On the L? continuity of a class of pseudo
differential operators

Luigi Rodino*

Introduction

Pseudo differential operators are often defined by means of the formula:

(0-1) Au(x) = [eéerDa(x, y, Hu(y) dy ¢

where a(x, y, &) satisfies on R"XR"XR" the inequalities:
D3 DyDa(x, y, E)| = g, p,,x (€D @~ 1PN 2~ M(IE])

with y, @, @ fixed weight functions on R, = {£¢R, 5%0}. Our aim is to give necessary
and sufficient conditions for the weight functions in order that the operators (0-1)
are continuous on L%(R"). As a matter of fact, we shall restrict ourselves to the
one-dimensional case, n=1, and we shall introduce some hypotheses on ¥, ¢, @.
In the first section we enunciate the results and we give some applications. Partic-
ularly we obtain for the classes of Hérmander Sj; on RXRXR the results in Cal-
deron—Vaillancourt [3], Hormander [6] and also a result of Ching [4]. Another
application refers to the classes of pseudo differential operators in Beals—Fef-
ferman [1].
In the second section we give the proofs.

* The paper was written while the author was a guest at the Institut Mittag—Leffler and it
was supported by a fellowship of the Comitato Nazionale delle Ricerche, Italy.
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1. Results and applications

Let y, ¢, @ be strictly positive smooth functions on R, with the properties:
@ 1) =c, =00 =c(l+8, 9@ =2 ()
(i) [D*y] = cPy®@~2%, |D*®| = PP % |D*¢| = cPpd*
where ¢;, ¢, ¢35, ¢4, €@, 9, ¢, a=1,2, ..., are positive constants. Consider the

functions a(x, y, £) on RXRXR which satisfy the inequalities:

(1-1) |DEDyDa(x, y, O = g, x(ED@~**(ED D=7 (IED-

We want to study the continuity of the operator A4, defined as in (0-1). Let us
define for & and n in R, :

) “(é)+fp’1(n)}

(12 S = minft, £ OO0}
For each integer N=0, we set:

(1-3) Fx() = [ fYE @19 de.

In particular:

(1-4) Fy= [T 2(©) @718 de.

Theorem 1-1. Let x, ¢, & satisfy (i), (ii) and let the function Fy(n) be bounded,
Jfor some integer N. Then, if a(x, y, £) satisfies the inequalities (1-1) for a=2N, B=2N,
y=2, the operator A in (0-1) is continuous from L2(R) to L*(R).

In particular, let y and & satisfy the properties in (i), (ii) and let the integral (1-4)
be convergent. Then, if:

(1-5) IDta(x, y, O] = co,0,, x(EDP7(ED

for y=2, we can conclude that the operator 4 is bounded, without any requirement
on the derivatives with respect to x and y.
Now we introduce the following property.

(iii) One of the following two conditions is satisfied: either lim,_, ., d(¢~*)/d¢=0
or dlp™Y/dé=1.

Let us define the subset of R, :

(1-6) Vi={=0[l—n =0 (O)+0o '}, neR,
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and
a-7 Fot) = [, 1)@~ (9)de.

Theorem 1-2. Let y, ¢, @ satisfy (i), (ii), (iii) and suppose that F_(n) is no
bounded. Then there exists a(x, y, &) which satisfies the inequalities (1-1) for all o, B,
y and such that the operator A in (0-1) is not continuous from L2(R) to L*(R).

Actually, if lim,_ ., d(¢p~1)/d{=0, for n sufficiently large V, is a closed finite
interval and the hypothesis of theorem 1-2 is equivalent to the assumption of the
existence of a sequence #;=#n,=... such that lim;_ F_.(n)=-<. If d(p~)/di=]1,
we have ¥, =R. for all # and hence F_=F,. In this case, when we say that F_ is
not bounded, we mean that the integral (1-4) is not convergent.

From theorem 1-1 and 1-2 we shall deduce the following corollary, by means

of a direct evaluation of the integrals in (1-3), (1-7).
Corollary 1-3. Let y, ¢, D satisfy:

O 2O =c, =@ =+, al+d =0 =620
(" Dl = ci®xe%  |D*P| = PP, [D*g| = o1+

where g, €1, Cy, g5 C45 C5, €O, ¢, ¢D, a=1,2, ..., are positive constants. Let the function
G=xm) D 1(n) =1 () be bounded. Then, if a(x, y, &) satisfies the inequalities (1-1)
Jor y=2, a=2M, B=2M, where M is the least integer such that eM =1, the operator
A in (0-1) is continuous from L2(R) to L*(R).

