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0. Introduction

The first section is motivated by a result of K. de Leeuw [9, th. 4.2] and is con-
cerned with Banach modules where the elements of the algebra act as weakly com-
pact operators on the Banach space. In § 2 and § 3 the general properties of such
modules are used to characterize the multipliers on homogeneous Banach spaces
on compact groups. The results are partly taken from the author’s dissertation for
the licentiat degree at the Technical University of Norway which was written under
the direction of Professor Olav Njastad.

1. Banach modules with weakly compact action

We start by recalling some basic definitions. If 4 is a Banach algebra and V
is a Banach space, then V is a left Banach A-module if it is a left 4-module in
the algebraic sense, and ||av|| <{la|l||v] for all « € 4, v € V. A right Banach module
is defined similarly. The closed linear subspace of V spanned by A4V is called
the essential part of V and is denoted by V. ([10], p. 454). If V.=V, then V
is called an essential A4-module. It is well known that if A has a bounded approxi-
mate identity, then V.= AV,, ie. for al v € V,, there exists an ¢« € A, w €V,
such that » = aw. (In what follows, we always assume the bound on a bounded
appr. id. to be 1.) If V is a left A-module, then V* is a right 4-module under
the adjoint action: (au)(v) L wlav),a € 4, v € V, u € V*. The essential part of V*
is called the contragradient of V and is denoted by V¢ ([10], p. 455).

If V and W are Banach A-modules, then Hom ,(V, W) as usual denotes
the space of linear, continuous operators 7' from V to W such that T(av) = a(T'v)
for all a €4,v€EV.
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We say that ¢ € 4 is weakly compact if the operator » — av is weakly compact.
Let »: V — V** be the canonical injection.

LemMa 1.1. Let V be an essential A-module. Then »(V) = (V*)Y if and only
if every a € A is weakly compact.

Proof. Let a € A,v €V, u € V*. Then x(av)(n) = plav) = »(v)(au) = ax(v)(u),
that is, x(av) € V*. Since the linear span of AV is dense in V, % is a linear iso-
metry, and V* is closed, it follows that x(V)cC V*. The lemma is now an
immediate consequence of the fact that a linear operator on V is weakly compact
if and only if its second adjoints maps V** into x»(V) ([2], p. 482).

LemmA 1.2, Let A have o bounded appr. id. {i,}, and let V be o Banach A-
module. Then there exists a natural isometric isomorphism

Q: Vc . 'Vcc
such that
(0P)() = Plu), B € V¥, u € V.

Proof. One easily checks that ¢ commutes with the action of 4 which implies
that o(V*) — V™.

Let f€ V*. Then there exists and « € 4,9 € V* such that f = ag. If now
g € V¥* is a continuous extention of g to V**, then

o(eg)(p) = aglp) = glap) = glau) = f(u) for all u € V.
Thus ¢ is onto. Clearly [|o®| <||®|, and to complete the proof, it remains to

prove the opposite inequality:

Let @ € V*. Since {i,} also acts as an approximate identity for V*°, there
is an ¢, such that [i,@ — P| < /2. '

Lot 1€ V%, |lu] = 1, so that [(u)] > @] — e/2. Then (o@)(iyu) = Biye) =
D(p) — D(u) -+ D(igu), hence

le@l = [(eD)(tup)| > [|P]] — &/2 — [[(1.® — P)(u)]| > [Pl — e

(~: Read “isometric isomorphic”.)

Prorosition 1.1. Let A have a bounded appr. id., and let V be an essential
Banach A-module. Then the following are equivalent:
@) V oz (V*)P < Ve
@) AUl a € A are weakly compact.
(iii) A4 have a bounded appr. id. consisting of weakly compact elements.
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Proof. The equivalence of (i) and (ii) is obvious from the lemmas. Clearly (ii)
implies (iii), and since the algebra norm majorizes the operator norm, and the
composition of a bounded linear operator and a weakly compact operator is weakly
compact, (ili) implies that every @ € 4 is the limit in the uniform operator topology
of weakly compact operators, and therefore is weakly compact. Thus (iii) implies (ii).

Let V ®, W be the projective tensor product of the Banach A-modules V
and W, and let M Dbe the closed linear span of elements of the form
aw @ w — v @ mw. The quotient space V @, W/M isan A-module tensor product
and is denoted by V ®_,4 W (See [10], [11]).

Each element ¢ of V @, W has an expansion ¢ = >,9, @ w; where

1 lolllw)l < . The norm of ¢ is defined by g/ = inf >, |[o;lw,] where
the infimum is taken over all possible representations of ¢ (See [5], [10]). A bilinear
operator ¥ from VX W to a Banach space D is called A4-balanced if it is con-
tinuous and ¥(av, w) = ¥Y(v,aw) forall veV,we€W,a€4d. If ¥": VXW =D
is A-balanced, there is a unique linear operator ¥:V ®, W — D such that

’P
1) VxW > D
| «
| @ /‘y“f
Y
Ve, W-
2) %] = 1P|

We refer to [10] for further properties of V &, W.

