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1. Introduction 

In this paper we shall discuss the following problem. Suppose u is subharmonic 
in a domain D c R  n, n>=3. Let EcOD be a closed set and suppose that 
lim supe_, a u(P)<=O for all QEOD-E. In what way must the growth of u near 
0D be related to the size of E in order that it should follow that u-<0? In the case 
when E consists of a single point this is answered by the Phragm6n--Lindel6f theo- 
rems (for a treatment of these, see [6]). In the case when u is bounded from above it 
follows from [4] that if D is a Lipschitz domain and E is of vanishing ( n -  1)-dimen- 
sional Hausdorff measure then u<=0. The case when n = 2  can by the conformal 
mapping technique be reduced to a study of  the situation in the unit disc, for which 
more can be said, see [5]. Therefore we assume from now on that n->3. 

We recall that a bounded domain D c R  n is called a Lipschitz domain if to 
each point QEOD there is a coordinate system (4, q), eER n-l ,  r/ER, a Lipschitz 
function q~ in R ~-1 (i.e. supx,y ]x--y]-X]cp(X)--~O(y)].<oo) and a neighbourhood g 
of Q such that D n  V= {(4, ~/):~p(~)<q}n V. If  E c R  n we denote by r E) the 
harmonic measure of the set EnOD with respect to D. For  the properties of r 
see [8, Chapter 8]. If  QED we put 

A(O) = sup {~o(Q, B(P, 0)): PER"}. 

(Sometimes we will write A(O, Q, D)). Notice that if K c D  is a compact set then it 
follows from Harnack's inequality that there is a number CK<oo such that 
sup {A (0, QO/A (0, Q~) : Q1, Q2 EK} =< CK for all 0 >0.  In w 4 we give estimates of A. 
Let d(P) denote the distance from P to 0D. If  u is a function in D we define 

M(O) = sup {u+(P): d(P) > 0}, 

where u + = m a x  (u, 0). 
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Theorem. Let D be a Lipschitz domain in R", n>=3, and let FcOD be a closed 
set of  vanishing g-dimensional Haudorff measure, where 0 < g < n -  1. Let u be sub2 
harmonic in D and suppose lim supe_~ e u(P)<=O for all QEOD-F. I f  

(1.1) A(~)M(~) = 0(~o0 as ~o ~ 0 

then u<=O. 

We remark that for sufficiently regular domains (see w 4) we have the estimate 
cl ~"-~<_- A (~) <= c2 e " -  ~ where Cl >0.  Hence in this case condition (1.1) equivalent to 
the condition M(~)=O(Q ~+l-n) as Q~0. 

In this case the theorem is sharp as the following proposition shows. 

Proposition. Let B be the unit ball in R",n>-_2. I f  0 < g < n - 1  and EcOB 
is a closed set of positive g-dimensional Hausdorff measure then there is a harmonic 
function u in B such that u (0 )= l ,  limp_, e u ( P ) = 0  for all QEOB-E and 

M(0) = O(~t+l-n). 

2. Technical preliminaries 

We start with the following observation. There is a number C---C(n) such 
that each ball in R" of radius 2 0 can be covered by C(n) balls of  radius 0. From the 
definition of A it follows that 

(2.1) A(2Q, Q) <= CA(o,Q) for all QED. 

We will need the following elementary estimate for harmonic measure. 

Lemmal .  Let D be a Lipsehitz domain in R n, n>=3. Then there is a number 
C= C(D) >0 such that i f  PE OD, ~ >0 and Q E B (P, O) n D we have o9 (Q, B (P, 20)) >- C. 