Otherwise, if G (n) is not bounded, there exists a(x, y, &) which satisfies the inequal-
ities (1-1) for all a, B, v and such that the operator A is not continuous.

Now we shall give some applications. At first take y(§) =(1+ &)™, ®(&)=(1+&)5,
@ (O)=(1+&7°% m=0, 0=p=46=1. Then the inequalities (1-1) define the class
Sy s of Hormander on RXRXR (see Hormander [5], [6]). We write here L7 ; for
the class of operators in (0-1) with symbol of this form.

If we assume in addition <1, all the hypotheses of corollary 1-3 are satisfied,
with G(n)=(1+n)™" 2%, We can conclude that every operator in Lr,, m=0,0=¢=
=J=<1, is continuous on L2(R) if and only if m=¢—5. The generalization of this
result to the n-dimensional case is proved in Calderon—Vaillancourt [3], Hor-
mander [6].

On the other hand, if we assume §=1, the second condition in (iii) is satisfied
and we have:

Fo=F.= [J(1+&medt.

From theorem 1-1 and theorem 1-2 we deduce that every operator in L7 ;,
m=0, 0=9=4, =1, is continuous on L2(R) if and only if m<g—1. In particular,
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when m=0, ¢g=56=1, we obtain a result of Ching [4], who gave an example of an
operator in L ; which is not continuous.

In the final application, we assume in the corollary 1-3 y=1, &®=¢ 1. Then
G(n) is certainly bounded and if a(x, y, &) satisfies the inequalities (1-1) the cor-
responding operator in (0-1) is continuous. A similar result in the n-dimensional case
is proved in Beals—Fefferman [1].

2. Proofs

The proof of theorem 1-1 will be given by a modification of the method used
Calderon—Vaillancourt [3]. Particularly we shall use the following lemma (for the
proof see for example Calder6n—Vaillancourt [2]).

Lemma 2-1. Let ¢ ~A(E) be a smooth map from the interval I={¢, 0=¢=w}
to continuous operators on L*(R). Let h(¢,n) be a positive continuous function on
I'X1I such that

@1 14* @AM = (& m), A4 = K (E )
and for all s
2-2) S by, EDRCar &) .. h(Easmrs Eo) dEy .. Ay = KA

where the constants k and A do not depend on s. Then || f 1A dE|=A.

Proof of theorem 1-1. A standard limiting argument reduces matters .to the
task of proving:
[ dull = c|u]

for u€¢#(R) and a(x, y, £) of compact support, with ¢ depending only on the con-
stants ¢, 4, , and on x, @, . We can also suppose without loss of generality a(x, y, £)=0
for £€=0; hence, for w sufficiently large, the support of a(x, y, &) with respect to the
variable ¢ is included in I={¢, 0=¢=w}.

We begin by obtaining a different representation of the operator A in (0-1).
For this purpose note that

[14+ B2(2) (x — y)?] 21 + B*(2) DY ei=~% = eits—x,
Substituting in (0-1) and integrating by parts we obtain
2-3) Au(x) = [eC%b(x, y, Ou(y) dy d¢
where
2-4) b(x, y, ) = [1+ DEP*(O){a(x, y, OI1 + () (x—») 1"}
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We consider the following representation of A4:
4= [, 4@
AQu(x) = [ (x, y, Ou(y) dy.
Let us apply lemma 2-1 to A(£). The kernel of 4*(£)A(y) is given by
(2-5) [emiCmnmrist=inb(z x &)b(z, y, 1) dz.
Observing that

where

€= nl= V(DY e~z — omieoms
substituting and integrating by parts (2-5) becomes
,/‘e_i“‘”")”ixg_iy” & —n|=*N(D)N[b(z, x, O)b(z, y, n)] dz.
Now we use the inequalities:
(2-6) ID5b(x, 3, O = cx(D o~ *(OHI[P () (x~)]

where H is an integrable function and, from now onwards, we shall use the
letter ¢ to denote constants depending on ¥, ¢, @ and ¢, , ,. Admitting the (2-6)
for a moment, it follows that the kernel of 4*(&)A(y) is majorized by the convolu-
tion kernel

1 1 aN
X (©)1) [i’i—(f—gf—f;—@] JHI® @)~ 9] HI )~ )] dz

and we have

—1 -1 2N
@) ]IA*(é)A(ﬂ)IIécx(é)x(n)¢‘l(£)¢‘l(n)[¢ Oto” & (")] .

