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1. Introduction

In this paper we shall discuss the following problem. Suppose u is subharmonic
in a domain DcR", n=3. Let Ec@D be a closed set and suppose that
lim supp_,o u(P)=0 for all Q€cdD—E. In what way must the growth of u near
0D be related to the size of E in order that it should follow that ¥=0? In the case
when E consists of a single point this is answered by the Phragmén—Lindel6f theo-
rems (for a treatment of these, see [6]). In the case when u is bounded from above it
follows from [4] that if D is a Lipschitz domain and E is of vanishing (n— 1)-dimen-
sional Hausdorff measure then u»=0. The case when n=2 can by the conformal
mapping technique be reduced to a study of the situation in the unit disc, for which
more can be said, see [5]. Therefore we assume from now on that n=3.

We recall that a2 bounded domain DCR" is called a Lipschitz domain if to
each point Q€dD there is a coordinate system (&, n), E€R*™, n€R, a Lipschitz
function @ in R"™* (i.e. sup,,, |x—y|"|@(x)—¢(»)|<) and a neighbourhood V
of Q such that Dn¥V={(¢, n):9p()<n}nV. If ECR" we denote by (-, E) the
harmonic measure of the set EndD with respect to D. For the properties of
see [8, Chapter 8]. If Q€D we put

A(0) = sup {w(Q, B(P, 0)): PER"}.

(Sometimes we will write A (g, Q, D)). Notice thatif KcD is a compact set then it
follows from Harnack’s inequality that there is a number Cy<oo such that
sup {A4(¢, @)/ A(0, Q2): 01, 0,6 K}=Cx forall ¢=>0. In § 4 we give estimates of A.
Let d(P) denote the distance from P to dD. If u is a function in D we define

M() = sup {u*(P): d(P) > ¢},

where u™=max (i, 0).
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Theorem. Let D be a Lipschitz domainin R*, n=3, and let FcdD be a closed
set of vanishing a-dimensional Haudorff measure, where O<a<n—1. Let u be sub-
harmonic in D and suppose lim supp_,, u(P)=0 for all QcoD—F. If

(1.1 A(@M(@) =0(¢") as ¢—0
then u=0.

We remark that for sufficiently regular domains (see § 4) we have the estimate
0" '=4(g)=c, 0" where ¢;>0. Hence in this case condition (1.1) equivalent to
the condition M(p)=0(g* ™) as ¢—0.

In this case the theorem is sharp as the following proposition shows.

Proposition. Let B be the unit ball in R*,n=2. If 0<a<n—1 and ECdB
is a closed set of positive o-dimensional Hausdorff measure then there is a harmonic
Junction u in B such that u(0)=1, limp_, u(P)=0 for all Q€0B—E and

M(@) = 0(g"*'™").

2. Technical preliminaries

We start with the following observation. There is a number C=C(n) such
that each ball in R” of radius 2p can be covered by C(n) balls of radius ¢. From the
definition of A it follows that

.1 AQ20,Q) = CA(o,Q) forall Qe€D.
We will need the following elementary estimate for harmonic measure.

Lemmal. Let D be a Lipschitz domain in R*, n=3. Then there is a number
C=C(D)>0 such that if P€D, ¢ >0 and Q€ B(P, 9) "D we have (Q, B(P, 2¢))=C.

Proof. Since D is a Lipschitz domain there are numbers R and ¢, R=0, 0<a<
<n/2 such that to each point P€9D there exists a cone K, with vertex at P, con-
gruent to K={x=(x, ..., X,)€ER": x;=(cos «) |x|} with the property that K,n

1
NB(P, R)cR"—D. For 0<Q<ER, let D(P, p)=B(P,20)—Kp. If o’ denotes

the harmonic measure of ¢D(P, ¢)nB(P,2¢) with respect to D(P, g) then the
maximum principle implies that o’ (Q)=w(Q, B(P, 2¢)) for all QcB(P, o)nD.
A change of scale shows that inf {&'(Q):Q€B(P, ¢)nD(P, ¢)} is independent
of P and ¢ and hence the lemma follows.

We shall need an estimate for the Green function of D.
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Lemma 2. Let D be as in Lemma 1 and let G be the Green function of D. If P'€D
1
there is a number C=C(P’, D) such that if 0<Q<? d(P’) then

"2 sup {G(P, P): d(P) = o} = CA(e, P).

