
Multiparameter spectral theory 
A. K/illstr6m and B. D. Sleeman 

O. Introduction 

Let Ha . . . .  , H ,  be separable Hilbert  spaces and let H =  @~=i Hi be their 
tensor product. In each space H i we assume we have operators At, S~j,j= 1 .... , n 
enjoying the property, 

(i) A~, Si~: II~H~, i , j=l,  ..., n are Hermitian and continuous. 
In addition we shall require a certain "definiteness" condition which may  be 

described as follows: Let f=f l |  | be a decomposed element of  H with 
f~E/-/~, i = 1  . . . .  , n  and let e0, el ,  . . . , e ,  be a given set of  real numbers not all 
zero. Then the operators Ai: H~H, i=1 ,  . . . ,n ,  may be defined by the equation 

~0 ~1 "" " an  I 

Af = z~=oa, A~f = det - A l f ~  S i l f l  Slnfl[ (0.1) : ! - -  , 

- A . L  S.1L ... s . . L .  

where t h e  determinant is to be expanded formally using the tensor product. This 
defines At f for decomposable f ~ H  and we can extend the definition to arbitrary 
fEH by linearity and continuity. The definiteness condition referred to above can 
now be stated as 

(ii) A: H ~ H  is positive definite, that is 

(Af, f )  ~ Cllfll ~ (0.2) 

for some constant C > 0  and all fEH. Here ( . ,  .)  denotes the inner product  in 
H and [1" [[ the corresponding norm. Note  that  for a decomposable e lement f=f~  |  
... |  in H we have 

~o ai .-. ~" f I ) t  
(Af, f )  = det ( - -Alf~,f~) i  (Snf~,f~)~ (S~,f~, > CIILII~ ]lf,ll, ~ 

(-A.f,,,f.). (S.1L,L).... ( so .L , f . ) .  

where ( . ,  ")~(l['[li) denotes the inner product (norm) in Hi, i = 1  . . . .  , n, 
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The system of operators {Ai, Sij}, i , j = l ,  . . . ,  n having the properties (i) (ii) 
above have formed the basis for multi-parameter spectral theory, firstly by Atkinson [1] 
and Browne [2] when property (ii) is specialized to the case e i= 0, i-- 1, ..., n, and 
secondly by the authors in [3, 4] when e0=0 and the operators Ai are assumed 
to be positive on Hi and at least one is positive definite. In fact the theories in [3, 4] 
allow the operators A i to be self adjoint and not necessarily Hermitian, but in 
addition they must satisfy a ~, certain "compactness" criterion, In this paper we dis- 
pense with any compactness requirements. Indeed a fundamental purpose of this 
paper is to show that each of the above special cases may be subsumed into a unified 
theory. 

Each of the operators A i, Sij: H i-+Hi, i = 1 . . . . .  n induces corresponding opera- 
tors in H. The induced operators~wiil be denoted by A +, S +. For example, given 
any decomposed element f = f l  |  |  EH, S + f  is defined by 

Si+ f = f l  |  Q f i - I @ S i j L @ L + I |  |  (0.3) 

S~ is then extended to the whole of H by linearity and continuity. 
The theory to be developed here is based, as are the theories of Atkinson [1] 

and Browne [2] on the solvability of certain systems of linear operator equations. 
Let f C H  be given; we seek elements f~EH, i=0,  1 . . . . .  n, satisfying the system of 
equations 

~ = 0  ~if ,  = f ,  (0.4) 

- - A + f o + z ~ = l S + f j = O ,  i =  1 . . . . .  n. 

It has been established by K/illstr6m and Sleeman [5] that the system (0.4) 
subject to the condition (ii) is uniquely solvable for any f E H  and the solution is 
given by Cramer's rule, that is 

f~ = ( A + ) - I A + f ,  i = O, 1, . . . ,  n, (0.5) 

where the operators A +, A+: H ~ H ,  i=0,  1 . . . . .  n are the operators induced by 
A, A i as defined in (0.1). Note: because of condition (ii) (A +)-1 exists as a bounded 
operator. 

The operators Fi: H ~ H ,  i=0,  1 . . . . .  n defined by 

F i = ( A + ) - l A i ,  i = O ,  1 . . . .  , n  (0.6) 

are basic for the theory to be developed. 
The plan of this paper is as follows. In Section 1 we reconsider the solvability 
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of  the system (0.4) and establish' some commutativity properties enjoyed by the 
operators A~, S~. Section 2 develops the spectral theory based on the operators 
F i defined in (0.6) while Section 3 discusses the concepts of  "homogeneous" and 
"inhomogeneous" eigenvalues. 

