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Abstract 
Let U be an open subset of a complex locally convex space E, and H(U) the space of 

holomorphic functions from U to C. If the dual E' of E is nuclear with respect to the topology 
generated by the absolutely convex compact subsets of E, then it is shown that H(U) endowed 
with the compact open topology is a nuclear space. In particular, if E is the strong dual of a Fr6chet 
nuclear space, then H(U) is a Fr6chet nuclear space. 

If  E is a complex locally convex space and U is an open subset of E, then 

H(U) is the space of all holomorphic functions from U to C. A function f :  U-~C 
is holomorphic if it is continuous and G~teaux holomorphic (that is, f restricted 

to U n F  is holomorphic or analytic in the usual sense whenever F is a finite dimen- 
sional subspace of E). z0 will denote the compact open topology on H(U). For 

each compact K c  U, PK will denote the semi-norm on H(U) defined by p ~ : ( f ) =  

=sup~cK If(x)[ = [fIK. H(U), PK is the semi-normed space H(U) with respect to 
the semi-norm p~:. 

It  is classically known that if H(U) is the space of  holomorphic functions on 

the open subset U of C" endowed with the compact open topology, then H(U) 
is a Fr6chet nuclear space. In this article we investigate the nuclearity of  H(U) 
when U is an open subset of  a space E whose dual E '  is nuclear with respect to 

the topology generated by the absolutely convex compact subsets of  E. Any quasi- 

complete dual nuclear space E has this property (a space E is quasi-complete if 
its closed bounded subsets are complete, and E is dual nuclear if its strong topological 
dual is nuclear). Therefore in particular any Fr6chet nuclear or ~FN (strong dual 

of  a Fr6chet nuclear space) space has this property. 

Proposition 1. Let E be a locally convex space such that E' is nuclear with 
respect to the topology generated by the absolutely convex compact subsets of E. 
I f  U is an absolutely convex open subset of E, then H(U), z o is a nuclear space. 
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Proof. It suffices to show that if K is compact in U, then there exists a com- 
pact /~ such that UDg.DK and the mapping H(U),pe~H(U),pK is absolutely 
summing. By a characterization of Pietsch [3], it suffices to sbow that there is a 

positive Radon measure /z on C(/~) such that pK(f)<=fe If]d# for all fCH(U). 
Let now K be given. Since E" is nuclear with respect to the topology generated 

by the absolutely convex compact subsets of  E, K is contained in the absolutely 
convex hull of  a rapidly decreasing sequence {x,} in E (see [3]), where rapidly 
decreasing means that (1 q-rl)Pxn--~O for all p > 0 .  Therefore 

K [  X 1 : (Z~--I  ~iXi "*Z~----1 I~il "~ l} ,  

Now choose 0~ such that 0 < ~ < 1 / 2  and K c ( 1 - 2 ~ ) U ,  and then choose N such 
= Y.~ ~ 1}cc~U. Define that { Z ~  2i(N+i)4x~+i :~..,,=1 I)'il 

r 
Y =  { Z L l ~ ' i X i  : Zi=l"~iXi  ~K ,  Z~--1 l~il ~ l},  

and 
X3 = {,~=,2~(I +i2)XN+I : 12il <= 1}. 

Note that X3c{T~12i(N+i)4xN+~:Y~7=~ [2~]<=l}c~U, where ~Y3 denotes the 
closure of  Xa, and hence X a is compact in ~U. Clearly .V2c.~ 3. Furthermore 
YcK+X~c(1  ~a) U, and therefore K c  Y + X ~ c  Y + X a c  U. 

Next let T =  vector span of  {xl, ..., xu} and choose ),1 . . . .  , Yt from (x 1 . . . . .  XN} 
to form a basis for  T. Let UT= U n  T. Since Y is compact in (1 - ~ )  UT, we may 
find 2r polydiscs of dimension t, L I, ..., L, ,  M~, ..., M,,  such that YcL~ u . . .  
. . . u L ~ c M I u . . . u M ,  c (1 -a )UT,  L icMi  for each i=1 ,  . . . , r ,  and if Li has 

Z i i i i polycenter ( lYe ,  z~yt) and polyradius (r~, r~, zz y2, ..., .... r,), then M~ has the 
same polycenter with polyradius (r~+e, r~+e . . . .  , r[q-~) where ~>0. For  each 
i= l , . . . , r ,  let K,=L,+X~ and /~,=M~+X3. Note that KcU~=~K~, and that 
K ~ / ~ U  for each i = l  . . . .  r. If  - ~ - , K =  U~=~ K~, then /~ is compact in U and 
contains /(. To show that H(U), p t~H(U) ,  PK is absolutely summing, it clearly 
suffices to show that H(U), Pe,~H(U), p~ is absolutely summing for each i =  1, ..., r. 
We do this for i=  1. 

To show that H(U), pe--,H(U), PK~ is absolutely summing, we show the 
existence of  a positive Radon measure /~ on C(K~) such that 

IfIK~ <~ f~I f ld~ for all f~H(U). 

For  notation's sake, we let (zly I .... , z~yt) be the polycenter of L~ and (rx, ..., r~) 
the polyradius. Let  C = ] - /~  ~ (1 + ]  - 2) and D =//~.  = x (r~ + e) e - t For  each n = 1, 2 . . . . .  
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define the positive Radon measure p. on C(/~) by 

n + - - 2 ~  f a ~  t p,(~o) = D(2~z)- t -" / I j=,(1  j )do "'" f2o~ ~P(Zk=l (zkyk+ei'k(rk+e)yk)+ 

+ ~ = x  (d&( 1 + k2)x~+k)) d~l. . ,  doq dil l . . ,  dfl,. 

