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1. Introduction
Let % be subharmonic in {|2] <1} and put A(r) =inf,_, u(z), B(r)=
max,_, #(z) when 0 <7 < 1. Let 1 be afixed number in (0, 1) and suppose that
A(r) <cosmiB(r), 0 <<r <1 (1.1)
u<c<+ . (L.2)
Here ¢ is a positive constant. Under these assumptions Hellsten, Kjellberg and

Norstad [4] proved

THEOREM A. There exists a subharmonic function

z

2¢ L) o — gt
U(z):;tan > ReijtTdt, larg 2| <a=m,
0

in {|z| < 1} for which (1.1) holds with equality and such that for 0 <<r <71

- 2¢ (nl) .
Br) < U@r) < ﬂtan 5 .

We note that the author [5] and Essén [1] have proved related theorems. Here
we consider a similar problem for analytic functions. More specifically, let ¢ be
a step function on [0, 1], i.e.; a piecewise constant function with a finite number
of jumps, which satisfies

(*) o is upper semicontinuous,
(**) —1<o(”) <<l when 0 <<r<<1.
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Let f be analytic in {|z| <1} and put m(r) =min,_, |f(z)|, M(r) =max,_, |f(2)|
when 0 <r<<1l. Let @ and 7, be fixed numbers satisfying 0 <a <1 and
0 << 7y < 1. Finally, we suppose that

m(r)M(r)®D < o't 0 <r <7y, (1.3)
fl<1. (1.4)

Then we shall prove

THEOREM 1. There exists an analytic function F = F(-,a, 0,1y tn {|z] <1}
satisfying (1.3) and (1.4) with the following properties:

() If f satisfies (1.3) and (1.4), then M(r,f) < F(r), 0 <r <1,
(i) F s the unique analytic function in {|z| < 1} for which (1.3), (1.4) and (i)
are true,
(iil) all the zeros of F are megative and simple,
(iv) between two zeros of F in [— ry, 0] there exists at least one point — r where
[F(— )| F(r)?) = a'*0),
(v) I has at most one zero — ¢ for which ry <t <1,
(vi) if F has zeros — s, — &, such that 0 <<s <<r,<<t<<1, then
|[F(— r)|F(r)’?) = a'*°") for some r € (s, ry),
(vii) F(0) = a,
(viii) # s o finite or infinite Blaschke product depending on whether ry <1 or
7o = 1.

Now let % be subharmonc in {[z| < 1} and satisfy (1.1) and (1.2). In addition:
assume that

% = log lg], where ¢ is analytic in {|z]| << 1}. (1.5)

Put a=¢e¢, f=ag, and o= — coszmA. Applying Theorem 1 with F =
F(,a,0,1) we obtain M(r,f) < F(r) when 0 <r <1 and thereupon that

Bry<c-+logF(r), 0 <r<1l. (1.6)

Since all steps are reversible, it follows that U = log |F| 4 ¢ is the unique member
of the class of subharmonic functions « satisfying (1.1), (1.2) and (1.5) for which
(1.6) is true.

To obtain a more general theorem let A(r), 0 <r <1, be an upper semi-
continuous step function on [0, 1] and suppose that 0 << A(r) < 1. Let u be
subharmonic in {|z] < 1} and satisfy (1.2), (1.5) and the condition

A(r) < cos mA(r)B(r) , (1.7)

when 0 < r < 1. Again, we apply Theorem 1 with @ = e¢™°, f=ag and o(r) =
— cos wA(r) for 0 < r < 1. Using this theorem we see that (1.6) is true when
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F = F(,a,0,1). It now follows that in the class of subharmonic functions
satisfying (1.2), (1.5) and (1.7), there exists a member with largest maximum
modulus.

Here we remark that the corresponding problem for the class of subharmonic
functions satisfying only (1.2) and (1.7), has not been solved. That is, we do not
know whether there exists a member of this class with largest maximum modulus.

We note that Heins (see [2, § 7] and [3, Theorem 3.2]) proved Theorem 1 when
¢ = 0. He also gave two methods for determining # when ¢ =0 and 7y = 1.
In § 9 we shall discuss the problem of determining F when ¢ is constant on [0, 7,].