1. Commutativity in operator equations 

For  convenience we write 

a 0 = - A  +, --A + = S ~ ,  c t j - S ~ ,  j =  1 . . . .  , n  (1.1) 

and consider the system 

7_," S i+f j  = gl,  i = O, 1, n (1.2) j = 0  " " '  

where g o = f  and g~EH, i=1 ,  . . . , n  are arbitrary. Furthermore since A defined 
in (0. !) is positive definite there is no loss in generality in assuming it has at least 
one positive definite cofactor. This follows from [5, Lemma lJ. Thus, as in [5], the 
system (1.2) is uniquely solvable for f~CH,  i=O,  1 . . . . .  n and the solution is given 
by Cramer's rule, i.e. 

f.i = (A+) -1 ~[=o ~+ g~ J = O, 1 . . . . .  n (1.3) 

where S+,j is the cofactor of S + in the determinant A. 
First we note that S + commutes with $i + for j ,  k = 0 ,  1 . . . . .  n. This follows 

because ~i + contains no elements from the i-th row. Secondly the f~ given by (1.3) 
must satisfy (1.2). Thus  on substitution we find, 

i.e. 
• j n  ~+[4+'~--1 Xm ~+,, ,  

= 0  ~ i j s  .1 . x ~ k = O ' ~  ="  g i ,  

n n + + - - 1  ^ +  Z y = o ~ = o S , i ( A  ) S[,jgk =- g~, 

i -=- 0, 1 . . . .  , n, 

i = 0 , 1  . . . .  ,n .  (1.4) 

However, this must be true for all g f E H ,  i=O,  t, ..., n, and so on equating coeffi- 
cients of  g, in (1.4) we find 

. + + - 1 ^ +  (t .5)  Z~'=0S~j(A ) S ~ j = L  i = 0 , 1  . . . . .  n 

where I denotes the identity in H and 

~ .=o  ~+(A § = .. ,  (1.6) '-'O ~ / okj 0, k ~ i, i, k ---- 0, 1,.  n. 
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In particular with i=O, in (1.5, 1.6) we have 

X~=o~j(A+)-l~j = I, 

~ . = o C S ( A + ) - l S ~ = 0 ,  k =  1 . . . .  ,n ,  (1.7a, b ,c)  
and 

~ '=oSi+(A+)- laJ  = O, i = 1 . . . . .  n. 

These results may be conveniently summarized in 

Lemma 1. The operators appearing in the sys tem (1.2) enjoy the following com- 

mutativi ty  properties. 

Z~.=oaj(A+)- la j  = I, 

n + + --1 Z~=0 s,j ( A )  sij = I, 

n ~ + --1 ~ Z~:o j(A ) s k i = o ,  

n + + --1 Z~:o sij(A ) ~j = o, 

z j n  S + / A  + - ~ _ 1 ~  + 
= o  i j k  r~t } ~...~kj : O, k 7 6 i ,  

We now establish a fundamental result. 

i =  1 , . . . , n ,  

k =  1 , . . . , n ,  

i =  1 , . . . , n ,  

i , k = 0 , 1  . . . .  ,n .  

Theorem 1. The solution operators Fi ,  i=0 ,  1, . . . ,  n, defined by (0.6) or equiv- 

alently f r o m  (1.3) by F i = ( A + ) - I S  +,  i=0 ,  1 . . . . .  n commute. 

P r o o f  In the same way as in [1, Theorem 6.7.2] we show that for any f E H ,  

A i ( A + ) - a A s f  = A i ( A + ) - l A i f ,  i # j  

and an application of (A+) -1 establishes the result. 

2. Multiparameter spectral theory 

Rather than use the inner product ( - ,  .)  in H generated by the inner products 
( ' ,  ")i in Hi, we use the inner product given by (.4 + . ,  -) which will be denoted 
by [ . ,  �9 ]. The norms induced by these inner products are equivalent and so topolog- 
ical concepts such as continuity of  operators and convergence of sequences may be 
discussed unambiguously without reference to a particular inner product. Algebraic 
concepts however may depend on the inner product. For  L: H--,.H we denote 
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by L ~ the adjoint of  L with respect to [ . ,  .], i.e. for all f ,  gEH we have 

[L f, g] ----- If, L ' g ] .  