Proof. Put B’(P)=B[P,—;—d(P)] for PeD. Since G(P, Q)=|P—-QP™"

it follows that d(P)"%sup {G(P, Q): QcdB’(P)}=2""%. Pick a point P*€9D
such that d(P)=|P—P*|. Since B(P*,2d(P))> B'(P), there is by Lemma 1 a num-
ber C;=C,(D)>0 such that o(Q, B(P*, 4d(P)))=C, for Q¢B’(P). The maxi-
mum principle now implies C;d(P)""*G(P, )=2""*w(Q, B(P*, 4d(P))) for all
QED—J—B—@ and the lemma follows.

We will need estimates for the harmonic measure of certain sets, which we shall
now describe. For m=0 let L(m) be the set of all functions ¢:R*'>R such
that ¢(0)=0 and [p(x)—@(y)|=m|x—y|. For a=0, r=0 let Z=Z(p,r, a)=
{(x, Y): 0(x)<y=@x)+a(x|—r), r<|x|<2r}. Let =I(p,r,a)=02nN
N, y):[x|=2r}.

Lemma3. If m=>0 and a=>0 are given, then there are numbers C=C(a, m)
and 2=2X(ay with the following properties. If @¢cL(m), r=0 and r<o<2r then

sup {w(P): P =(x,))€Z(p,r,a) and |x| = g} = C(or -1,

where o is the harmonic measure of I (¢, r, a) with respect to X (¢, r, a). In addition
lim,,_,, A(a)= <.

Proof. Since the assertion is invariant under changes of scale, it is sufficient to
prove it for the case r=1. We extend w to all of R* by putting w=0 outside X.
Let S be the unit sphere in R*~2. We now define

m(s) = [7.. fs 020, y)dody.
We claim there is a function A’: (0, «)—(0, =) such that
2.2) m@G)=AE—1)"®, 1l <s5<2,
where A is the area of I'. We will show (2.2) by using the Carleman method, see [6].
We first make the assumption that ¢ is C* in {x:|x|<3}. From [1] follows that

®|¥ has a smooth extension across dX—I". Hence we can differentiate m and we
find by the Green formula:

m'(s) =2 [, [ 10/0s) (6, y)lo>(s0, y)dbdy =
=25 [=.. [sIVo (0, y)dody dr.
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Here Vw denotes the gradient of . Therefore
m'(s) =2 =, [5 IV (s0, y)[Pdbdy
=2 [ [$l0/0y)o(s8, y)Idody +

+2 [7_ [5[0/95)o(s0, y)Pdody = Bi(s)+ By(s).

From Holder’s inequality we obtain (m’(s))*=2m(s)B,(s). Since the function
y—o(s8,»), 1<s5<2, 0€S, equals zero outside an interval of length a(s—1),
it follows from Wirtinger’s inequality [7, Chapter 7] that B, (s)=2r2(s—1)"2a"2m(s).
Using these estimates we find 2m”(s)/m(s)=4n2a~2(s—1)~2+(m’ (5)/m(s))?, which
implies

m () = 2na~ts—Dm'(s), 1 <s=<2.

We notice limg,; m(s)=0 and lim_,m(s)=A4. Hence m(s)=A(s—1)*@,
where A’(a)=1+42ra™' and inequality (2.2) is proved for the case when ¢ is C*
in {{x|<3}.

If pcL(m) and not assumed C*= we can pick functions ¢;€C=(R*?) such
that sup {[Vo,(x)|: x€R"™", i=1,2, .. }J<o, ¢;(0)=0, and ¢; converges to ¢
uniformly on compact sets. If 4; is the area of I'(p;, 1,4 and w; denotes the
harmonic measure of I'(p;, 1, a) with respect to X (¢p;, 1,a) then A4;~A4 and
;(P)—~w(P) for each PcX (g, 1, a). Hence (2.2) follows.

Let M(s)=max {o(x, »): (x, y)€Z and |x|=s} where 1<s<2. We notice
that we find a number ¢’, 0<c¢’<1/2, only depending on m and such that if é€R"1
and 1<[£|<3/2 then B,CX(9,1,a), where B; is the ball with center in P,=
=(¢, 1/2a(J¢]—1)) and radius ¢’(J|]—1). We next choose a number ¢, O<c<c’
such that D,={(x, ¥):[x—&|=<c(|&]-1), p(x)<y=<o(x)+a(lx]—1)} is star-shaped
with respect to P,. This number can be taken to depend only on a and m. Hence it
follows from [9, Lemma 2] that there is a number C, only depending on a and m
such that if « is a non-negative harmonic function in D,, with vanishing boundary
values on  ADy {(x, »):lx—&l<c(€l—1)} then sup {u(?, 1): 9 (@) =t=p(&)+
+a(|g|—-1)}=Cu(Py).