ProrosiTioN 1.2. Let A be a Banach olgebra with a bounded appr. ¢d. Let V
and W be essential A-modules and let the action of A on W be weakly compact.
Then

Hom, (V, W) = (V @, W)* = (V &, WH)*.

The isomorphism carries T € Homy (V, W) to jup €(V ®,4 WH*  (resp.
(V&4 W*)*) defined by

Ur(v @4 w¥) = w*(Tw),v € V, w* € W° (resp. W¥*)

Proof. The conditions assert that W ~ W*, and since the natural isomorphism
from W to W™ commutes with the action of A, we obviously have
Hom , (V, W) =~ Hom, (V, W*). Thus

Hom, (V, W) =~ Hom, (V, W)
=~ Hom (V, W) ([10], eor. 3.8)
~ (V @, W) . ([10], cor. 3.21)
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Hom (V, W) ~ (V ® 4, W*)* is proved similarly, and it is easily verified that

the resulting isomorphism has the form stated. (Actually, if ¥ and W are essential

A-modules and A4 has a bounded appr. id., then VQ, W=V Q, W*
Viewing A4 as both a left and a right 4-module one has:

V&4W*~ 14 ®AA) QIWF =2V QuAQuW*) =V Qu(WH), 2V Q,W)

ProrositioN 1.3. If A, V, and W are as in prop. 1.2, and in addition the
action of A on V is weakly compact, then:

Hom, (V, W) ~ Hom, (W*, V¢) ~ Hom, (W*, 7'*).

Proof.
Hom , (W*, V¥) = (W* @, V)* = (V @4 WH)*
=~ Hom (V, W) = (V @, W)* =~ (W° ®, V=)*
=~ Hom_ (W°, V°).

Remark 1.1. Proposition 1.1 generalizes a result of K. de Leeuw ([9], thm. 4.2).
If G is a locally compact group and {T,},c¢ is an isometric, strongly continuous
representation of G on a Banach space V, then V7 becomes an essential Banach
LY{G)-module by the composition

fev= / Towf(g)dg, f € LMGY, v € V. (1.1)

In this case V° is exactly the closed linear subspace of V* on which the adjoint
representation is strongly continuous. de Leeuw states that if ¢ is compact and
Abelian, then V =~ V= if for each character (z,7),y € G, (, 7)o V has a finite
dimension, or at least is a reflexive subspace of V. Now the first of these con-
ditions implies that the operator v — (x, y) o » is compact, and the second that it
is weakly compact by Corollary 3, p. 483 in [2]. When @ is compact, LYG) has a
bounded apr. id. consisting of trigonometric polynomials, and so condition (iii) in
prop. 1.1 is clearly satisfied in de Leeuw’s case.

ERemark 1.2. For an example where V g':‘_z Ve, take 4 = LYR), V = C(R)
with the usual convolution as composition:

Then V* = M(R), V° = LY(R), V°* = L*(R), and V= = C*R), the space of
bounded, uniformly continuous functions.

2. Homogeneous Banach spaces

Let V and T be as in Remark 1.1, and let the group G be infinite, compact,
and Abelian. If we denote T.f by f., we have
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A) farpy = fodoo FEV, a,b€G.
(ii) [[fdl =[fll for all f€V, a€q. (2.1)

i) fe —fll == 0.
We also assume the existence of a Fourier transform on V which has the usual
properties:

i) f— f(y) is a continuous linear functional for every y € Q.
(ify f=0 if and only if f{y) =0 for all y € é. (2.2)

(i) fa(y) = (— @ »)fy).

We denote a Banach space which satisfies 2.1 and 2.2 a homogeneous Banach
space (HBS). This notion has been used by various authors for certain subspaces
of LMG) where the Fourier transform has been inbherited from LYG), and T has
been the regular representation, i.e. fu(x) = f(x — @). The spaces C(G) and
Lr(G), 1 <p < oo, are well known examples. But it is convenient not to restrict

A

oneself to spaces of functions on G: LP(G), 1 < p < o0, becomes a HBS if we take
the “Fourier transform™ to be the identity mapping and the action of G to be the
multiplication with a character: (1.f)(y) = (— @, y)f(»).

A HBS is an essential L (G)-module if the action is defined as in eq. 1.1. Ob-

viously, g/<>>('y) = é(y)f(y) forall y € é,f €V,g € LNG), and by 2.2 (ii), (x,y)o V
is either {0} or a one dimentional subspace of V. Thus the action of LY(¢) on V
is compact, and the results of § 1 apply. Define {e¢} s by e/(r) =29, if
(,y)o V #£4{0}, 0 if (x,7)o ¥V ={0}. Then clearly {e} spans V.