|&—n]

On the other hand, if we majorize (2-5) directly by using the inequality (2-6) with
oa=0, we obtain

(2-8) 4@ AM] = ex@Qxm PP~ ().
It follows from (2-7) and (2-8) that:

14* @Al = B(&m) = cx Qa2 (SN, n)

where f is defined as in (1-3). Similarly we can prove: [AEYA* ] =h2(E, n).
According to lemma 2-1 we consider

./'Izsh(éla Cdh(Cs, &s) - h(Caso1,s Lo dCy .. dlo =

29 = Czs_lf,ﬂ A PE AP ED P VHEY D EEN N (G, &) .
x1/2(§2s_1)11/2(€2s)@-1/2(6%_1)@-1/2(§2s)fN(€2s_1’ Co) dly ... dly.
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Using the estimates
1PC)P ) = e NG 8D = 1,
2 (Ce) 1ALy = el
where ¢;, ¢, are the constants in the property (i), and integrating with respect to
¢, and &,,, we see that the right-hand side in (2-9) is majorized by
@2ere e [y [ (G E) (G P -

SV (51, £2S)X(€2s—l)¢_1(§2s—l) déy ... dias_;.

It follows from the definition of Fy(y) in (1-3) that the condition (2-2) is satisfied
with A=c max,.; Fy(#). By using the lemma 2-1, in view of the boundedness of
Fy(n) we can conclude that the norm of A4 is majorized by a constant depending
only on y, ¢, @ and ¢, p ,. It remains to prove (2-6). To this end we first observe that
for a polynomial P and an integer A:

(2-10)  DI{P[2(D)x][1+P*(O)*"]"} = P*(0) Qu[@ () ¥][1 +&*() "]«

for some polynomials Q, and integer k,, with 2k,—deg Q,>2h—deg P. In par-
ticular, if P(z)(1+2z%)~"* is integrable, Q,(z)(1+2% % is integrable for all «. The
(2-10) is readily verified by induction on «. Now we have for a=2N, f=2:

(2-11) DiDE{@P* (O[] + 0*(&)x~Y} = &>+ *~B(E) H[P (&) x]

where H is an integrable function. To prove this, we compute directly in (2-11)
the derivatives with respect to £ and then we use the (2-10) and the inequalities
in the property (ii). Finally, using (2-11) and the inequalities (1-1) to estimate (2-4),
we obtain (2-6). This completes the proof of theorem 1-1.

To prove theorem 1-2, we shall use a modification of the methods in Hérmander
[6] and Ching [4]. At first we consider pseudo differential operators of the form

(2-12) Au(x) = 2m)~* [ e=a(x, Oi(8) de
where 4 is the Fourier transform of u and
(2-13) D3 D alx, &)] = cq px(ENO~*(ED DA (D
We assume that y, @, ® satisfy (i), (i), (iii). Let us introduce
(2-14) E.(m) = [, (O (&) dt
where "

(2-15) Vi ={=0,—n = o YO}, neR,.
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If the first condition in (iii) is satisfied, for # sufficiently large V,,’ is a closed finite
interval. If the second condition in (iii) is satisfied, ¥, ={{, {=w} for a positive
o depending on 5. The proof of theorem 1-2 will be obtained as a consequence of
the following theorem.

Theorem 2-2. Let y, @, D satisfy (i), (i), (i) and suppose that E_(n) is not
bounded. Then there exists a(x, &) which satisfies the inequalities (2-13) for all «,
B and such that the operator A in (2-12) is not continuous from L2(R) to L*(R).

Proof of theorem 2-2. First take -a multiple of @ as a new weight function, so
that we can suppose in (i): ¢P=1/4, ¢P=cP=1/8. We begin by introducing
some notations. Set:

0 = [{0-(w)dr, £=0

and let y(6) denote the inverse function of §(&): Y (6(£))=¢ for £z=0. We define for
m=0,1, ...:
L ={{=0,yQm) = ¢ =y (m+2)}

A = Y (@m+2) —y (2m)
En =¥ (@Qm+1)

and

Observe that

(2-16) 4, = max 2(8)

and, since ¢ =1/4:

2-17) max P =2 n}in P (&).

