The asymptotic distribution of the eigenvalues of a

degenerate elliptic operator

Cras Norpix

1. Introduction

Let R be a Riemannian manifold of dimension % > 1 and class €2, let
@ € C3(R) bereal and such that ¢ = 0 = grad ¢ # 0 and such that ¢ > 0 defines
a compact part R, of R. Let X g,da’dz* be the metric of R and dV = gide
(g = det (g3)) its volume element. Let L*E)) be the real Hilbert space on R,

with norm square f w?dV. Let us interpret the degenerate differential operator

Ry

A, = — > gtopgtg™a,, 9, = 9oz’ (9™) = (gu)

as the Friedrichs extension associated with the two quadratic forms

a(u):wagjkajuakudV, b(u) :fude

By Ry

and the real space CYR,). According to Baouendi and Goulaouic [1], 4 = 4, is
a non-negative selfadjoint operator on I*R)) and (I 4 A)? is compact. Let
{4} be the eigenvalues of 4 associated with a complete set of eigenfunctions and
let N(1) be the number of those eigenvalues which are << 2. We are going to give
an asymptotic formula for N(1) as A— oo. Let dv be the volume element on
8 = 0R, with respect to the induced metric and let 8/d» be the umit interior
derivative on 8. Let w, be the volume of the unit ball in R and put

ot = (220, [ (@pl0nf (1)
S

Finally, let
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dy = ¢/t and d, = (n — l)c,_4 f [(¢ + 1)/2]t~"dt when n > 2, (2)
1

where [#] is the greatest integer <Cx. Then we have the following theorem which
generalizes earlier results by Baouendi and Goulaocuic [1] and N. Shimakura [4].
The first two authors obtain only the order of growth of N(A), while Shimakura,
who considers a case where the eigenvalues are known explicitly, does not have
the correct factor d. when »n > 2

TareorREM. When A — co, then

n=2= NA)~dydlog2, n>2= NA)~dri".

Here and throughout the paper, the sign ~ means that the quotient of the
two sides tends to 1 as 1 increases to oo.

Note. It follows easily from the proof that this result holds also, if A, isreplaced
by 4, -+ v, where y is a real function, bounded on R,.

The subject of this paper was suggested by Lars Garding. I thank him for valuable
advice and great help during my work.

2. Quadratic forms and the Weyl-Courant principle

To simplify the notations we now put E = R, and consider B as a Riemannian
manifold with boundary S = dR,. Then 0 < ¢ € C¥R), ¢ =0 only on § and
@, = Op/dy is positive and continuous on 8. By definition

A =4, = — 2 g4 o0qtg™0,
is the Friedrichs extension associated with the two quadratic forms
a(u) = f <ngj’”ajuakudV, b(u) = fu2dV
R R

and the class CYR). Let H* = H¥R) (0 <k < 2) be the space of all functions
whose derivatives of order <k are square integrable over R, topologized in the
obvious way. According to Baouendi and Goulaouic, ([1], Théoréme 1°%), A - I
is a topological isomorphism between the space of all f€ H' such that ¢f € H?2
and the space H° In particular, there is a constant C such that

f (u? + > g*ouduydV < C / (4 + Du)dV
2 R
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‘whenever » is in the domain of A. Since the imbedding of H! into H? is compact
this shows that A has discrete spectrum.

When V is a subset of R, let Cj(V) denote the spaceof all real continuously
differentiable functions with compact supports in V. Note that if V is open then
Cy(V) consists of all elements of Cj(V) that vanish close to the boundary of V
and that Cy(V) increases when V is open and increases. Put

Alafb, V) = sup inf alu)/b(u), (3)

LED 0£uel

where D = Cy(V) and .L ranges over all linear subspaces of D of codimension
k — 1. By the Weyl-Courant principle, {2,(a/b, R)} are all the eigenvalues of
A with the correct multiplicities. Also, every /4, increases if a/b increases or
if V is open and decreases. The function N(a/b, V) = N(a/b, V, 1) which counts
the number of solutions  j of the inequality 2,(a/b, V) < 4 then has the opposite
properties. It is also well known that

N(R,) + N(R) < N(B) < N(R) < N(R,) + N(R,) 4)

where we have left out the arguments /b and 4 and R,;, R, are disjoint open
subsets of R such that R = R, U R,. We shall use these properties of the counting
function to get successive reductions of our problem.

