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Recall that i f  u: X ~  Y is a linear operator (X, Y-normed spaces) then zoo(u), 
the 2-absolutely summing norm of u, is defined by 

n2(u) 2 = sup ~x~ F  I[ux[I ~, 

where the supremum is taken over all finite subsets F c  X such that ~ ~ F [(x*, x)[2~ 
Ilx*ll 2 for every x*CX*. 

In the present paper we show that if u is an operator of  rank n then n2(u ) is 
essentially determined by the subsets F of  cardinality <=n. "Essentially" means up 

1 <T<=cos re/12. This answers a question of  T. Figiel to a universal factor T with -~ 
[6] and enables to obtain as corollaries analogous facts for the type 2 and cotype 
2 constants of n-dimensional normed spaces (el. [1] p. 85). 

I wish to acknowledge the support of  the ROyal Swedish Academy of Sciences. 
The result of  this paper was obtained during my visit in the Mittag-Leffter In- 
stitute. I am indebted to Peter Orno for stimulating discussions. 

We use standard notation and terminology (cf. [4] and [5]). 
Let X, Y be Banach spaces and let u: X-~ Y be a linear operator. For  each 

positive integer k we define =~)(u) as the smallest number satisfying the inequality 

(.~=1]luxjll~)I/2~ ~<k)(u)sup{(Z~=1 ](x*, xj)12)I/21x* E X*, ]Ix*]] ~ I}, 

for every sequence x~, . . . ,  xkEX. 
Obviously one has 7~ 2 (U) = SUpk ~Z (k) (U). 

Theorem 1. Let X, Y be Banach spaces and let u :  X-~ Y be a linear operator 
o f  rank n. Then 

~"~ (u) <_- ~(u)  <_- 2~"~ (u). 

Proof. We consider first the case X=l~'.  Without loss of  generality we may 
assume n2(u)= 1. Then there exist operators v: l~-*l~ with n.~(v)= 1 and w: l~'~ Y 
with Ilwl] =1 such that u=wv.  This follows from Pietsch's factorisation theo- 



274 Nicole Tomczak-Jaegermann 

rem for  2-absolutely summing operators  (cf. [5]). We will construct  an o r thonormal  
basis (ej) in l~' such that  

(Z~- II ilia) ~/~ =1 ue ~ T" 

The eSs are chosen inductively so that  for  j = l ,  . . . ,  n 

Ilej[I = 1, ej~Ej where E1 = 12, Ek = [el . . . . .  ek-d  -L for  k > 1, 

Ilwvej[I = []vejll Iiwlvtra)l[. 

Let  m~=n be the positive integer such that  

llwtv<Em+l)tl < I/~- <_- Itwlv<rm)ll. 

It  suffices to prove that  ~ = 1  e 2>1 m Ilv j][ = g ,  because this yields 

7~)()n /2 => (Z~ =1 ]1 uejll2) 1/2 ~->- (Z~'=l I1 wvejll~) 1/~ 

= ( ~ = ,  Itw,v(E,,[J=llve, ll2) 1/2>= ~'~'(Z7=111vej]l~) 1/=>1=w" 
Let P: l#-+1~ be the or thogonal  projection onto E=+ 1, let Q = - I - P  and let 

~=~'=1 IlvejIl =" 
Since for  an opera tor  acting in a Hilbert  space its 2-absolutely summing norm 

equals to its Hi lber t - -Schmid t  norm,  we have 

ot = rc~(vQ) =, zc2(vP) 2 = zc2(v)2- zc2(vQ) ~ = 1 - ~ ,  

rc2(vQ + flvP) : [~z=(vQ)2-k fl~z2(vP)~] 1/2, for  any real ft. 

Thus, for  each bE(0, 11 we get 

1 = re2 (wv) ~_ rc 2 (bwve) + ~t2 ( w v "  bwve)  

<- b Ilwi.E. +1> I[~= (vP) + II wll =2(va + (1 - b)ve )  

< b ~ re2 (vP) + [~2 (vQ) 2 + (1 - b) = =2 (vp)2] 1/2 

= b 1/-}0 - ~ + [~ + 0 - b)= 0 - ~}]1/~ 

= h e f t ( 1 - ~ ) +  [(1 - ( 1 - ~ )  b)~+(1-oOotb~] I/~ 

< b 1 / ~ ( 1 -  ~)+ 1 - ( X - ~ ) b +  b~ , 

For  the last inequality observe tha t  (sZ+t2)l/2<=s+t2/2s, for  s > 0 .  

It  follows that  for  every bE(0, 1] we have 
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> 1 This proves the special case of The- This implies that 1--a<=~ and hence ~ = ~ .  
orem 1. 