For  the operators F~: H---~H, i~-O, l ,  . . . ,  n defined by (0.6) we have 

Theorem 2. 
F~=-F~, i = 0, 1, . . . ,n .  

(2.1) 

The proof  of  this is an immediate consequence of  our definition of  adjoint. 
Working with the inner product [ . ,  .] in H the operators Fi, i=0 ,  I . . . . .  n 

form a family of  ( n + l )  commuting Hermitian operators. Let  tr(Fi) denote the 
spectrum of F~ and a0 = • the Cartesian product of  the a(Fi), 
i=0 ,  1, ..., n. Then since a(Fi) is a non-empty compact subset of  R it follows 
that ao is a non-empty compact subset of R "+1. 

Let E~(.) denote the resolution of  the identity fo r  the operator F~ and let 
M ~ R  be a Borel set, i=0 ,  1, ...,n. We then define E(Mo•215215 
=/ /7=o Ei(Mi). Notice that the projections E~(.) will commute since the operators 
F~ commute. Thus in this way we obtain a spectral measure E ( . )  on the Borel 
subsets of  R "+1 which vanishes outside tr 0. Thus for each f ,  gEH [E( . ) f ,  g] is 
a complex valued Borel measure vanishing outside o- 0. Measures of  the form 
[ E ( . ) f , f ]  will be non-negative finite Borel measures vanishing outside o'0. 

The spectrum a of  the system {At, S~j} may be defined as the support of  
the operator valued measure E ( - ) ,  i.e. tr is the smallest closed set outside of  
which E ( . )  vanishes or alternatively a is the smallest dosed set with the property 
E(M)=E(Mna)  for all Borel sets M c R  "+I. Thus a is a compact subset of  
R "+a and if  ;tEa, then for all non-degenerate closed rectangles M with 2EM, 
E(M) ~0. Thus the measures [E(M)f ,  g],f, gEH actually vanish outside tr. 

We are now in a position to state our main result namely the Parseval equality 
and eigenvector expansion 

Theorem 3. Let f E H. Then 

(i) (a+f, f )  = f .  [E(d;t)f, f] = f ,  (E(d2)f, A+f). 

(ii) f = fa  E(d2)f, 

where this integral converges in the norm of H. 

This theorem is an easy consequence of  the theory of functions of  several com- 
muting Hermitian operators. See for example Prugove~ki [6, pp. 270---285]. 
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3. Eigenvalues 

In this section we discuss the eigenvalues of the system {Ai, So}. A "homogene- 
ous" eigenvalue is defined to be an (n + 1)-tuple of complex numbers 2 =(20, 21 . . . .  ,2,)  
for which there exists a non-zero decomposable element u--Ul |  | un E H such' that 

~ = 0  ~i'~i = 1 
and (3.1) 

- - , ~ o A i U i - ~ 2 j = l ) ~ j S i j u i  = O, i = 1 . . . . .  n .  

If  2 is an eigenvalue then because of (0.2) and the self adjointness of the Ai it is 
well known that each 2~ is real. It then follows 

Theorem 4. [2] I f  2Ea is such that E({)~})#0, then 2 is an eigenvalue. Con- 
versely i f  2 is an eigenvalue then 2Ea and E({2})#0. 

It is appropriate to note here that if ct0= 1 and cq=0, i =  1 . . . . .  n then 20= 1 
and the results of Theorem 3 and Theorem 4 reduce to those of Browne [2]. 

If, as is usual, we go over to the "inhomogeneous" concept of spectrum and 
eigenvalue, then necessarily we must have 20#0. That is we require 

0r ~(r0) = a (A-~s)  

where A is defined by (0.1)and S = d e t  {S +} in (0.1). Now OEtr(A-1S) if and 
only if  fEHA(oo) where 

HA@o) = { fEHIS f = 0}. (3.2) 
Thus if we define 

then for the "inhomogeneous" concept of spectrum we have in analogy with Theo- 
rem 3 

Theorem 5. Let fEHOHA(oo ). Then 

O) (A+f, f )  = f . . . .  (E(d,~)f, A+f)  

(ii) f = f ,_o, E(d2)f. 

Theorem 5 generalizes, for bounded operators, the Parseval equality and eigen- 
vector expansion of [3, 4]. Again if ~i=0, i =  1 . . . . .  n then (0.2) reduces to the con- 
dition S is positive definite. Consequently a*=  0 and Theorem 5 coincides with 
that  of Browne [2]. 
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