Proof. Since D is a Lipschitz domain there are numbers R and g, R>O, 0 < g <  
<~r/2 such that to each point PEOD there exists a cone Kp with vertex at P, con- 
gruent to K={x=(x l  . . . .  ,x,)ER":xl=>(cos g) Ix[} with the property that K p n  

1 
riB(P, R)~R"--D. For 0<0<-~ -R ,  let D(P, Q)=B(P, 2Q)--K e. If  o9' denotes 

I 

the harmonic measure of OD(P, o)nB(P, 2~) with respect to D(P, 0) then the 
maximum principle implies that co'(Q)<=o9(Q, B(P, 2~)) for aU QEB(P, o)nD. 
A change of scale shows that inf{og"(Q):QEB(P, ~ ) n D ( P ,  0)} is independent 
of P and 0 and hence the lemma follows. 

We shall need an estimate for the Green function of  D. 
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Lemma 2. Let D be as in Lemma 1 and let G be the Green function of  D. I f  P" E D 
1 

there is a number C=C(P' ,  D) such that i f  0 < 0 < ~ -  d(P') then 

0"-2 sup {G(P,P'): d(P) <= 0}<= CA(o,P'). 

Proof Put B'(P)=B{p ,  l d ( p ) I  for PED. Since G(P,Q)<-_IP-Q, 2-" 

it follows that d(P)"-2sup {G(P, Q):QEOB'(P)}<=2 "-~. Pick a point P*EOD 

such that d ( P ) =  IP-P*[ .  Since B(P*, 2d(P))D B'(P), there is by Lemma 1 a num- 

ber C~=C~(D)>0 such that a~(Q,B(P*,4d(P)))>=C1 for Q<B'(P). The maxi- 
mum principle now implies Gd(P)"-2G(P, Q)_<-2"-2co(Q, B(P*, 4d(P))) for all 

QED--B'(P) and the lemma follows. 
We will need estimates for the harmonic measure of  certain sets, which we shall 

now describe. For  m > 0  let L(m) be the set of all functions q~:R'-I-+R such 
that p (0) - -0  and ko(x)-~o(y)[<=m[x-y[. For a > 0 ,  r > 0  let Z=Z(~o, r, a)= 
{(x, y): ~o(x )<y<~o(x)+a( [x [ - r ) ,  r< Ix [<2r} .  Let r = r ( e ,  r, a ) = 0 X ~  
(~ {(x, y): [xI=2r}. 

Lernma3. I f  m > 0  and a > 0  are given, then there are numbers C=C(a, rn) 
and 2=2(a )  with the following properties. I f  (pEL(m), r > 0  and r<o<2r  then 

sup {co(P): P = (x, y)E~ (~o, r, a) and Ix] = 0} <- C(O r - * -  1)*, 

where ,oo is the harmonic measure of  F (q~, r, a) with respect to ~ (~o, r, a). In addition 
lim,_~0 2 (a )=  co. 

Proof Since the assertion is invariant under changes of scale, it is sufficient to 
prove it for the case r = l .  We extend co to all of  R" by putting o0=0 outside S. 
Let S be the unit sphere in R "-2. We now define 

m(s) = f~_= fsco~(sO, y)dOdy. 

We claim there is a function 2': O, ~o)-+(0, ~o) such that 

(2.2) re(s) <= A(s-1)~'(") ,  1 < s < 2, 

where A is the area of F. We will show (2.2) by using the Carleman method, see [6]. 
We first make the assumption that ~0 is C = in {x: Ixl<3 }. From [1] follows that 
e~]I; has a smooth extension across 027--F. Hence we can differentiate m and we 
find by the Green formula: 

m'(s) = 2 f=_= f ,  [(o/o,)o,(sO, y)lco(sO, y) dOdy = 

= 2 f ;  f~-oo L lVoo(tO, y)I~dOdy dt. 
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Here V~o denotes the gradient of co. Therefore 

m"(s) = 2 f~  fs  lyon(sO, y)l~dOdy 

>= 2 f == f t(O/Oy) o~ (sO, y)]2 dOdy + 

+ 2 f_% [(O/O s)o  (sO, dOay = + B. (s). 