Letting 1<s<3/2, let us now choose ¢€R*™', [é]=s, such that M(s)=
w(&,n) for some #, o(O)<n=@(f)+a(s—1). From the reasoning above it
follows that m(s)=Cw{Py), where C can be taken to depend only on a and m.
Let B; be the ball with center P, and radius c(|¢|—1). Then B,cD.cZ.

Since w? is subharmonic in %, it follows there is a constant C=C(a, m) such
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that
M2(s) = C(s—1)~" fBE w?(P)dP

= C(S_l)—l‘/.lt—sléc(s—d) t"_zm(t)dt = C(s__l)—n+}.’(a)+1
and the lemma is proved.

3. The main result

We can now prove our main result.

Proof of the theorem. Let u and D be as in the theorem. We start with the fol-
lowing observation. Since D is a Lipschitz domain we can find a finite number of
open sets Vi, ..., Vy such that dDc UV, and to each i there is an coordinate
system (£,71) EER™', n€R, a Lipschitz function ¢; in R** such that Dn¥/=
{(&,m):0;(O)<n}nV, where V] is an open set such that ¥, >V,. For Q€dD we
let I(Q) denote the largest index j for which Q¢V;. If I(Q)=i we define for
a=0, r>0 the open set N(Q, r, a) in the following way. Let Q=(&,, ¢;(£,)). We
now put M(Q,r,d)={E :IE~&|=2r, @iO)+a(Ei—&|—r)*t <n=e@+ar).
Under our assumptions there is a number r, such that M(Q, r, ayc D for all r, 0=
r<=ry=ro(a, D). For O<r<r, we define N(Q,r,a)=D—M(Q,r,a). For an
integer m=2 we also define E(m)=E(m, Q,r,a) as the set {(&, n):27" 1r=
E—&l—r<2""r, (&) +a(|é—&|—r). Finally, let w, denote the harmonic
measure of E(m) with respect to N(Q, r, a). We claim that if P,€D then there
are numbers C=C(a, D, P)), r,=r,(a, D, Py) and a function ¢: R™—>R™ such
that

3.1 w,(P)=C2 ™A, P) for O<r=r, and liII(l) o(a) = oo,

To prove (3.1) we note there is no loss of generality in assuming &,=0 and
¢;(0)=0. We put for r<[£|<2r, Q:=(¢;(&), a(l¢[—r)). An inspection now shows
there are numbers c¢=c(a, D) and ry,=ry(a, D) such that if O<r=<r, and if
Q:€E(m, Q,r,a), r=2, then B(Q., 2cr2™")C N(Q, r, 2a). Letting G’ denote the
Green function of N(Q, r, 2a) we now see there is a number C = C(a, D) such that
if [P—Q¢=cr2™™ then
3.2) Cr*=22-m0=2 G/ (P, Q) = 1.

If & denotes the harmonic measure of B(Q;, 2~"r)ndN(Q, r, a) with respect to
N(Q, r, a) it follows from (3.2) and the maximum principle

(3.3) h(Py) = Cr*=22-m0=3 G(P,, 0.

From Lemma 3 follows G'(Py, Q)=C2""*@m(r) where A(@)—~c as a—~0 and
m(ry=sup {G'(Py, Q): Q€I (¢;, 2r, a)}. Since G'=G, where G is the Green func-
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tion of D, it follows from Lemma 2 that r"~?m(r)=CA (@, Py) for r sufficiently small.
We note there is a constant C, such that to all m=2 we can find points ¢&;, 277"r=
& <2t"mp, 1=i=C2m®"® gsuch that E(m, Q,r, a)C UB(Q;, 27 ™r). This
yields (3.1).

