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Introduction 

Pseudo differential operators are often defined by means of  the formula: 

(0-1) Au(x) = f ei<X-y,e>a(x, y, ~)u(y) dyd~ 

where a (x, y, 4) satisfies on R" X R" • R" the inequalities: 

ID~ D~D~ca(x, Y, 4)1 ~ c~,p,,z(l~D q~-I~1-Jal (1@ ~ "  ~ (l@ 

with X, ~o, ~ fixed weight functions on ~+ = {~ER, 4=>0}. Our aim is to give necessary 
and sufficient conditions for the weight functions i n  order that the operators (0-1) 
are continuous on LZ(R"). As a matter  of  fact, we shall restrict ourselves to the 

one-dimensional case, n =  1, and we shall introduce some hypotheses on Z, ~o, ~. 
In the first section we enunciate the results and we give some applications. Partic- 
ularly we obtain for the classes of  H6rmander  soma on R X R X R  the results in Cal- 
der6n--Vail lancourt  [3], HOrmander [6] and also a result of  Ching [4]. Another 
application refers to the classes of  pseudo differential operators in Beals--Fef-  

ferman [1]. 
In the second section we give the proofs. 

* The paper was written while the author was a guest at the Institut Mittag--Leffier and it 
was supported by a fellowship of the Comitato Nazionale delle Ricerche, Italy. 
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1. Results and applications 

Let Z, ~o, �9 be strictly positive smooth functions on 11+ with the properties: 

(i) X(~) -< c~, c2 -< ~(~) -< c3(1+~), q~(~) ~ c,~-1(~) 

(ii) [D'z] -< c~(=)Z~- =, ]O=O[ -< cg)Ox-% IDaho] -< c~(=)q~O -= 

where ca, c~, c~, ca, c(~ ), c(~ "), c~ ~), ~=1,  2 . . . . .  are positive constants. Consider the 
functions a(x, y, ~) on R • 2 1 5  which satisfy the inequalities: 

(1-1) 

We want to study the continuity of the operator A, defined as in (0-1). Let us 
define for ~ and ~/in g+ : 

i" q~-x(~) +~-~(.)~ 
(1-2) f(~,  ~/) = min/1 

' I~-~l  J t 

For each integer N_->0, we set: 

(1-3) 

In particular: 

(1-4) 

FN(r/) = f o  fN(~, ~/)Z(~)O-~(~) d~. 

F0 = foZ(0~-l(~)d~. 

Theorem 1-1. Let Z, q~, #) satisfy 0), 0 i) and let the function FN (~) be bounded, 
for some integer N. Then, if  a(x, y, ~) satisfies the inequalities (1-1)for e-<2N, fl-<2N, 
7-<2, the operator A in (0-1) is continuous from L2(R) to L2(R). 

In particular, let X and ~ satisfy the properties in (i), (ii) and let the integral (1-4) 
be convergent. Then, if: 

(14) IDea(x, y, ~)1 -< C0,o, rZ([~l)0V-r(t~t) 

for 7-<2, we can conclude that the operator A is bounded, without any requirement 
on the derivatives with respect to x and y. 

Now we introduce the following property. 

(iii) One of the following two conditions is satisfied: either limr d(~o-1)/d~=O 
or d(9-1)/d~ >= 1. 

Let us define the subset of  R+" 

(1-6) ~ ---- {~ -> 0~ [~--?][ <-- ~0--1(~)'~- ~0--1(~)}, ~]ER+ 
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and 

(1-7) F~ (q) = f v, Z (4) ~-1 (r d~. 

Theorem 1-2. Let X, ~o, ~ satisfy (i), (ii), (iii) and suppose that F~(q) is no 
bounded. Then there exists a(x, y, 4) which satisfies the inequalities (1-1) for all ~, [3, 

and such that the operator A in (0-1) is not continuous from L2(R) to L2(R). 

Actually, if limr d(~-l) /d~=O, for ~/ sufficiently large 1I, is a closed finite 
interval and the hypothesis of theorem 1-2 is equivalent to the assumption of the 
existence of a sequence ~h=>q~.. .  such that l i m j ~  Fo~01j)= oo. If  d(9-1)/d~ >= l, 
we have V,=R+ for all q and hence F==Fo. In this case, when we say that F= is 
not bounded, we mean that the integral (1-4) is not convergent. 

From theorem 1-1 and 1-2 we shall deduce the following corollary, by means 
of a direct evaluation of the integrals in (1-3), (1-7). 