3. Reduction to a boundary strip

Close to S8 we may parametrise R as follows. To every « there is a geodesic
! = l(x), passing through x and normal to S. Let y €S be the point where I
reaches S and let ¢ be the geodesic distance from z to . Then ¢,y are C*-
functions of x and can be used as coordinates. We notice in passing that in these
coordinates, the metric is

a + 3 galt, y)dy'dy*
2

and  g,(0, y) = pu(y) is the metric induced on S. Let &> 0 be small and con-
sider the boundary strip R,:0 <{ < e and its open complement R¥::{> e
By (4) we have

N(R,) 4 N(RY) < N(R) < N(R) + N(RY).
The result we want to prove is that
N(R) = N(a/b, R, ),) ~ Un()')) L—> o0 s

where 0,(1) = dyAlog A and ¢,(A) = d,A"~' when n > 2, the constants d, being
given by (2). Now it is well known that
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N(B¥) = 0,(#"), 41— oo,
so that it suffices to prove that
lim 0,(4)'N(a/b, R,, ) and Lim o,(2)N(a/b, R,, 2) (5)

are both arbitrarily close to 1 when & is small. In the next step we shall replace
the quotient «/b by another one where the variables ¢,y are separated.
4. Separation of variables

Let us now put

afu) = [ to((@ufor + > P ) audyhdyds

Re
and
by(u) = f uydydt ,
Re
where ¥,,...,y, are coordinates on S and ¢, = dp/dv. Since
ple(t, ) = to,()(1 + O)
and

wM:

g™ (8, y)Judu = (1 + O(t)) ; r*y)oudu, gt = 1+ 0(),

it is obvious that
N(afb, R,, 2) < N{ay/by, B,, A1 + o)),
N(afb, R,, 1) > N(a,/b;, B,, /(1 — o(¢)) .

Hence it suffices to show that, for every &> 0,

N(a,/b,, T, ) ~ 6,(%), A— o0, T=R, or R (6)

&

In fact, this implies (5). Next, let us introduce the function w = u4/¢, instead
of u. Then

(1) = ay(wjy/p,) = f (/a2 4 z 0 @0/ ol ) Adydt

Rz

bo(w) = by(w//g,) = f wi; ydydt

Re
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where the first equations are definitions. We now have a true separation of variables
and we can rewrite (6) as

N(agfby, T, 2) ~ 6,(4), A—> o0, T=R, or R,. (7)

5. The spectrum of a seecond order selfadjoint elliptic operator on S

Let

%Whi[%ZWWWWEMWN%WA

§
bo(w) = f wi; dv
S

be the forms on § that correspond to a,, b,. It is well known that the Friedrichs
extension corresponding to the forms a,, b, and the class C2(S) is the operator

Agw = — 2 (pfyoptey™ o/ ve,) ,
which has the property that
ao(wy, wy) = bo(dgwy, w,) ,
where ag(.,.) and by(.,.) are the bilinear forms associated with the forms a,
and b,. Moreover, 4, > 0 is selfadjoint and has a discrete spectrum, the lowest
eigenvalue being 0 and the corresponding eigenfunction w = 4/p,. Let {k}5
with eigenvalues {u,}; be a complete orthonormal set of eigenvalues and eigen-

functions of A4, and let Ny(u) = N(ay/by, S, u) be the corresponding counting
function. It is wellknown (cf. e.g. Hérmander [3]), that"

(n— 1)/2,

Nou) ~ ¢, p— 0, (8)

where, as stated in the introduction,

€1 = (27)" "o, _; f Gy

S

6. Expansions in eigenfunetions

When w € Cy(R,) or Cy(R,), let us expand w in terms of the eigenfunctions
h,. We get

w =3 w(0h)

1) Actually, supposing that everything is C®, Hérmander proves in [3] this formula with
the error term O(u("—2)2),
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Hence, in view of the orthogonality properties of the #&;,

az(w)z,fff(wj,ﬂ,» and  byw) = 3 glw;)

Here

J) = Fw ) = [ (09 4 gyt amd - gla) = [ utpar,

are forms involving just one variable and all w; belong either to C3(Z,) or Cy(l,),
where I, is the interval 0 <{ <Ce. Since all w; are independent of each other,
this gives

N(ayfby, T /’L):zg) N(f(‘“j)/g:']a A)s T=R, or Rs’ J=Is or I_.s‘

Hence our theorem follows if we can show that the right side is ~ 0,(2) in both
cases. Now, from the Weyl-Courant principle

N(f(w)g, I..2) < N(f'g, L., 2)
where

&

fu) = f (1 — e Y)yu'2dt

0

and hence, according to Goulaouic ([2], p. 360—11) we have

N(fwlg, I. 5) = O(\/3), &— o, (9)

uniformly when g >0. Since 4/} = 0(0,(1)), A-—> co, this means that we are
reduced to showing e.g. that

f N(f()g, I, DANo(ps) ~ 04(3), A= 00, J =1, or I,. (10)

Here, instead of a sum over the u; we have written a Stieltjes integral, the region
of integration being 1 < u << co.

