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Abstract

Let U be an open subset of a complex locally convex space E, and H(U) the space of
holomorphic functions from U to C. If the dual E’ of E is nuclear with respect to the topology
generated by the absolutely convex compact subsets of E, then it is shown that H(U) endowed
with the compact open topology is a nuclear space. In particular, if E is the strong dual of a Fréchet
nuclear space, then H(U) is a Fréchet nuclear space.

If E is a complex locally convex space and U is an open subset of E, then
H(U) is the space of all holomorphic functions from U to C. A function f: U-~C
is holomorphic if it is continuous and Giteaux holomorphic (that is, f restricted
to UnF is holomorphic or analytic in the usual sense whenever F is a finite dimen-
sional subspace of E). 7, will denote the compact open topology on H{(U). For
each compact Kc U, py will denote the semi-norm on H(U) defined by pg(f)=
=sup, ¢ | f=1flx- HU), px is the semi-normed space H(U) with respect to
the semi-norm pg.

It is classically known that if H(U) is the space of holomorphic functions on
the open subset U of C" endowed with the compact open topology, then H(U)
is a Fréchet nuclear space. In this article we investigate the nuclearity of H(U)
when U is an open subset of a space E whose dual E’ is nuclear with respect to
the topology generated by the absolutely convex compact subsets of E. Any quasi-
complete dual nuclear space E has this property (a space E is quasi-complete if
its closed bounded subsets are complete, and E is dual nuclear if its strong topological
dual is nuclear). Therefore in particular any Fréchet nuclear or @PFN (strong dual
of a Fréchet nuclear space) space has this property.

Proposition 1. Let E be a locally convex space such that E’ is nuclear with
respect to the topology generated by the absolutely convex compact subsets of E.
If U is an absolutely convex open subset of E, then H(U), 1, is a nuclear space.
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Proof. 1t suffices to show that if K is compact in U, then there exists a com-
pact K such that U K> K and the mapping H(U), pg~H(U), px is absolutely
summing. By a characterization of Pietsch [3], it suffices to show that there is a
positive Radon measure u on C(K) such that pg(f)= [z |fldu for all feH(U).

Let now K be given. Since E’ is nuclear with respect to the topology generated
by the absolutely convex compact subsets of E, K is contained in the absolutely
convex hull of a rapidly decreasing sequence {x,} in E (see [3]), where rapidly
decreasing means that (1+n)?x,—~0 for all p=>0. Therefore

KCX]_:{Z;ZI;»I)QZ :___1 ‘ll‘él}.

Now choose o such that 0<a~<1/2 and Kc(1—2a) U, and then choose N such
that {377, L(N+i)*xysi: 252, 4|=1}cal. Define

Y= {3 At I koK, S, =1,

Xy = {2:;1 AiXyeit 2ieqg Ml = 1}:

Xy = {37, A+ Daya L] = 1),

and

Note that Xoc{3i, AN+ xy4i: 2oy Il =1}cal, where X; denotes the
closure of X, and hence X, is compact in aU. Clearly X,cX,. Furthermore
Yo K+ X,c(1—~a) U, and therefore KCY+X,cY+X,cU.

Nextlet T=vector span of {xi, ..., xy} and choose y,, ..., ¥, from (xy, ..., Xy}
to form a basis for T. Let Up=UnT. Since Y is compact in(1—o)U;, we may
find 2r polydiscs of dimension 2, L, ..., L., My, ..., M,, such that YL, u

wul,ceMyu.. UM, c(1-0 Uy, L,.CM, for each z—l, .., r, and if L, has
polycenter (2. yy, 2, ¥, ..., 2!y,) and polyradius (ri,ry, ..., r}), then M, has the
same polycenter with polyradius (#:+¢, ri+e, ..., ri4+¢) where £>0. For each
i=1,..,r, let K,=L,+X, and K,;=M,;+X,. Note that KcJ!_, K;, and that
K,cRcU for each i=1,...,r. If K=|J;_, K;, then K is compact in U and
contains K. To show that H(U), pg—~H(U), px is absolutely summing, it clearly
suffices to show that H(U), pg,~H(U), py, is absolutely summing foreach i=1, ...,r
We do this for i=1.

To show that H(U), pg —~H(U), px, is absolutely summing, we show the
existence of a positive Radon measure g on C!K,) such that

[fle = [, 1fldp for all fEHQ).