Now let n be a positive integer and suppose that I, is the set of all analytic
functions b, in {|z| << 1} which can be written in the form

R
ba(z) = e | — (y real; x| <1, 1 <k<m). (1.8)
el 1 — &2
Then we prove
TrEOREM 2. Let o and 1, be fived numbers satisfying — 1 <o <1 and

0<ry<1. Let
u(n) = inf sup m(r, b.) M (r, b.)

b, €17, r€(0. 1]
and put o' = u(n). Then F = F(-,a,0,7,) is a member of I,. Moreover, if
fE€I. and sup,.,., m(r, ) M(r, f)” = a'*, then for some 6, 0 <0 <27, we
have f = e°F.

Here we remark that Theorem 2 is similar to Theorem 7.1 of Heins [3] when
¢ = 0. Finally, the author would like to thank Professor Heins for suggesting these
problems to him and Professor Matts Essén for several helpful suggestions in pre-
senting this paper.

2. Preliminary reductions

Let f# 0 be as in (1.3) and (1.4). Then it is well known (see Nevanlinna [6])
that f can be written in the form,

27

1 ]
f(z)=exp(— f Zzziefzda(e)w) B [l <1. 2.1)
0

z

Here « is a nondecreasing function on [0, 27], 0 <y << 2m, and either B is
a Blaschke product or B = 1.
Let
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J*() = exp L 12 f doe(()J B*), |z]< 1. (2.2)

If B=1, then B* = 1. Otherwise if (a;) denotes the zeros of B, then B* ig
the associated Blaschke product with zeros at {— |a:|}.
We have the following inequalities between f and f*:

H= ) S @) < F0), =7 (0<r<l), (2.3)
If¥(— )] < m(r r f) <M, f) <f¥r), 0<r<1, (2.4)
[F5(— DIH0)D < mr, M@, )0, 0<r <1, (2.5)
(= DIfFF)D < [f(— f@I, Rl=r 0<r<1). (2.6)

Here ¢ is asin Theorem 1. (2.3)—(2.6) are easily verified (see for example Hellsten,
Kjellberg and Norstad [4]).

From (2.3) and (2.5) we see that f* also satisfies (1.3) and (1.4). In view of
(2.4) it follows that it suffices to prove Theorem 1 for f*.

3. Proof of Theorem 1

The proof of Theorem 1 is long. In this section we construct F for ry << 1. In
§ 4 we show F is a finite Blaschke product with negative zeros. In § 5 we prove
Lemma 2. Using this lemma we show in § 6 that F has properties (iii)— (viii) when
1o << 1. In § 7 we prove our main lemma. We then deduce properties (i) and (ii)
of F for ry <1 from this lemma. In § 8 we prove Theorem 1 for 7y = 1.

First assume that 0 << 7y < 1. In this case we let E denote the class of analytic
functions in {|z| << 1} satisfying (1.3) and (1.4). Then f==a is a member of E,
and hence F has a nonzero member. Using this fact and a normal family argument
it follows for fixed g, 0 << p << 1, that there exists F € E for which

0 < F(g) = sup Mo, f) - (3.1)
feE

Moreover, if F* is the function associated with F asin (2.2), then F* = F since
otherwise F* € F and F(g) << F*(¢). This inequality follows from the fact that
strict inequality holds in (2.4) unless f = ¢”f* for some real 0. Hence from (2.3)
we have m(r, F) = |F(— r)| and M(r, F) = F(r) when 0 <7 < 1.

We assert that

F(0)>o0. (3.2)

To verify this assertion we shall want the following lemma.

LeMma 1. Let 0 <wu <1 and put
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2+ u
14+ w2’

O, u) = ol <1.

Then if 0 <oy <o <1 we have
[6(— 7, x)]0(r, 6)°® < |6(— 7, ) |0(r, )@

when « <r <1 while if 0 <r <oy, the reverse inequality holds.

Proof: The lemma is a direct consequence of the formula
d
ou

A= — o) + (1 + o(r))( + r*)u + (1 — o(r))r]

(u? — 72)(1 — u??)

log {16(— 7, u)|6(r, u)"®} =

We omit the details.
The following remark will be used both in the proof of (3.2) and in the proof
of Lemma 3.