From H61der's inequality we obtain (m'(s))2<=2m(s)B2(s). Since the function 
y~o~(sO, y), l < s < 2 ,  OES, equals zero outside an interval of length a ( s - 1 ) ,  
it follows from Wirtinger's inequality [7, Chapter 7] that B~(s)>=2~2(s - 1)-2a-~m(s). 
Using these estimates we find 2m"(s)/m(s)>=4n~a-2(s-1)-2+(m'(s)/m(s))2, which 
implies 

m"(s) >= 2na-l(s--1)-lm'(s), 1 < s < 2. 

We notice l ims_,lm(s)=0 and lims_,~m(s)=A. Hence m(s)<=A(s-1) "v('), 
where 2 ' ( a )=  1 +2rca -1 and inequality (2.2) is proved for the case when q~ is C = 
in {IxI<3}. 

I f  q~EL(rn) and not assumed C = we can pick functions ~oiEC=(R "-~) such 
that sup{IVq%(x)l:xER "-~, i = 1 , 2  . . . .  }<0% qh(0)=0, and qo~ converges to q~ 
uniformly on compact sets. If  A~ is the area of  F(qh, 1, a) and o)~ denotes the 
harmonic measure of  F(~o~, 1, a) with respect to 2;(q9~, 1, a) then Ai~A and 
r ) for each PE2;(~0, 1, a). Hence (2.2) follows. 

Let M(s)=max{r where l < s < 2 .  We notice 
that we find a number c' ,  0 < c ' <  1/2, only depending on m and such that if ffER "-1 
and 1<1~[<3/2 then B~cF,(~p, 1, a), where B~ is. the ball with center in Pc=  
=(4, 1/2a(1~1-1)) and radius c'(1r We next choose a number c, 0 < c < c '  
such that De={(x, y): Ix-~t-<c(l~ L- 1), q~(x)<y<q~(x)+a(}x[-1)} is star-shaped 
with respect to Pc. This number can be taken to depend only on a and m. Hence it 
follows from [9, Lemma 2] that there is a number C, only depending on a and m 
such that if u is a non-negative harmonic function in D e, with vanishing boundary 
values on OD~n{(x,y):[x-~l<c(l~[-1)} then sup {u(~, t) :~p(~)<t<~p(~)+ 

+ a([~l- 1)}<=Cu(Pe). 
Letting 1<s<3 /2 ,  let us now choose ~ER n-l, [~l=s, such that M ( s ) =  

co(~,q) for some rl, q~(~)<tl>q)(~)+a(s--1). From the reasoning above it 
follows that rn(s)~Cog(Pe), where C can be taken to depend only on a and rn. 
Let B e be the ball with center Pg and radius c(1r Then B~cDecZ. 

Since o92 is subharmonic in S,, it follows there is a constant C =  C(a, m) such 
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that 

M2(s) <= C(s-  1)-. f og~(P)dP 

<= C(s- 1)-~fE,_,l~_~(~_l) t'-2m(t)dt <= C(s-  1) -~+~'(")+1 

and the lemma is proved. 

3. The main result 

We can now prove our main result. 

Proof of the theorem. Let u and D be as in the theorem. We start with the fol- 
lowing observation. Since D is a Lipschitz domain we can find a finite number of 
open sets V1 . . . .  , V N such that 0 D c  U Vi and to each i there is an coordinate 
system (4, q) ~ER n- l ,  t/ER, a Lipschitz function q~i in R n-1 such that D n  Vi'= 
{(~ , t / ) :g i (~)<t /}nV[  where V{ is an open set such that V ; D ~ .  For  QEOD we 
let I(Q) denote the largest index j for which Q E Vj. I f  I(Q)= i we define for 

a > 0 ,  r > 0  the open set N(Q, r, a) in the following way. Let Q=(~0,  ~oi(~0)). We 
now put M(Q, r, a)={(~,  t/):]~-~o[<=2r, cpi(~)+a([~-~o[-r)+<q<~o(~)+ar}. 
Under our assumptions there is a number  r o such that M(Q, r, a)cD for all r, 0 <  

r<ro=ro(a, D). For 0 < r < r o  we define N(Q, r, a)=D--M(Q, r, a). For  an 
integer m=>2 we also define E(m)=E(m, Q, r, a) as the set {(4, rl):2 "m-lr~ 
I~-~o]-r<2-mr,~p(~)+a(l~-~ol-r). Finally, let o~,, denote the harmonic 
measure of  E(m) with respect to N(Q, r, a). We claim that if PoED then there 
are numbers C=C(a, D, Po), q=rl(a, D, Po) and a function o-: R + ~ R  + such 
that  