Since ¢V = cfV =1/8, it follows that

(2-18) maxy($) = 2miny(%), max () =2mine ().
From (2-16), (2-17), (2-18) we can deduce that

(2-19) S = A, max P& P1(O)] = 16x7 = 16¢c]

where ¢, is the constant in the property (i). These inequalities will be used later.
Now take pe C*(R), p(8)=0 when |0|=1 and p(8)=1 when |#}|=1/2. We define,
for m=0,1, ...:
plO©—2m—1] if ¢=0
(&) = { 0 if ¢=o0.
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Observe that supp g¢,<1, and
(2-20) 1D gD = ¢, @7 ()

with constants ¢; which do not depend on m. (2-20) is easily verified by induction
on B, by using the inequalities in the property (ii). Initially we suppose that the
first condition in (iii) is satisfied. Then there exists a sequence #;, j=1,2, ..., in R,
such that

(2-21) lim E.(n,) = o.

We can assume that Vﬂ’j, j=1,2, ..., defined as in (2-15), are finite closed disjoint
intervals.

Observe that if ¥, does not include at least one of the intervals I, it can be
covered by two of these intervals: VJCI U I, 41, for a convenient m depending on
Jj. From (2-14) and (2-19) it follows that

Ew(ﬂj) = Sm+Sm+1 = 320%

In view of (2-21), this inequality can be satisfied only for a finite set of indices j.
Therefore, by restricting attention to sufficiently large j, we can suppose that each

V,; includes at least one of the intervals 1,.
J

Let m; be the least integer such that I, CV and denote by 4; the greatest
integer such that I, ., < V, Let us define:’

(2-22) a(x, &) = 3, S tmeie” g, (0.

This function satisfies the inequalities in (2-13). In fact, using the definition in (2-15)
and the second inequality in (2-18), we have

)= Cmyil = 2,@2?’“(5% 0=i=h.
Hence, by using (2-20):
D% DY 0g,, L)) = L0 OO, 0sis iy

Since all terms in the double sum (2-22) have disjoint supports, in view of the first
inequality in (2-18) we can conclude that a(x, &) satisfies the (2-13) for all o, f.

We shall prove that the corresponding operator 4, defined by (2-12), is not
continuous from L2(R) to L2(R). Assume the contrary that for some constant c

(2-23) I 4ul® = clul?

for all uc¢ #(R) and test the continuity of 4 in the following way
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Choose 0 (R) with f(£)=0 when |€|=c,/4, where ¢, is the constant in
the property (i), and set

(2-29) 48 = 1o bi S (E—Emyads
where the b; are complex numbers. Note that we have the inclusions
(2-25) supp f(¢ — S {E, Y (2m+1/2) = & = y@m+3/2)} L,
and hence the terms in the sum (2-24) have disjoint support. Therefore
(2-26) lesli* = (S B 112
On the other hand, using (2-25) we have

a@, Q&) = Iy bitmyss€™ V5 F(E =y
Hence we see that:

Au;(x) = (Z?’:o bidmy+i e if (x).
Now the (2-23) and the (2-26) give:
(Z'i'io bi)(mj+i)2 =c Zlilj:o 16;[%,

which implies that

(2'27) 2?’;0 szn,-+i =c.

Since
Ew(nj) = Smj—-1+Smj+hj+1+ Z?LO Sm,-+i3

in view of (2-19) we have:
(2-28) 16 3\ i, 1i = En(n) —3265.

The inequalities (2-27) and (2-28) contradict our hypothesis in (2-21). Therefore
the operator 4 is not continuous on L2(R),

Now we assume that in (iii) the second condition is satisfied. Since
f :’ x2(Q) @71(&)d¢ is not convergent, we can construct a sequence #;, j=1,2, ...,
with #;,,=#; in R, such that

lim [, OO X = o
where
Ui={=0,n;=&=nj,.}
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Let m; be the least integer such that I, —U; and denote by A; the greatest
integer such that I, ey cU;. We define a(x, &) as in (2-22). Then, by observing
that U;cC V, we can repeat all the preceding arguments and obtain the same con-
clus1ons The proof of theorem 2-2 is complete.

In the proofs of theorem 1-2 and corollary 1-3 we shall use the following lemma.