Corollary 1-3. Let Z, ~o, ~ satisfy: 

(i)* Z(~) --<-- cl, cz ~ #(~) ~ cz( l+~) ,  c4(1+~)~-1~ (p(~) _--< c.~-1(~) 

(ii)* ]D~z] <= c~(~)Z9 ~, IO=~[ _<- c6=)~0 =, [D=~o] <_- c&=)9(1 +~)-~ 

where e, cl, c~, cz, ca, c5, c(6 ~) , ~7"<~) , ~8 "(~) , -  ~ :  1,2,.. ., are positive constants. Let the function 
G(q)=X(q) #-101) q~-l(r/) be bounded. Then, i f  a(x, y, 4) satisfies the inequalities (1-1) 
for 7<-2, c~_2M, [3<=2M, where M is the least integer such that e M > l ,  the operator 
A in (0-1) is continuous from L2(R) to LZ(R). 

Otherwise, i f  G(q) is not bounded, there exists a(x, y, 4) which satisfies the inequal- 
ities (1-1) for all o~, [3, ~ and such that the operator A is not continuous. 

Now we shall give some applications. At first take Z (4) = (1 + ~)', # (4)= (1 + r 
9(~)---(1+~) -~, m<-0, 0<_-0<=6_-<1. Then the inequalities (1-1) define the class 
Se~,~ of H6rmander on R • 2 1 5  (see H6rmander [5], [6]). We write here L~,o for 
the class of operators in (0-1) with symbol of this form. 

If  we assume in addition 6<  1, all the hypotheses of corollary 1-3 are satisfied, 
with G(q) : (1  +~/)m-~+n. We can conclude that every operator in Lo~,o, m<:0, 0<= 0<_ - 
< z  < =6 1, is continuous on LZ(R) if and only if m<_-0-6. The generalization of this 
result to the n-dimensional case is proved in Calder6n--Vaillancourt [3], H6r- 
mander [6]. 

On the other hand, if we assume 6 = 1, the second condition in (iii) is satisfied 
and we have: 

F0 = F= = f~ (1 +~)--od~. 

From theorem 1-1 and theorem 1-2 we deduce that every operator in LQm, o, 
m<_--0, 0<=0<_--6, 3 =  1, is continuous on L2(R) if and only if m < 0 - - 1 .  In particular, 
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when m=0,  0 =6 = 1, we obtain a result of Ching [4], who gave an example of an 
operator in Lx ~ which is not continuous. 

In the final application, we assume in the corollary 1-3 Z--I,  ~=q~-~. Then 
G(~/) is certainly bounded and if a(x, y, 4) satisfies the inequalities (1-1) the cor- 
responding operator in (0-1) is continuous. A similar result in the n-dimensional case 
is proved in Beals--Fefferman [1]. 

2. Proofs 

The proof of theorem 1-1 will be given by a modification of the method used 
Calderrn--Vaillancourt [3]. Particularly we shall use the following lemma (for the 
proof see for example Calder6n--Vaillancourt [2]). 

Lemma 2-1. Let ~-*A(r be a smooth map from the interval 1={4, 0<=~-<-a)} 
to continuous operators on L z(R). Let h(4, ~1) be a positive continuous function on 
I •  such that 

(2-1) IIA*(~)A(q)[] <- h~(~, q), IIA(~)A*(q)[I <= h~(4, 0) 

and for all s 

(2-2) f,~sh(r r 43)... h(~2s-1, ~2s)d~l ... d~2s <= k22s 

where the constants k and 2 do not depend on s. Then Il f zA(~)d41l <=2. 

Proof of  theorem 1-1. A standard limiting argument reduces matters .to the 
task of proving: 

I[Aul[ =< ellull 

for u65a(R) and a(x, y, 4) of compact support, with c depending only on the con- 
stants c,, a, r and on Z, ~o, ~. We can also suppose without loss of generality a (x, y, 4) = 0 
for 4~0 ;  hence, for ~o sufficiently large, the support of a(x, y, 4) with respect to the 
variable ~ is included in 1={4, 0<=r 

We begin by obtaining a different representation of the operator A in (0-1). 
For this purpose note that 

[1 + ~ ( r  + ~(r '(~-')r = e i(~-')r 

Substituting in (0-1) and integrating by parts we obtain 

(2-3) Au(x) = f e~(~-')r y, ~)u(y) dy d~ 
where 

(2-4) b(x, y, ~) --- [1 + O ~ ( r  y, 4)[1 + ~(~)(x-y)~]-~}.  
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We consider the following representation of  A: 

= f ,  A (r A 
where 

A(4)u(x) = f d~x-mb(x, y, 4)u(y)dy. 