(3.1) Ogm(Po)~C2-m~(a)A(r, Po) for 0 < r < r l ,  and l i m a ( a ) = ~ .  
a ~ 0  

To prove (3.1) we note there is no loss of  generality in assuming 40=0 and 
~oi(0)=0. We put for r <  [~l<2r, Q~=(~0i(r a ( t~[ - r ) ) .  An inspection now shows 
there are numbers c=c(a,D) and r2=r2(a,D) such that  if  0 < r < r 2  and if 
QeEE(m, Q, r, a), r>=2, then B(Qr 2cr2-m)cN(Q, r, 2a). Letting G'  denote the 
Green function of N(Q, r, 2a) we now see there is a number C = C(a, D) such that 
if  [e-Qe]~cr2 -m then 

(3.2) Cr ~-2 2 -re(n-2) G'(P, Qr -> 1. 

I f  h denotes the harmonic measure of  B(Qr c2-mr)nON(Q, r, a) with respect to 
N(Q, r, a) it follows f rom (3.2) and the maximum principle 

(3.3) h(Po) ~ Cr ~-2 2 -m("-~) G'(Po, Q~). 

From Lemma 3 follows G'(Po, Qr where 2 ( a ) ~  as a-+0 and 

m( r ) - - sup  {G'(Po, Q): QEF(q~I, 2r, a)}. Since G'~G, where G is the Green func- 



310 B.E.J. Dahlberg 

tion of D, it follows from Lemma 2 that r n- ~ rn (r) <= CA (1", P0) for 1" sufficiently small. 
We note there is a constant 6", such that to all m=>2 we can find points (i, 2-mr--< 
i~il<21-mr, l<=i<-C2 re(n-2) such that E(m, Q, r, a)c  uB(Qr , c2-mr). This 

yields (3.1). 
We can now complete the proof  of the Theorem. Our assumptions mean that 

to all e > 0  we can find points Q1, ..., QM in F and numbers e~, 0<e i<~  such that 
FcI. . )~B(Qf,  el) and 

~=i e~ ~ ~. (3.4) ~ 

V t  - ~ r  We put - f~l N(Q~, el, a) and let PoED, where we will choose a later. If 
is sufficiently small then PoED'. It is now convenient to split 0D' into different 
parts. Let for m->2, l ~- i~M, Am, i=OD" c~E(m, Qi, e~, a), Al, i=OD" n 
c~M(Qi, ei, a ) - ( U ~ =  2 Am, i). We put #~, i=sup {u+(P): PE/I~,I} and let h~,i 
denote the harmonic measure of A~, i with respect to N(Qi, ei, a). Since u is bounded 
from above in D" the maximum principle gives 

(3.5) u + (P0) < M = Z I = I  Zm=l  [lm,i hm,i (Po). 

It  is easy to see there is a number c = #  =#(a ,  D) such that the distance between 
Am,~ and 0D is greater that fl2-mgi. From Lemma 2 and (3.1) follows the existence 
of a constant C=C(a, D, Po) such that h,,,i(Po)~C2-mc'('OA(ei, Po), Using (2.1) 
we find hm, i(Po)~em+12-m~(~)A(f12-mei, Po). From this and our assumption on u 

we obtain 
H + (P0) ~ Z/M--1 Z 2 = l  cm +12-- ,~  (") M(fi2-mei) A (f12- ,l e,, Po) 

<= c z L ,  Z2=l 

We now pick a so small that the last sum converges. With this choice of  a it follows 
from (3.4) that u+(Po)~Ce for all e>0.  Since P0 was arbitrary in D it follows that 
u =< 0 and the theorem is proved. 