Note that IXn(cp)~DC]rplg 1 for all q~EC(Rx). Also if f E H ( U ) ,  it follows by the 
Cauchy integral formula that 

IflLx+xz,, <= P~({f{), 
, ~ 2 ~ where X 2.=-{Z,=1 ,xN+i:2,=112il 1}. 

To see this, let wEIa+X2,,, .  Then W=~tk=1(Zk+Wk)Yk+~=l(Wx+kXN+k), and 
by the Cauchy integral formula 

f(w) = (2,a)-,-. f ... f f (ZL1 (z,+ r 

+ G = ~ + ~ x ~ + ~ )  ' -~ " " 1-Ik=1 ({k--Wk) 1-Ik=1 ({N+k--WN+k)--ld{* "'" d{,d{N+l ... d{s+, 

where 
{ k = ( r k + O e %  k = l  . . . . .  t, 

{ S + k = ( l + k 2 )  d& k = l , . . . , n .  

Taking absolute values, it follows that [f(w)l<=~,(lfl), and hence 

Ifl < (If I) LI+X~,,~ ~ ~n 

Suppose we show that lira,/~,(qO exists for all q~EC(/~I). Defining #(qO= 
=lim,/z,(~o), it follows that # is a positive Radon measure on C(R0. Moreover, 
since [flL~+X~,<=#.({fl), it follows that 

-</t(Ifl) for all f<H(U).  If[K~ = lim [f[L~+X,,. = 
n 

Hence it remains to show that lira,/,,(~p) exists for all q~EC(R0. 
Let ~pCC(R~) and 6 > 0  be given. There exists a neighborhood W of 0 in 

E, such that if x - y E W ,  and x, yEIT[ 1, then ko(x)-~0(y)l<& Pick s such that 
'l n"  ( 1 - ( 1  +J~) -g l<a -  if n>s,  then {ZT=~2 j ( I+ j~ )xN+j : I2 j [~ I }cW and I -- s=~+* 

Then 

Im(~o)-~,(q,)l <= 

D (2zc)- '-"//s=~ (l + j - z ) f  ... f ] q~(Z;= ~ (Zkyk+ei=k(rk+OYk)+ 

+ X~,=~ (elan( t + ")Xs+R)) -- / /~=,+1 (1 --(1 +fl)--0q~(Z~=l ( z ty~+d~(r~+Oy~)+ 

+ Z ; = a  (d&(1 + k2)X~+k))[ da~ .,. da, dfl, ... dfl, <= DC6+DC6 Iq~[g~. 
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Hence /Xn(q0 is Cauchy, and limn/z.(~p) exists. This completes the proof  of  the 

proposition. 

It  is now clear that if V is any translate of an absolutely convex open set in 
E, where E" is nuclear with respect to the topology generated by the absolutely con- 
vex compact subsets of E, then H ( V ) ,  zo is nuclear. Since every point in an arbitrary 
open subset U of E has a fundamental system of  neighborhoods V of  this type, 
we are able to prove the following theorem. 

Theorem 1. Let E be a locally convex space such that E" is nuclear with respect to 

the topology generated by the absolutely convex compact subsets o f  E ,  Then i f  U is 

an open subset o f  E, H(U) ,  Zo is nuclear. 

Proof. Let K be compact in U. Then there exist compact sets K1 . . . . .  Km 
and open translates of  absolutely convex sets V1 . . . .  , Vm such that K = K  1 ~3... 
... •Kmc  V1 u . . .  UVmC U .  From the remark following Proposition 1, we can find 
compact sets /~1 . . . . .  / ~  where K i c K i c V i  and positive Radon measures pi such 

-~ for all f E H ( U )  and i=1  . . . . .  m. Let /~=/~lk-J...k-)/~m that [f[~::_f~, [f[dPi 
and define the positive Radon measure # on C(~)  by 

for 

Clearly f <x;m K=.~i=l  IflIq~--P([f[) for all f E H ( U ) .  It  follows that H(U) ,  p ~  
~ H ( U ) ,  PK is absolutely summing, and this completes the proof. 

Corollary L I f  U is an open subset o f  the strong dual o f  a Frdchet nuclear space 

E, then H(U) ,  z o is a Frdehet nuclear space. 

In general, if U is an open subset of the locally convex space E, we may con- 
sider another topology z a on H ( U )  defined as follows. A compact set K in U 
will be said to be rapidly decreasing if it is contained in the absolutely convex hull 
of  a rapidly decreasing sequence in E. z a will denote the topology on H (U) o f  
uniform convergence on rapidly decreasing compact sets of  U. In general, Zd~--ZO, 
and z a is finer than the topology of  uniform convergence on compact sets of finite 
dimension. It  is clear from the results in this paper that H(U) ,  z a is a nuclear space. 

Author's Note: Many of  the results in this paper have been proved indepen- 
dently by Prof. Lucien Waelbroeck. His woofs  will be published in the Proceedings 
o f  the Conference on Infinite Dimensional Holomorphy,  State University o f  

Campinas, 1975. 
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