Let us apply lemma 2-1 to A(4). The kernel of A*(~)A(rl) is given by 

(2-5) f e-~(e-"~z+'x*-~"b,(z, x, 4)b(z, y, ~l) dz. 

Observing that 
14- rll-2N (D~) ~ e-i(*- 'm -- ,,-/(r 

substituting and integrating by parts (2-5) becomes 

f e -"r162 14-nl-2~(D2~)N[~(z, x, 4)b(z, y, n)l d~. 

Now we use the inequalities: 

(2-6) [O~b(x, y, 4)] <- cz(~)~o-=(4)H[fb(4)(x-y)]  

where H is an integrable function and, from now onwards, we shall use the 
letter c to denote constants depending on Z, ~0, (b and C~.~, r. Adnfitting the (2-6) 
for a moment, it follows that the kernel of A*(4)A(rl) is majorized by the convolu- 
tion kernel 

/ m -~ ( o  § m -~ ( .)  "12~f a r m  (4) (~ - x)j H t~ ( .)  (= - y)J d~ cx(4)z(,7) [ f4 ~ ] 
and we have 

(2-7) A*(4)A(q)II <= cz(~)Z(O#-~( r  [ O-~(4)+~~ 2N 

On the other hand, if we majorize (2-5) directly by using the inequality (2-6) with 
=0,  we obtain 

(2-8) A* (4) A (~)II <- cZ (4) Z (~) ~ -  x (4) ~ - ~  (~). 

It follows from (2-7) and (2-8) that: 

IA* (4)A (t/)l] ~ h2(~, t/) = cz (~)X(t/) ~-1(4)  ~-~ (r/)f2N(4, t/) 

where f is defined as in (1-3). Similarly we can prove: [A (3) A* (t/)][ <_-- h 2 (4, t/). 
According to lemma 2-1 we consider 

f,~.h(r 4~)h(r 4~) -.. h(r r ... d42, = 

(2-9) = c 2 s - 1  f l 2 s  Z l / ' 2 ( ~ 1 ) z l / 2 ( { 2 )  ( ~ - 1 / 2 ( 4 1 )  r 4z).. .  

"'" Z 1/2 (42s -- 1) Z 1/'~ (r (D - 1/2 (42s  - 1) ~ - 1/2 (4=~)fn (42,- x, 42~) d{ , . . ,  d~2,. 
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Using the estimates 

)~1/2(~1)~--1/2(~1) ~ CI/2C21/2, fN(~l, ~2) ~ 1, 

where c~, % are the constants in the property (i), and integrating with respect to 
~1 and ~2~, we see that the right-hand side in (2-9) is maj0rized by 

(O2CxC;~C~*-x f z~,_~fN(~2, ~8)Z(~)#-~(~2)... 

It follows from the definition o f  F~01) in (1-3) that the condition (2-2) is satisfied 
with s  m a x , ~  FN(~/). By using the lemma 2-1, in view of the boundedness of 
FN(r/) we can conclude that the norm of A is majorized by a constant depending 
only on  Z, ~P, ~ and c~, ~, ~. It remains to prove (2-6). To this end we first observe that 
for a polynomial P and an integer h: 

(2-10) D~,{p[cI)({)x][1 + #~({)x=] -~} = #=(~)Q=[#({)x][1 + #2({)x=]-~- 

for some polynomials Q= and integer k,,  with 2k=-deg Q~,>2h-degP. In par- 
ticular, if :P(z)(1 +z=) -~ is integrable, Q~(z)(1 +z~) -t= is integrable for all ~. The 
(2-10) is readily verified by induction on a. Now we have for a<=2N, fl_~2: 

(2-11) D~D~ {~(~)[1 + ~({)x~] -*} =< ~+=-~  (~)H[~(~)x] 

where H is an integrable function. To prove this, we compute directly in (2-11) 
the derivatives with respect to { a n d  then we use the (2-10) and the inequalities 
in the property (ii). Finally, using (2-11) and the inequalities (1-1) to estimate (2-4), 
we obtain (2-6). This completes the proof of theorem 1-1. 