We shall now prove Proposition i. 

Proof of  Proposition 1. Let B be the unit ball of R" and let P ( . ,  y) be the Poisson 
x 

kernel for B with pole at y E OB. If x E B--{0} let x * =  From the explicit repre- 
7g 

sentation of P, see [8, Chapter 1] if follows that 

P(x, y) ~ Cd(x)/(ly-x*I+d(x)) ~. 

I f  EcOB is a closed set of positive e-dimensional Hausdorff measure, 0 < e < n - 1 ,  
if follows from [3, p. 7J that there is a probability measure # with support in E such 
that #(B(x,r))<=Cr ~ for all xER ~ and r>0 .  Let v(x)=fP(x,y)dl~(y) .  Then 
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v is non-negative and harmonic in B, and lime_~ Q v ( P ) = 0  for all Q~OB--E. If  
x # 0  then 

u (x) .<= Cd(x) f (lY - x*t + d (x))-" d ,  (y). 

Putting g(t)=#(B(x*, r)), an integration by parts shows 

u(x) = Cd(x) f ~ (t + d(x))-"-~ g(t)dt <= Cd(x) f ~ (t + d(x))-"-lt~dt 

= C(n, cOd(x) "-n+l 

and the proposition is proved. 

4. Concluding remarks 

In this section we shall discuss estimates of A (~). To begin with we notice that 
if D is a Lipschitz domain, then to each P~D there is a constant c=c(D, P ) > 0  
such that 

(4.1) A(~,P) >= c~ "-1, 0 < ~ < 1 .  

For  otherwise lim info_~ 0 el=hA(Q, P ) = 0 .  Letting a denote the surface measure of 
OD it is easity seen that there is a c > 0  such that if QEOD and 0 < r < l  then 

a(B(Q, r))>=cr "-~. Hence we would have liminfr~o co(P,B(Q, r)) = 0  for all Q~OD. 
a(B(Q, r)) 

Arguing as in [10, Theorem 14.5] this would mean ~o=0. This contradiction 
establishes (4.1). 

Let 0 < 0 < n / 2  and put Ko={X=(Xl ..... x,): xl>=lxI cos O}. We say that 
a Lipschitz domain is 0-regular if for all points Q~OD there is a cone FQ congruent 
to Ko and with vertex at Q such that I'QcR"--D. Let 2o(r)=co(e, B(O, r), R"--Ko), 
where e = ( - - 1 ,  0, ..., 0). From Lemma 2 and the maximum principle it now fol- 
lows that o)(P, B(Q, r), D)~=Cw(P, B(Q, 2r), R"-Ko} for all QCOD and all P~D. 
Harnack's inequality now shows that 

(4.2) A(ff, P, D) ~ C20(Q) 

where C can be taken to depend only on P, D and 0. Estimates for 2o can be read off 
from the estimates for Green functions for cones in [2]. We omit the details but it 
follows there is to each 0, 0 < 0 < ~ / 2  a number h(O)<n- 1 such that 

2 0 ( 0 ) = 0 ( ~  h(~ as 0 n 0  

and h(O)~n-1 as 0 - ~ / 2 .  
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If  there is a number R > 0  such that to each point QCOD there is a closed ball 
Be with the property that BQcRn-D and BQc~ODD {Q} we find, using the argu- 
ments leading to (4.2) 

where 2 (0) ---- ~o (e, B(0, r), B'), 
CO "-1 it follows that 
(4.3) 

A(O , P , D )  <-- C2(Q) 

e = ( - 1 , 0  . . . . .  0), B ' = { P : [ P + e I < I  }. Since ),(~)<_- 

A (O, P, D) <_- CO"-1. 
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