Now let u: X - ~ Y  be an arbitrary operator of rank n. Let xl ,  . . . ,  xmEX satisfy 

~.=l](x*,xj)[2<= IIx*ll 2 for every x*EX*. 

We shall prove that 
(Z~.=~ Iluxjll2) 1/m <- 2n~ ") (u). 

Let us define U: l~-~X by Uej=xj  ( j = l ,  . . . ,m),  where (ei) is the unit 
vector basis in l~'. Our assumption yields ][ U [1 <= 1. Let E be the orthogonal comple- 
ment of the kernel of uU. Then dim E = r a n k  uU<=n. We apply the special case 
of the theorem to the operator uUlg. This yields 

(Z~'=~ lluxjll2) ~/2 = (Z~'=I lluUejll~) ~/2 <-- ~2 (uU)  = n2(uUtg) 

<_- 2~")  ( u Uj E )<---- 2~")  (u)IIUIE II <---- 2=~(") ( u.) 

This completes the proof of Theorem 1. 

Remark. The computations in the proof can be made slightly simpler by setting 

b = l .  The final constant becomes then 31/2 (or 4, if }/~ is replaced by -~). 

Let X be a Banach space. Let T1, 72, ... be a sequence of independent normalized 
Gaussian random variables on a probability space (f2, p). Following Maurey and 
Pisier, for each positive integer k we define the type 2 and cotype 2 constants of 
X (cf. e.g. [1]). These are the smallest positive numbers ak(X) and ilk(X) such that 
the following inequality 

holds for every sequence xx . . . .  , Xg in 2". 

Theorem 2. Let X be an n-dimensional normed space. Then for every integer 
k >- n one has 

an(X) <-- ~k(X) <---- r  ~.(X), 

ft.(X) ~_ ~k(X) <= 2/~.(X). 

Proof. The inequalities for the cotype 2 constants of X are formal consequences 
of Theorem 1 and the following obvious formula valid for k =  1, 2 . . . .  

ilk(X) = sup{n~k)(u)[u: I k --" X, L I I~L,e jue j l l~a~  = 1}. 

The latter formula is implicit in [3] (cf. Proposition 5 and Theorem 4). 
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The case of  the type 2 constants is slightly more difficult. We need the dual 
form of  Theorem 1 which can be stated as follows. 

Given a positive integer k let B be a set of  operators v: l~-+X which admit 
a factorisation 

where A is a d i a g o n a l m a p  and [jVl[[, [JAIl, [Jv2[l<--1. Then every w: l~-~X with 
2 kw ) _-~ belongs to the convex hull B of  the set B. 

Observe also that  for each j =  1, 2, .., the formula 

I(U) : ( f  ~ [[zJ=I ~iueiH2d~l) 1/2 

defines an operator ideal norm on the space of  linear operators L(I~, X) (cf. [2], [3]). 
In particular one has 

l(v~Avl) < l(v2A)[Iv~][ < l(v2A) 

Now, if k>:>n, there is an operator u: I~-~X such that k Z~=~ Iluejll ~-- 1 
and ~k(X)=l(u). Clearly lr z* (u*)=< 1 and hence ~1 uE/~. I t  follows that 

l(u) ~= sup {I(v2AvO [v2AvlE B} 

<= sup {I(v2A)]A: I'~ -- l~, v~: l~ -~ X, IIA[I -<- l, IIv~ll <= 1} 

~,(X), 

because ~ . ~  IIv2Aejll2<= 1. This completes the proof. 

Remarks. 1 ~ Theorem 1 and 2 enable one to simplify some arguments and 
obtain sharper versions of  several recent results. We can only mention Theorems 
6.2, 6.3, 6.5 and 6.7 in [1], Section 10 of [2], Theorems 3 and 4 and Corollary 7 in 
[3]. Let us formulate a sample result of this kind. The definitions of  the type p and 
cotype q constants o f  a space X, in symbols K (v) (X) and K(q)(X), and of the 
Banach- -Mazur  distance d(X l di~nx~ , 2 ~ can be found in each of the papers we refer to. 

Corollary. Let X be an n-dimensional normed space. Then 

d (X, I~) ~ 4 K  (v) (X) K(q) (X) n I/v- ~/q. 

2 ~ Easy examples show that in general U~k)(U)>U~")(U), if  k > n = r a n k u .  
On the other hand the method used in [1] Lemma 6.1 yields that ~k) (u) <= u~"') (u) 
for k =  1, 2, . . . .  

3 ~ There is an obvious extension of  Theorem 2 to the case of  the type 2 and 
cotype 2 constants of  operators of  rank n (cf. e.g. [2] Section 10). 
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