To prove theorem 1-2, We shall use a modification of the methods in H6rmander 
[6] and Ching  [4]. At first we consider pseudo differential operators of the form 

(2-12) Au(x) = (2=)-~ f ei'~ea(x, ~);t({) d~ 

where ~ is the Fourier transform of u and 

(2-13) ID~ D~ a( x, ~)l ~ c,,~Z(l~[)g~ ' 

We assume that Z, q~, ~ satisfy (i), (ii), (iii). Let us introduce 

(2-14) 

where 

(2-15) 

E~(~) =f~;z~(~)~-~(~)d~ 

vj = {~ ~ o, l~-~l ~ ~o-~(~)},~R§ 
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I f  the first condit ion in (iii) is satisfied, for  t/ sufficiently large V~ is a closed finite 
interval. I f  the second condit ion in (iii) is satisfied, V~={~, 4->o9} for  a positive 
co depending on ~/. The p roo f  of  theorem 1-2 will be obtained as a consequence of  
the following theorem. 

Theorem 2-2. Let Z, cp, ~ satisfy (i), (ii), (iii) and suppose that E=(tl) is not 
bounded. Then there exists a(x, 4) which satisfies the inequalities (2 -13 ) fo r  all ~, 
fl and such that the operator A in (2-12) is not continuous from L~(R) to L~(R). 

Proof of theorem 2-2. First  t a k e  a multiple of  �9 as a new weight function, so 
that  we can suppose in (ii): c(6~)=1/4, c(5~)=c(7~)=1/8. We begin by introducing 
some notations. Set: 

O(r162 4>-0 

and let 4`(0) denote  the inverse funct ion of  0(~): 4`(0(~))=~ for ~ 0 .  We define for 
m=O, l ,  ... : 

In = {~ => O, O(2m) <-- ~ <= 4'(2m + 2)} 

and  

Observe that  

Am = 4 ` ( 2 m + 2 ) - 4 ` ( 2 m )  

r  = 4 ` (2m+  1) 

z .  = z ( r  ~0~ = ~0(r ~ .  = r  

(2-16) 

and, since e6 (1) = 1/4: 

(2-17) 

zl,. <_- max ~ (~) 
i,, 

max  �9 (4) ~ 2 rain r (4). 

Since cn m = c~ ~) = 1/8, it follows that  

(2- l 8) max Z (~) < 2 nfin Z (~), max q~ (~) -<_ 2 min q~ (~). 
Im 1 m I t .  

From  (2-16), (2-17), (2-18) we can deduce that  

(2-19) Sm= A,, max [Z z (4) ~ "  ~ (4)] ~ 1622m ~_ 16e~ 
Im 

where e~ is the constant  in the proper ty  (i). These inequalities will be used later. 
Now takepEC=(R),p(O)=O when 101~1 a n d p ( 0 ) = l  when 101<_-1/2. We define, 

for  m = 0 ,  1 . . . .  : 
~p[O(~)--2m--1] if  ~ ~ 0 

q,,(~) / 0 if ~ 0 .  
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Observe that supp qmCI" and 

(2-20) [D~qm(~)] ~ cp~-~(r 

with constants c a which do not depend on m. (2-20) is easily verified by induction 
on fl, by using the inequalities in the property (ii). Initially we suppose that the 
first condition in (ii~) is satisfied. Then there exists a sequence//i, J =  1, 2, ..., in ~+ 
such that 

(2-21) !im E~(//j) = oo. 
j ~ o o  

We can assume that V~j, j = l ,  2, . . . ,  defined as in (2-15), are finite closed disjoint 
intervals. 

Observe that if V~. does not include at least one of the intervals 1,. it can be 
covered by two of these intervals: V~jcI,. Wlm+~, for a convenient rn depending on 
j. From (2-14) and (2-19) it follows that 

E.~(tlj) <= S"dl-~,~m+l ~ 3 2 C l .  

In view of (2-21), this inequality can be satisfied only for a finite set of indices j.  
Therefore, by restricting attention to sufficiently large j ,  we can suppose that each 
V~j includes at least one of the intervals lm. 