¥ —>

is an increasing function on [0, 1]. (3.2a)

We now prove (3.2). If (3.2) is false, then from (2.2) we see that F(0) = 0.
We write, F(2) = zh(z), where h is analytic in {|z| < 1} and || < 1. Let
0 <a<<1 andput H = 0(,«x)h. Here 6 is asin Lemma 1. Using the lemma with
o, = 0, we find that

|H(— ) [H{r)® < |F(— )| F@r)y®

when o <<r < 1. It follows for & near 0 that H € F. Also by (3.2a) we see that
F(p) << H(g). We have reached a contradiction. Hence (3.2) is true.
We also assert that
[F(— ) |F(r)?

su — gy = 1. 3.3
OSPI;% prE) (3.3)

Indeed, suppose that

|E(— 7)) .
SUp i =6 .
OSTPS " a/1+6(r) 1 <
In this case let » > 2 be a positive integer and put f, = F o 6(-, 1/n). Here

6 is as in Lemma 1. The sequence (f,)y converges uniformly to F on [~ 7y, 7,]
and since F(0) > 0, f,(r)/F(r)— 1 uniformly for 0 <r <7, Let ¢> 0 be a
small positive number. Choose 7, large enough such that for = > n, and
0<r=<r,
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Ja(r)
Fr)

[F(=n)] —e < fa(— 1] < [F(—7)] +e.

Then if & is small enough we have

1 —e<L

<l+e,

alr)
e AEOY < (P )]+ )| | ey

< (IF(— )| + &)(1 — &) ' Fry®
<ey(1 — &) latt0) 4 g(1 — &) IF(0)7! < gt

when n > mn, and 0 <r <7, Hence for n > n, f.€E. Since F(p) < falo),
we have reached a contradiction. We conclude from this contradiction that (3.3)
is true.
From (3.3) we see there exists a sequence ()7, 0 <7, <7, such that r, —s
(0 <s<r) and
[F(— 1) F ()

al +o(ry)

—

Since |F(— r.)| < F(r,) and ¢ is a step function it follows that F(s) > a. Using
this inequality and the fact that ¢ is upper semicontinuous, we obtain

|F(— 8)|F(s)Y _ F(— 1) | F(ra) ™
T g =M e =1

m—>8

Since 0 <s <r, and F satisfies (1.3) we conclude that
|F(— 8)|F(s)"® = q'+°6), (3.4)

We have shown that F satisfies (3.4) for at least one point in [0, ry]. Next we
show there are at most a finite number of distinet points in [0, 7,] for which (3.4)
is true. Indeed if (3.4) were true for an infinite number of points in [0, 7,], then
by the Identity Theorem for analytic functions we would have for some b € (— 1, 1),

F(— 2)F@) = L a'*’, z€{]z] <1}— (- 1,0].
Here F® denotes the analytic b-th power of F in {|z| < 1} — (— 1, 0] for which
F&)® > 0. Since by (2.2), lim, o |[F(—2)||F@)* =1, 0< 0] <z, we would
then have a contradiction. We let {p;}], denote the finite set of pointsin [— 7y, 7]
for which (3.4) is true when either s = p; or s = — p..

4, A property of F

Next we shall show that F is a finite Blaschke product. Since F = F* and
F(0) # 0, it then follows that F has negative real zeros.
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We consider two possibilities. First if ¢ € {p;}}, put x = F(g). Using the same
argument as Heins [2, p. 353 —354], we find that either there exists a unique analytic
function ¢ in {|z| < 1} such that

i) |9l <1
(i) (@)= F(p), 1<i=<mn, ¢(¢) = F(o),

or there exists u*, p << p* < 1, and an analytic function @, in {|z] < 1} such
that

(i) 1P <1
(i) DPo(p:) = F(p:), 1 <i<m, Do) =p*

In the first case it follows as in Heins [2, p. 353] that F = ¢ and F is a finite
Blaschke produect.

In the second case following Heins [2, (2.14)] we introduce the function ¥{(:, 7)
defined for 0 <7 <1 by

_],.

