<hK 

= chi-~ S,t+~ ~-,-,p+m~+~p X" ~ f iD~f(x)_D~f(y)lPdy. 
~.-g K =0 " K  ~ N = K - - 2 , J  lx_yI.<hK, y ~ A  N 
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Part a) of  Lemma 4.2, or part b) if I j [=0 ,  shows that [DJf(x)--DJf(y)lP<= 
cli-al(-a(lZtilP+l~-IilP)J(xl, Yv), xEQ,, yCQv, and using (4.8) and (4.10) we get 

~o/=_lfx~i(B1(x))Pdx<=~t.~.ti=_l,tiT ~ 1,--~P ~ K = O ~ N = K - 2  ~ 1, . . . .  p+mp+ePhn-dhn-dl N 

X (hi-tJtp + hff Is'lp) f f  I f ( t ) - f ( s )  [P dlt (t) dp (s). 
d d It--sl~3OOhK 

After writing the sum as Z~=0 Z;=K-1ZN=K-Z' we perform the summations 
with respect to I and N, and obtain, since n-d>O and n - d - l j [ p > O  for 
IjJ<=m, (this follows from m < - ~ - i  and ct-(n--d)/p<l),  if e is chosen small 
enough, that the sum is less than 

c 2~'=0 n,-2a-~p/'/" I f ( t ) - f ( s ) f  d#(t) d#(s) t tK . l  J [t--sl~3oOh K 

<- c f f  l,_,t~_3oo It--s[n-2d-~Plf(t)--f(s)lPdlx(t)dlX(S)~__ cllf[l~.a,v,d. 

This concludes the proof  of the theorem for 0 < f l <  1. 
4.5. The case k < f l < k + l ,  k integer, k > 0 .  The operator E '  defined by (4.5) 

is in this case replaced by 

E" ({f j}lJl~-k)(X) = .~i ~~ f l,_~,l~_o~ p(x, t) d#(t), 

where p(x, t)=~,ljl~k((X--t)~/j!)fj(t). The essential change in the proof  is that 
a) and b) of Lemma 4.1 are replaced by (we put f=E'({fi}ljl~_k)) 

a) lOJf(x)f <= c ~t,l~_k l!lul-lyl)p-alfd Ju(xi, YO, [Jl > k 

l-al-dtl(lul-lJl)P-kl(lul-IYt)P)J, fx , y,), IJl = k 

where J,(xi, yO is as in Lemma 4.2, but with f ( t ) - f ( s )  replaced by r~(t,s) 
(cfw 2.1). This is a variant of  a special case of  [4], Lemma 5.2. Also, in (4.9) and 
(4.10) the expression f ( t ) - f ( s )  is replaced by r~(t, s), the integer m in w 4.4. shall 
be defined by m + l < - ~ < m + 2  if g_->k+l, re-=k, k < g < k + l ,  and we prove 
(4.11) only for Ijl=m, which is sufficient due to the discussion in w 4.3. 
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