Let mj be the least integer such that l m C  V~j and denote by hj the greatest 
integer such t h a t  I m ~ + h j C  V~j. Let us define: 

e ix(nJ - ~m.i + ~) ~ (~'1 (2-22) a(x, 4) = Z i  Z ~ o  Zmj+, qm,+,, ," 

This function satisfies the inequalities in (2-13). In fact, using the definition in (2-15) 
and the second inequality in (2-18), we have 

ltlj--~mj+i[ ~ 2 min cp-~(r 0 <= i <- h i. 
I,.j+~ 

Hence, by using (2-20): 

O~, na t.ix%-r _ r.~'nl -< 2~'ca~o -~' xl]r ~ t~ttlJ +i~'%]1[ = (r162 0 ~ i ~ hi. 

Since all terms in the double sum (2-22) have disjoint supports, in view of the first 
inequality in (2-18) we can conclude that a(x, r satisfies the (2-13) for all 0~, ft. 

We shall prove that the corresponding operator A, defined by (2-12), is not 
continuous from L2(R) to L2(R). Assume the contrary that for some constant c 

( 2 - 2 3 )  tlAult 2 <_- c Ilull m 

for all uESa(R) and test the continuity of A in the following way 
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Choose 0r with f ( 0 = 0  when [~[=>c2/4, where c~ is the constant in 
the property (i). and set 

hj  (2-24) ~J({) = Z,=0 b,f(r - r 

where the b~ are complex numbers. Note that we have the inclusions 

(2-25) supp f ( { - { m ) = { { ,  ~(2m+ l/2) <= ~ <= ~b(2m+ 3/2)}Clm 

and hence the terms in the sum (2-24) have disjoint support. Therefore 

(2-26) Ilujll ~ = ( ~ L o  [b,I 2) Ilfll ~. 

On the other hand, using (2-25) we have 

a(x, Oaj(O = ~J=o biZm,+fdx%-r f ( {  - {mj+O" 

Hence we see that: 
hj ixr I AUj(X) = (Z,=ob, gm,+,)e ,f(x). 

Now the (2-23) and the (2-26) give: 

(Z~'~o b,z~,+,) = <= ~ Z~:o I~,~1 ~, 
which implies that 

(2-27) 

Since 

hj 
~i=o  Z~mj+~ ~-- c. 

E.(qj) ~_ Smj-, + Sm,+hj+ l + ~ = o  S,.j+,, 

in view of (2-19) we have: 

(2-28) ~ h j  . 2 16 .,:-,i=o Z=j+i = E ~ ( r l j )  - -  32Cl ~. 

The inequalities (2-27) and (2-28) contradict our hypothesis in (2,21). Therefore 
the operator A is not continuous on L2(R). 

Now we assume that in (iii) the second condition is satisfied. Since 

foZ2(~)q~-l(~)d~ is not convergent, we can construct a sequence t/j, j = l ,  2 . . . . .  
with rl~+l>=tlj in R+ such that 

where 
lim. f v ,  z ~(r ~ -  1 (~) ar = oo 
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Let m~ be the least integer such that I,,~U~ and denote by hj the greatest 
integer such that I,,~+,cU~. We define a(x, ~) as in (2-22). Theni by observing 
that U3~ V~ we can repeat all the preceding arguments and obtain the same con- 
clusions. The proof of theorem 2-2 is complete. 

In the proofs of theorem 1-2 and corollary 1-3 we shall use the following lemma. 

Lemma 2-3. Let Z, q), ~ satisfy (i), (ii) and suppose limr d(9-a)/d~ =0. Then 
the boundedness of F=(tl) is equivalent to the boundedness of each of the functions 
of tl: 

( 2 - 2 9 )  v= (6, = x (r (r de, 

F:  q) = f 

where 5 is a fixed constant and 

X (~) ~ -- 1 (~) d~ 

(2-30) V0,~ = (~ => 0, [~-~/I  <= 6 [~~  

v ;  = (~ > 0, [~ -~ l  ~ &o-~(r " (~ )} 

Observe that for rl sufficiently large Vo,,, V;;,, 1/'~ are closed finite intervals. 
With the notations in (1-6), (2-15): V~,n= Vn, V~,,= V~. 

Proof of lemma 2-3. At first we note that 

(2-31) F ~  ( 6 / 3 ,  ,~) < " = F~, (6, n) <_- F~ (36, ~), 

F2(36, F~ (6/3, rl) ~ F~ (6, rl) <= ~1). 

In fact for t/large we have the inclusions 

(2-32) VdlS,. c Va,. ~ V~.~, VdI~,~ ~ V~.. c Va~,~. 