Lemma 2-3. Let x, ¢, @ satisfy (i), (ii) and suppose lim, ., d(o~)/d;=0. Then
the boundedness of F_(n) is equivalent to the boundedness of each of the functions

of n:
229 F.Gm=f, 1@ F.(.n)= [, xS HOX

FL@.0) = [, 1@ O

where & is a fixed constant and

(2-30) Vim=1{6=0, [E~n| = 5[~ (O + o~ (]}
Vin={=0,[l~n =507}, Viy={=0,[{—nl=do'(n)}

Observe that for 5 sufficiently large ¥ ,, V; ., V5, are closed finite intervals.
With the notations in (1-6), (2-15): Vi ,=V,, V{ =V,

Proof of lemma 2-3. At first we note that
(2-31) FZ(8/3,m) = FL(3,n) = FZ (35, n),
FL(6/3,n) = F..(6,n) = FL(35,m).
In fact for 5 large we have the inclusions
(2-32) ViianCVonTVesns  VaayC Vo, < Vas, ar
To check that V(,’;& nC V‘,’, s observe that for u sufficiently large

1

=3

-1
max 7 ((,9 )
Hence ¢~[n+6¢ 1 (n)/3]1=2¢~1(n)/3, and the points n+dp~1()/3 are in V; .
Thus Vy, =V . Similarly we can obtain the other inclusions in (2-32).

Secondly we prove that the boundedness of FZ(y, ) implies the boundedness
of F/(8,n), for every d=>v. Observe that for 5, sufficiently large

= (-1
lr”nza}'x dé ™)) =
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If we restrict attention to the # such that n—3J¢~1()=4,, it follows that

. 1
(2-33) min@~1(¢) = 5 o=t (n).
V&, i
Set now:

=1+ (hy—3e~1(n)

h=0,1, ..., r, where r is the least integer such that (r+1)y=24. In view of (2-33),
@ () =1 (n)/2 for all 1 and we have
Ve U V.
h=1
It follows that
FL(,nm) = r max FZ (7, ).

Therefore we can deduce the boundedness of F.(3,#) from the boundedness of
FZ(y, n). If we apply this to the inequalities (2-31) we have the proof of lemma 2-3.

Proof of theorem 1-2. At first note that, if F_(#) is not bounded, also the func-
tion of n:

(2:34) [y, @2 @O d

with V' defined as in (2-15), is not bounded. This is obvious if the second condition
in (iii) is satisfied and it follows from lemma 2-3 if lim,_, ., d(p~1)/d=0.

Since %'/ is still a weight function, by using theorem 2-2 we can find a(x, &)
which satisfies the inequalities

IDzDEa(x, O] = capx*(ED@~*(EN 222D

for all o, § and such that the operator 4 in (2-12) is not continuous on LZ(R). Con-
sider now the operator 44™: it is not continuous on L2(R) and, if we write it in the
form (0-1), its symbol

@m)~ta(x, da(y, )

satisfies on RXRXR the inequalities (1-1) for all a, B, y. Theorem 1-2 is proved.

Proof of corollary 1-3. In this proof we shall use the letter ¢ to denote constants
depending on y, ¢, ®. Initially observe that ¢ satisfies the first condition in (iii)
since, in view of (i)*, (ii)*, we have:

d
l-{E(w") = c(1+ &)
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Now, if we choose & sufficiently small, in view of (ii)* we can assume

@39 maxOPTEO] = 1P = 2min[KO Q)

&1 &,n

where V' is defined in (2-30). Since

250 D WO @1 = [, 2OPQ) dE = 2867 () max (2O

I [ 6,1
it follows from (2-35) that the boundedness of G(y) is equivalent to the bounded-
ness of F2 (4, 1), defined as in (2-29), and hence, in view of lemma 2-3, to the bounded-
ness of F_{(n). Then theorem 1-2 gives immediately the proof of the second part of
corollary i-3. To prove the first part, we shall check that also the difference Fy(n)—
— F_(n) is bounded, if we assume G(x) bounded. In fact, in view of the inclusions
(2-32), we have for n large:

Fy()—Fut) = [5 oy, 8u(n)dE
where

e = co0 [ OO

Now we introduce the three sets: W= {¢, 0=¢{=(1—y)n}, Wi={{, E=(1+p)n),

WE=R,\(W} UV, ,© W), where in view of (ii)* we can choose the positive con-

stant y so small that

%H;Vax @) =0l = ZH’?VIp @)

By observing that in W} we have

gu& n) = cllE—nlom Mo

and that in view of (i)* g (&, 1) is majorized by a multiple of #~*** in W and by
a multiple of £* in W,f, a direct computation shows that:

Fy~Ftn) = 35, [ @ mdi=c

if Me>1. We can conclude that F,, () is bounded and the first part of corollary 1-3
follows from theorem 1-1. The proof is now complete.
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