The adjoint representation of ¢ on V* is defined by pa(f) = p(fa), u € V¥,
f€V. It will be isometric but not necessarily strongly continuous. We define the
Fourier transform of a continuous linear functional by

aly) = ule,), w € V¥, p €G.
The mapping u —> i satisfies 2.2, and therefore, if 7* inherits the Fourier
transform from V*, it becomes a HBS.

PropostrioN 2.1. Let V and W be HBS’s which we also consider as L'(G)
modules. Then V Qe W is o HBS if we define

) f®9e=fRYey FEV,9EW,a€QG.
VN

(@) f® gp) =Ffi), FEV.geW,y€C.

Proof. 1t is well known and easily proved that (i) defines an isometric, strongly
continuous representation on V @, W (See [10], cor. 3.10). The Fourier transform
defined by (ii) clearly satisfies eq. 2.2 (i) and (iii). Let
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oo}

PEV LW, 9=21® g 2Iflllgl < .

i=1
If we define the action of LYG) on V ®.,, W by eq. (1.1), we see that ¢ = ©
if and only if (z,7)c ¢ = 0 for all y € G. But
@ ew= [ (S @ i

=2/ ® (@) 9)
=3/ ® (@) @) eg)
= Z ((z, 7)o fi) @ (%, ) ° g3)
= S Fioe @ ¢,

which shows that ¢ = 0 if and only if

> f)giy) = aly) = 0 for all y€G.

3. Multipliers on HBS’s

If X and Y are HBS’s or possibly the duals of such spaces, we say that
¢ = {¢(¥)},ep is 2 (X, Y)-multiplier if for all f€ X, <;Sf is the Fourier transform
of an element in Y. The set of all (X, ¥)-multipliers is denoted by (X, ¥). The
connection between multipliers and ‘““translation invariant’ operators is well known:

ProrostTioN 3.1. Let V and W be HBS’s and let U:V — W be a linear
operator. Then the following are equivalent:

() There is a ¢ € (V, W) such that Uf(y) — ()f(y) for all fEV,y €.
() U is continuvous and (Uf)a = U(fa) for oll f€V,a €.
(i) U is continuous and U(hof)y=ho Uf for all f€V,h€LYG).

‘We omit the proof, but remark that while (iii) < (i) = (ii) holds even if we
substitute V and W by V*, W* resp., (ii) does not necessarily imply (i) in this
case. (See [12], p. 220 for a counter example).

The next proposition is also simple to prove:

Prorostrion 3.2. If V and W are HBS’s, then the following identities obtain:
(1) (V, W) = (W*, V*) = (W°, V),

(i) (V, W*) = (V, W),

(it (V, W*) = (W, V#*).
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W e assign to each ¢ € (V, W) a corresponding multiplier operator U, defined

by U, f = ¢(y f( ). We identify multipliers which generate the same operators,
and we norm (V, W) by setting |4]| = [|U,||l. This gives us by prop. 3.1 an isometric
isomorphism of (V, W) onto Homyp,g, (V, W).

ProprostrioN 3.3. Let V and W be HBS’s. Then there exists an isometric iso-
morphism

'1:: (V, W’) —_— (V ®L1(G) Wc)*
such that

id(y) = () for all ¢ € (V, W),y €G.

Proof. The existence and the natural definition of ¢ follows immediately from
prop. 1.2 and the remarks above. It remains to prove that qu ) = (v):

i$(y) = idley @raey) ;
= e (Use)) (Prop. 1.2)
= (Uge))(v)
= (1)) () = $(y)-
We remark that by prop. 2.1, V ®,. W° is a HBS, and thus the multipliers

between two arbitrary HBS’s can always be identified with the dual space of a
HBS.

CoroLrary 3.1. If V is a HBS, then (V, V)~ (V Qe V)*
As in the case of the Lr-spaces, 1 <p < w, (See [4], [11]), we can identify

V ®py V¢ with a Banach space of continuous functions:
Let &1V ® L1 c) Ve — O(G) be the lifting of the L'(G)-balanced operator

P VXV — O(@), P(f, u)(t) = u(f~). We first prove that ¥ is injective:
Let <P = 2 f ® M» € ker ¥ 2 il < oo
= > w{(f)~), and, as the series converges uniformly, we calculate its

Fourler transform
AN
0 = Po(y)

=2 wl(F)-0°0)

*Z [ — & y)u((fi)-dt (3.1)

=3 ( f (—t, u)(fi)—cdt>
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= wlfiy)e,)
= 3 uip)fiy)

By prop. 2.1, ¢ = 0.
Let A4, denote the range of ¥. To make A, a Banach space, it now suffices
to define |y 4, = |lgll. Observe also that the induced representation and Fourier

transform on 4, coincide with the canonical.