To check that V~'~.~ Vj;,, observe that for r/sufficiently large 

d 1 

Hence ~o-:[tl-t-Sq~-a(rl)/3]>=2~o-l(q)/3, and the points r/_+bq~-:(t/)/3 are in V~,,. 
Vtt C TZp Thus , ~/3,~ , ~,~. Similarly we can obtain the other inclusions in (2-32). 

Secondly we prove that the boundedness of F~(?, q) implies the boundedness 
of F~(5, ~1), for every 5>7.  Observe that for ~/0 sufficiently large 

- = ( ~ -  ) -< 
I ,t-,to a r  I 4 b  " 
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If  we restrict attention to the ~ such that /7--6~0--1(/7)~/~0, it follows that 

(2-33) 

Set now: 

1 1 min ~o-1(~) _-> ~ (p- (t/). 
V~, n 

,7; = ,I + (h~, - 6)  q , -~  (,7) 

h=0,  1,... ,  r, where r is the least integer such that ( r+  1)7 >26. In view of (2-33), 
q~-a(t/h)=>~o-l(t/)/2 for all h and we have 

h = l  

It follows that 
F2 (6, q) <= r max F~ (~, t/). 

Therefore we can deduce the boundedness of F~(/~, q) from the boundedness of 
F~(~, q). If  we apply this to the inequalities (2-31) we have the proof of lemma 2-3. 

Proof of theorem 1-2. At first note that, if F~(t/) is not bounded, also the func- 
tion of t/: 

(2-34) f v ;  Z (0  ~ -  1 (r dr 

with V~ defined as in (2-15), is not bounded. This is obvious if the second condition 
in (iii) is satisfied and it follows from lemma 2-3 if l i m r  d(rp-1)/d~=O. 

Since g ~/2 is still a weight function, by using theorem 2-2 we can find a(x, ~) 
which satisfies the inequalities 

for all e,/3 and such that the operator A in (2-12) is not continuous on L2(R). Con- 
sider now the operator AA*: it is not continuous on L2(R) and, if we write it in the 
form (0-1), its symbol 

(2=)-la(x, {)a(y, ~) 

satisfies on R X R X R  the inequalities (1-1) for all a, fl, 7. Theorem 1-2 is proved. 

Proof of corollary 1-3. In this proof we shall use the letter c to denote constants 
depending on g, ~o, ~. Initially observe that ~o satisfies the first condition in (iii) 
since, in view of (i)*, (ii)*, we have: 

l~_(~p-1) =< c(1-t- ~)~. 
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Now, if we choose 6 sufficiently small, in view of (ii)* we can assume 

1 
(2-35) -g-m,,ax [Z(()~-I(~)] -< Z(0)~-l(r/) _~ 2rain [Z(O~-I(~)]  

z v~,, v~",, 

where V~;'~ is defined in (2-30). Since 

2•q9-1(0) rain [Z(~)~5-'(~)] ~ fv ,, Z(~)(~--I({) d{ ~ 2&P-l(r/) va.,m"ax[x(O4~-l(r 
VO) )t 

it follows from (2-35) that the boundedness of G(0) is equivalent to the bounded= 
ness of  F~(6, 0), defined as in (2=29), and hence, in view of lemma 2-3, to the bounded- 
ness of  F~(q). Then theorem I-2 gives immediately the proof  of  the second part of 
corollary 1=3. To prove the first part, we shall check that also the difference FM(q ) -  
--F=(0) is bounded, if we assume G(0) bounded. In fact, in view of the inclusions 
(2=32), we have for 0 large: 

F=(,o < f , 0) 

where 
[ ~ - 1 ( 0  + <o-1(0) ]M 

g~,(~,  ~) = ~ o ( r  L ~=~] 1 " 

Now we introduce the three sets: a -  W~--{~, 0--<~<-(1--r)q}, W~= {~, ~_-_>(1 +y)q}, 
W~ a = R + \ ( W ~  w V~'~2 . u W2), where in view of (ii)* we can choose the positive con- 
stant 7 so small that 

1 
2 ~o (~) < q~ Q/) < 2 rain ~o (~). 

By observing that in W~ we have 

g~(r n) ~- c[lr 

and that in view of (i)* gM(~, rl) is majorized by a multiple of  ~/-,M§ in W~ and by 
a multiple of  ~-~M in W~, a direct computation shows that: 

h=l gM(~, 0) d~ ~ c 

if M e > l .  We can conclude that FM(0) is bounded and the first part of corollary 1-3 
follows from theorem 1-1. The proof  is now complete. 
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