We can now complete the proof of the Theorem. Our assumptions mean that

to all &=0we can find points Q,, ..., @, in F and numbers g;, O<g;<¢ such that
Fc Uf’B(Q,—, g) and
(3.4) SM o=

We put D'= ﬂfl“N (0, &, a) and let Py D, where we will choose a later. If &
is sufficiently small then P,€D’. It is now convenient to split dD” into different
parts. Let for m=2, I1=i=M, A4,,=0D'nE(m,Q;, ¢&,a), A;;=0D'n
AM(Q;, &, & —(Us_y Am,)- We put p,,=sup {u™(P): P¢4,,;} and let #h,;
denote the harmonic measure of 4,, ; with respect to N(Q;, ¢;, a). Since u is bounded
from above in D’ the maximum principle gives

(3.5) ut(Poy= SL) Sy i, i (Po)-

It is easy to see there is a number ¢=f=pf(a, D) such that the distance between
Ap,; and 0D is greater that 27 "¢;. From Lemma 2 and (3.1) follows the existence
of a constant C=C(a, D, P;) such that hm’i(P0)§C2—"“’(“)A(si, Py), Using (2.1)
we find A, ;(P)=c""12"""@ A(B2™¢;, P,). From this and our assumption on u
we obtain

ut(Po) = Sity Sy 127 @ M(B27"e) A(B27"e;, Po)

M _ -
=C 2L 8 22 ma (a)—ma,

We now pick a so small that the last sum converges. With this choice of a it follows
from (3.4) that u™ (P,)=Ce for all ¢>0. Since P, was arbitrary in D it follows that
u=0 and the theorem is proved.

We shall now prove Proposition 1.

Proof of Proposition 1. Let B be the unit ball of R"and let P(-, y) be the Poisson
x

kernel for B with pole at y€0B. If x¢ B—{0} let x* :ﬂ‘ From the explicit repre-
x

sentation of P, see [8, Chapter 1] if follows that
P(x,y) = CA(x)/(|y —x*|+d(x)".

If ECOB is a closed set of positive a-dimensional Hausdorff measure, 0<o<n—1,
if follows from [3, p. 7] that there is a probability measure 4 with support in E such
that pu(B(x, r))=Cr® for all xéR" and r=0. Let v(x) =f P(x, y)du(y). Then
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v is non-negative and harmonic in B, and limp_,, v(P)=0 for all QcoB—E. If
x7#0Q then

u(x) = Cdx) [(ly—x*+d @)~ du().
Putting g(t)=p(B(x*, r)), an integration by parts shows
u(x) = Cd(x)j';;" (t+dx) " tg()dt = Cd(x)/;“ (t+d(x))—""tedt

= C(n, 0)d(x)*"+1

and the proposition is proved.

4. Concluding remarks

In this section we shall discuss estimates of A (g). To begin with we notice that
if D is a Lipschitz domain, then to each P€D there is a constant c=c(D, P)=0
such that

4.1 Ao, P) = co" 1, 0<o=<l.

For otherwise lim inf,_,, 0" A(g, P)=0. Letting ¢ denote the surface measure of
oD it is easity seen that there is a ¢>0 such that if Q€dD and O<r<1 then

o(P,B(Q, 1)) B
-T(E@r—))—' =0 for all QE&D

Arguing as in [10, Theorem 14.5] this would mean w=0. This contradiction
establishes (4.1).

Let 0<f<mn/2 and put K,={x=(xy, ..., x,): x;=|x|cos0}. We say that
a Lipschitz domain is 6-regular if for all points Q€D there is a cone I'y congruent
to K, and with vertex at Q such that I',CR*~D. Let A,(r)=w(e, B(0, r), R"—K,),
where e=(—1,0,...,0). From Lemma 2 and the maximum principle it now fol-
lows that (P, B(Q, ), D)=Cw(P, B(Q, 2r), R"—K,} for all QcdD and all P¢D.
Harnack’s inequality now shows that

a(B(Q, r))=cr"*. Hence we would have liminf,_,

(42 A(e, P, D) = Chy(0)

where C can be taken to depend only on P, D and 0. Estimates for 4, can be read off
from the estimates for Green functions for cones in [2]. We omit the details but it
follows there is to each 6, 0<@<x/2 a number A(0)<n—1 such that

lo(@) = 0(0"®) as -0
and h(6)—-n—1 as 0-m/2.
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If there is a number R>0 such that to each point Q¢a@D there is a closed ball
B, with the property that B,CR"—D and ByndD>{Q} we find, using the argu-
ments leading to (4.2)
A(g, P, D) = CA(g)

where A(Q)=w(e, B0, r), B’), e=(—1,0,...,0), B’={P:|P+e|<1}. Since A(Q)=
Co"~! it follows that
4.3) Ao, P,D) = Co".
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