7. A one-dimensional case with a parameter

Together with the forms f, g, consider the forms

e e

Flo,v) = f z(v? -+ ®¥)dx, Ge,v) = f v¥dx , (11)
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depending on the parameter ¢ > 0. Putting »(x) = u(z/ 4/u) we then have
Flu wYlg(u) = A/uF (& /> ©)[Ge A/, v)
when g > 0. Hence putting for simplicity
M(2, ) = N(F(0)/G(e), 1,, 4)
and writing M (1,0) when I, is replaced by I, we have
N(fw)g. L, ) = M (2] \/u, e /) »
where I,, M may be replaced by I,, M and it suffices to show that

fm(l/r, eT)dNy(7®) ~ 0, (d), m=M or M. (12)
1

In order to proceed further, we now need detailed information about the functions
M and M. It is given in the following lemma where it is understood that 2> 0.
LemMa. Let m = M or M. Then
a) 1 <A< o= md o) = A2 -+ O
b) For every 0,> 0 holds 1 > o = gy = m(2, 9) = O(1/})

¢) Given an even inleger A >0 and 0 << 6 << 1, there is @ gy > A such that
if A< A and o > g, then
m(4, ) = [(A + 1)/2]

except for symmetric intervals of length 28 around the odd integers 1,3,..., in
these tntervals the difference of the two expressions is at most 1 in absolute value.

Proof. Let M(2, ¢y, 02) and (2, gy, 0,) be the counting functions associated
with the forms

Qs o2

f x(v'? 4 v?)dx, f vz

1 €1

and the classes Oy(I) and Cy(I) respectively, where I = (g;, go). When the first
of these forms is replaced by ¢ f “ (v + v¥)dx (c > 0) the eigenvalues are

Q1
% and 4, k=1,2,..., respectively, where

Bt — 1 = gy — ),
—il:O, —Zk:Zk—lf kzz.
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It follows easily from this that

1
— 1+ Yo, — o) (Aot — 1E <m(h, o1, 02) <7 N0y — @) (A0t — 1E +1,  (13)

where m =M or M and x, denotes the positive part of .
To prove a) let

l=p<a<...<ega=4i<p=2¢
be a partition of [I, p], such that the partition of [1, 1] is equidistant. By (4)

y—1 _
zM}* Os Org1) < m(4, 1, ) 2 (A 0> Okt1)

0

which combined with (13) gives

p—3 y—2
— v+ ;f(ml)(@m — o) <m(l, 1, 0) < %f(@k)(@kﬂ — o) T,
where
f(x)::n‘l\/)T/x— 1 when 1 <<z <41.

Now f is decreasing, and hence

Py / f@yde < m(, 1, o) < f F@)de 4 Bt 4
1 1

Here
!

f F@ydz = A2 + O3

1
which is seen by an easy calculation. Choosing e.g. v = [4** + 3] we get
m(4, 1, 0) = 4/2 + O’

and a) follows from (4) and (9).
To prove b) let

O <O <@ <<...<<g=2¢
be an equidistant partition of [gy, o]. By (4) and (13) we get, as in the proof of a)

y—1

m(A, g, 0) < %f(@k)(em — o)

and hence

o
m(, 0o 0) < o5ty loAE -+ f flxyde + v.

Qo
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Now, putting i =1

o Vi
f fla)yde = 271 f V1 — 222t <Vie.
Qo I/IQ—u

Hence putting e.g. » = [o¥ 4- 1], we get

m(4, 09, @) = O(1/Ag)

and b) follows from (4) and (9).
To prove c¢) observe that

u(t, A) = (2mi)~ f ez — 1FN(z  1)"30+ g,
Rez=d>1
is a solution of
— () + = Ju, (14)

which is regular at the origin. Every solution w of (14) with fw? integrable near
the origin is a multiple of u since the equation (14) has a basis of solutions

up(t) = 1 4 tfo(f), w(t) = (1 + #1(?)) log ¢

where f, and f, are regular. Hence if A(g), » =1,2,..., are the eigenvalues of
the Friedrichs extension associated with the forms F(g), G(¢) and the class Cy([)
then they are the zeros of