Remark 3.1. G non Abelian. Let G be a non-Abelian compact group with dual
object X, that is, the set of equivalence classes of continuous irreducible repre-
sentations of G. For each o € 2, we choose a fixed representation U’ on the
Hilbert space H°, and the set | [, o~ Hom (H°) is denoted G(X) (See [6], ch. 7).

It is now convenient to define a HBS V as a Banach space on which G acts
isometrically and strongly continuous in a way resembling both the left and the
right regular representations. Moreover, we assume to have a mapping from V to

X),f—F, similar to (2.2):
(i) f — 0 if and only if f(o) =0 for all o €%,

(i) Lf );_l—];f( 0), for a €G,0€ 2%,

(iti) Rf f \U?, for a €6, 0 €.

Familiear spaces hke Lr((),1 <p < oo, C(6), and also EP(X), 1 < p < oo,
defined in [6] p. 77, have all these properties. The results in § 2 and 3 can now be
generalized with appropriate modifications. The tensor product V &, W equals
V' ®, W/K where K is the closed subspace of V @, W spanned by elements of
the form (fc R fhix)dz) @ g — f® (fc Lgh(x)dx), f€V,g € W, h € LIG).

V&puW becomes a HBS if we define:

Laf @ 9) = (Laf) ® 9,
B(f®@g) =f& (B
AT

(iii) f & g(o) = f(o)g(o).

Proposition 3.1 has one left and one right handed version, and in proposition 3.2,
the class of left multipliers from V to W, defined in the obvious way, is equal
to the class of right multipliers from W* to V*.

Remark 3.2. Applications of prop. 3.3. Rieffel [10] has shown that

L]‘(G) ®L1(G) V o7 V ®L1(G) Ll(G) = V

if V is an essential LY(G)-module and L&) is considered as an essential L!(G)-
module over itself. This gives us the identifications:

(LNG), V) = (LMG) Quuey V* == (V)
(V, C(@) = (V Q) IMG)* = V™.
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Then (LNG), LNG)) = O(G)* =~ M(G), (IXG), Lr(Q)) = La(G)* = L¥(G), (LG,
C(@)) =~ LMG)* ~ L=(G) ete.

If we look at the table p. 410—411 in [6], proposition 3.3 provides a tensor
product -characterization of all pairs (X, Y) in the table where X is a HBS
(Recall that (V, W*) = (V, W°). That is, all rows except the ones for
‘E°, M(G), L*(6). But if X and Y both are dual spaces, we may use prop. 3.2 (i).

Multipliers between LP-spaces have been characterized by means of tensor
products by Rieffel [11]. If 1 << p, ¢ < oo, one identifies the tensor products with
Banach spaces of integrable (or even continuous) functions by examining the lifting
of the operator ¥: Lr(G)Yx LUG) — ING), ¥(f,g9) = f*g. One can prove that ¥
is injective by a similar calculation to eq. 3.1.

R. Larsen has considered the multipliers on the spaces

A @) = {f: 1l + If g < o).

If 1 <p < o0, these are easily seen to be HBS’s, in particular, if G is compact,
(4@, Ap(G)) can be identified with the dual space of a Banach space of continuous
functions as proved by Larsen [8], pp. 207.

Remark 3.3. Further results. Here we mention some other simple results which
might be of interest:
a) In prop. 3.3, i({¢; U, is compact}) = (V @, W)*. The proof is essentially
the same as the proof of thm. 3.1 (ii) in [1].
b) The representation of multipliers as Fourier transforms of continuous linear
functionals on certain Banach spaces is essentially unique: If V, M, X, Y
are HBS’s and X* ~ (V, W)=~ Y*, then there exists a continuous iso-

N A .
morphism j from X onto Y such that jz(y) = y{y). This can be used
to identify the tensor products if the multiplier classes are known.

¢) If V is a HBS such that (z,y)o V {0} for all y €@, then
A ={f;f € MG} € 4, S (@),
d) (dy, dy) = (V, V).

Remark 3.4. G non-compact. If G is non-compact, much of the above theory
breaks down. First, to assume the existence of a mapping like (2.2) is now a more
serious restiction than it was in the compact case. Secondly, as the example in
remark 1.2 shows, it is easy to find cases where the action of LY(G) is not weakly
compact. In this particular example, the conclusion of proposition 1.3 is nevertheless
true:

Homy, (00, C% ~ M (We omit the elementary argument)

Hom,, (L', LYY~ M (See e.g. [8], p- 3)

Homy, (M, M) ~ (M ®p. C%)* =~ M.
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However, if we compute Homy. (L®, L®), we get

Hom;, (L%, L®) o~ (L® Q. LY)* ~ (C*)*,
that is,
Homy, (LY, L) gk Hom;, (L%, L™).
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