For notation’s sake, we let (2,1, ..., z;),) be the polycenter of L; and (ry, ..., #)
the polyradius. Let C= ]}, (14/~2) and D= [[’_, (r;+¢&)e ' Foreachn=1,2,...,
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define the positive Radon measure u, on C(K, by
(@) = DQm) T [T (1477 [ oo [ @(Shas Gari e+ 30 +

37 (P (kD xy ) dey .. doy Py ... dB,.

Note that p,(¢)=DC|plg for all peC(Ky). Also if feH(U), it follows by the
Cauchy integral formula that

QflL1+X2,,, = Aun([f[)a
where X, ,={3"_, Aixnyi: iy Wl=1}.

To see this, let we€L,+X;,. Then w=1_, @+ w)r+ Do Wy+aXn+r), and
by the Cauchy integral formula

f) = @u)= [ [ f(Cho, @t St
+Z£=1 §N+kva+k) ]]2:1 E—wp™ HL; Cysr—Wys) 1dEy . dé,déniy ... déyyy

where
& =(ntees k=1,..,¢,

§N+k:(1+k2)eipk k: I,...,n.
Taking absolute values, it follows that | f(w)|=p,(|f]), and hence
lf|L1+X2_,n§ #n(lf[)’

Suppose we show that lim, p,(p) exists for all ¢€C(K;). Defining p(p)=
=lim, u,(p), it follows that g is a positive Radon measure on C(K,). Moreover,
since | flz +x, =#a(lf]), it follows that

[flk, = li}'n [flesixs,, = p(|fD) for all feH(U).

Hence it remains to show that lim, u,(¢) exists for all @€C(K,).

Let ¢cC(K;) and 6=0 be given. There exists a neighborhood W of 0 in
E, such that if x—y€W, and x, ycK,, then |p(x)—@(»)|<95. Pick s such that
if n>s, then {37_ A;(1+7D)xys;: |4;|=1}c W and {I-I_ ., (1—(1+/%) )| <.
Then

@) — (@) =
D) I (145 [ o [10(Shay @it e (rete) v+
+ Zher @1+ k) xy40) = [T (- A+ (S Gadit (8o +

+ 35 (€ (1 + kD xy.))| doty ... dey dB, ... dB, = DCO+DCS|plg,.
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Hence u,(¢) is Cauchy, and lim, u,(¢) exists. This completes the proof of the
proposition.

It is now clear that if ¥ is any translate of an absolutely convex open set in
E, where E’ is nuclear with respect to the topology generated by the absolutely con-
vex compact subsets of E, then H(V), 7, is nuclear. Since every point in an arbitrary
open subset U of E has a fundamental system of neighborhoods ¥ of this type,
we are able to prove the following theorem.

Theorem 1. Let E be a locally convex space such that E’ is nuclear with respect to
the topology generated by the absolutely convex compact subsets of E. Thenif U is
an open subset of E, H(U), t, is nuclear.

Proof. Let K be compact in U. Then there exist compact sets Kj, ..., Ky,
and open translates of absolutely convex sets Vi, ..., ¥, such that K=K u...
.. UK,cV,U...uV,cU. From the remark following Proposition 1, we can find
compact sets K, ..., K,, where K;cK,CV; and positive Radon measures y; such
that |flg,= [, |fldy; for all feH(U) and i=1,...,m. Let K=K, u...uKk,
and define the positive Radon measure z on C(K) by

w(@) = Iy [ 0du for peC(R).

Clearly |[flg=27"; |flx,=p(f]) for all f€H(U). It follows that H(U), pg—~
—~H(U), px is absolutely summing, and this completes the proof.

Corollary 1. If U is an open subset of the strong dual of a Fréchet nuclear space
E, then H(U), 1, is a Fréchet nuclear space.

In general, if U is an open subset of the locally convex space E, we may con-
sider another topology 7, on H(U) defined as follows. A compact set K in U
will be said to be rapidly decreasing if it is contained in the absolutely convex hull
of a rapidly decreasing sequence in E. 7, will denote the topology on H (U) of
uniform convergence on rapidly decreasing compact sets of U. In general, 7,=1,,
and 7, is finer than the topology of uniform convergence on compact sets of finite
dimension. It is clear from the results in this paper that H(U), 7, is a nuclear space.

Author’s Note: Many of the results in this paper have been proved indepen-
dently by Prof. Lucien Waelbroeck. His proofs will be published in the Proceedings
of the Conference on Infinite Dimensional Holomorphy, State University of
Campinas, 1975.
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