A—u(o, 2)
and the zeros of

A— (o, 1)
if CG(I,) is replaced by Cyl,). A change of variables shows that

ult, 2) = (211 Den(t, 7 ,
where
o(t, A) = (2mi)~" / A1 - 22630V
Res—e>0

It is easy to verify that
ot A) = 474 4+ 1)t20(t, 1 + 2)
and hence

wy(f, A) = (26)730D(— LA + 1) 4+ Do, ) + 4714 + Lt=2(t, A + 2)).
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Hence the zeros of A — u(t, 1) are the same as the zeros of 1 — v(f, 2) and the
zeros of 1 —wu,(t, A) are the same as the zeros of 1 —w(f, 1), where

w(t, A) = (1 — (A + LYo, 1) + 472 + D)2, 4+ 2).
We also have
v(t, 1) —>v(o0, 1), t— 00
w(t, A) >w(co, 4), t— 0,

where

v(0, A) = w(co, A) = — asin (m/2)(A — 1) f e A 0Dy
0

The convergence is uniform on every compact subset of Re A > 0 and the limit
function is analytic in Re 4 > 0 with simple zeros only at the points 1,3, 5,... .
Hence,if 0 < d <1 and an even integer A = 2p are given, there exists a g, > 4
such that A —v(p, 4) (A— w(p, 1)) for p > g, has precisely p zeros in the strip
0<Reldl< A, oneineachdisc |A — (2k —1)] <, k=1,...,p. The fact that

u(t, 2) = u(t, A) shows that the zeros are real and the proof of the lemma is finished.

8. End of the proof

By (8) and b) of the lemma we have

Vi
/ m(Af7, e)INy (1) = O("?) = o(a,(A), A—> oo,

and hence, according to (10), we are reduced to proving that

10) = f M2, e)ANy(T) ~ 0,(A), A —> o0 . (15)
20
Now let 0 < 6 <1 be given. By (8) and c¢) of the lemma we can choose A’ so
big that

A= {NO(Tg) = @7 0T, all T = Vi
7 \mifz, ev) = 0, all 7> 2/(1 — 8).

¢) of the lemma, an integration by parts and an estimation of the product
m{\/ e, \/2e)No(A/e) by b) of the lemma then shows that
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A(1-4)
I(A) = o™y — f Ny(®)dm(A[t, et), 4> 1,
Vie
and hence
H(1~4)
I(A) = oy — f (Camy + O(V)O)T" " dm(Af7, €T), A > 1.
Vils
Now, another integration by parts gives

2/(1-¢)

1) = O(F™ + ((n — 1)e,_, + O(1)5) f m(AjT, )T v, A=A . (16)
Vi
When n =2
4(1—-é)
() = 0(2) + (¢, + O(1)9) f m(ifz, evdr, 4> X,

Vile
and by a) of the lemma and the definition of d,
I(2) = (dy + O(1)é)Alog 4, A > 1",
and hence
I(A) ~ 04(R), 12— 0,

which finishes the proof in the case n = 2.
When 7 > 2, choose an even integer A = 2p so big that

A1 < § and f [t -+ 1y/2)"dt < & .
A

Put

A(1~3)
f m(AJz, ev)v"~*dz = L,(3) + L) ,
Vi

where the region of integration is (y/i/e, 4/4) in I, and (A/4, A/(1 — 8)) in I,
By a) of the lemma

L) = oA~ = O(1)éat .
By ¢) of the lemma
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) 1(2k—~1—6)
P
I(%) = f [(Ar + 1)/2]17" % 4+ O(1) > f 7y
MA ! Aj(2k—14-8)

where O(1) refers to A-— oo.

Since f [(¢ + 1)/2]¢7"dt < 6, putting A/t =t we get
A

A ©
f A/ + 1)/2]e"Pdr = 2*! f [(t 4 1)/2~"dt + O(1)8A 1.
14 1
Also,
M(2k—1—0)

P
> f it = O(1)o" !

! M(2k—14-6)
which follows from the mean-value theorem and trivial estimates. Hence, by (16)
and the definitions of the constants d,

I(A) = (d, +0)8)2, A= 1,
which shows that
I(A) ~o,(2), A— oo.

This finishes the proof.

Added in proof. The asymptotic formula of the theorem is not quite correct.
To get the correct formula, replace the exponent (1 — #)/2 in (1) by 1 — n getting

6rs = (27", f (B /ow)—"dv . (1)

S

The error occurs in section 6 and it was pointed out to me by Mme J. Fleckinger
and G. Métivier. The eigenfunctions A; are in general not orthonormal in the

inner product f pg dv so that the formula for f(u) is not correct unless ¢, = 1.
s

To deduce the correct theorem from this special case, note that it holds when
@, is a constant. More generally, it holds when N(1) refers to a pair of quadratic
forms ay(u), by(u) as given in section 4 with ¢, > 0 constant and with
B, = 8yx{t:0 <t <e}, where 8, is an open nicely bounded part of § = oR,.
The Weyl-Courant principle applied to fine partitions of S into such pieces and
majorants and minorants of ¢! in each piece finishes the proof.

14
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