# 4 p*

2u*

Yz, 1) = ol (2) + (1 — 7)fDPy(z), |2| << 1, where =

We shall show for 7; near 1 that
|P(— 7, 9P, 1) "0 < al+® (4.1)

whenever r €[0,7,] and 7 €[7;,1). To do this we let » €{p,}y and r > 0.
Next for small d > 0 we let

I(r)=1[rn—6, rn+ 6] when r #0, 7,

= [ry, 1 -+ 9] when 7, =0,
= [7'1 - 6, /"1] when ="y,
Put
@0(— 'I") @0(__. ’l"l)
F—r = F=r) T =1+l relln) (4.2)
and
Py(r)  Dy(ry)
Fo('r: = Fo(’rll) + 17(7') =1 + 77(7'), r Ef(rl) . (4.3)

Then if r € I(ry) and I(r) < [0,7,], we have since F € K,
a0+ P(— 1, 9)[|P(r, 7)) <

B(l — 1) Pyp(—7) B(l — 1) By(r) "0
P(— 1) T F(r)

=14 (f— D1+ ()1 — 7) + Ble(r) + o(r)n(M))(1 — 7) + O(1 — 7)?)

_L.1+a(r) 14 (4.4)
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as 7— 1. The term O[(1 — 7)?] is independent of r when 7 is near 1. Since
B <1 and e(r), n(r), are uniformly small when 6> 0 is small, it follows for
T, near 1 that (4.1) is true when r € I(r;) and 7, <7 <1.

Let A=UI(r), r,=>0, r, €{p};. Now

sup  |F(— r)|Fry a0+ < 1,
r€[0,ro]—4

since otherwise there would exist s in the closure of [0,7,] — A for which
|F(— 8)|F(s)"® = a'*°®), TUsing this fact and the fact that F(0) >0 we find
(4.1) is true when 7 €[0,7] and 7 <7<l

Let W*(-, 7) be the function associated with ¥(-, 7) as in (2.2). Then from
(2.3), (2.6) and (4.1) we see that Y*(,7) € for 7, <7 < 1. Since

#+ u*

Flo)=p<wu-+(1—7) = ¥(o, 7) < ¥¥(o, 7)

we have reached a contradiction. Hence if ¢ € {p;};, then F =¢ and F is a
finite Blaschke product.

Now suppose that o €{p;}}. We assume, as we may, that ¢ = p,. Let
F(g) = p. Then as before either there exists a unique analytic function ¢ in
{|z] < 1} satisfying |¢] <1 and

dp)=F(p) (1 <i<n—1), o) =p,

or there are an infinite number of such functions. If ¢ isunique, then as previously,
F =¢ and F is a finite Blaschke product. Otherwise we define @, u*, and ¥
corresponding to {p;};' as previously. We also define &(r) and #(r) corresponding
to 7, =0 as in (4.2) and (4.3)

Proceeding as in the first case we obtain for r near ¢ and 0 <7 <1, (see
(4.4))
a= 0P (— 7, ) [|¥(r, )"0 <14 [B + o(r)fr — (1 4 o(r)]1 — 7) +

+ Ble(r) + o(r)n(r)(1 — 7) + O[(1 — 7)*]
where # = u/u*. Since B = L(u + u*)/u*, we have
B + o(r)zt) = 3(1 + 2)(1 + o(r)/z) = g(x) .

Let 0y = max,.,-, [0(r)]. From the definition of ¢ we see that o, < 1. From
Heins argument [2, p. 353], it is clear that u* may be chosen such that \/;; <
z < 1. Since g¢'(z) = 3(1 — o(r)x?), we have

g(1) — (@) > H(1 — o (1 — 2) > 0. (4.6)

(4.5)

Hence g(1) — g(x) is bounded below by a positive constant which does not depend
on ¢. Since g(l) =1 +4 o(r), it follows from (4.6) and (4.5) that for r near g,
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7, near 1 and 7 € [0,7,] that (4.1) is true. Using this fact and arguing as in the
previous case we obtain a contradiction. Hence in both cases ¢ = F and F is
a finite Blaschke product.

5. A Lemma

We want to prove that F satisfies (i)—(viii) of Theorem 1. The following lemma
will play a fundamental role in this proof. This lemma may be compared with
lemma 7.1 in Heins [2].

LEmMA 2. Let 0 <u <v <1 and put

z-+tu 24w
$(z, u, v) = v w 1rm’

2] < 1.

Let 0 <oy <o < B <Py <1 andsuppose for fized g, 0 << o <1 that ¢(9,x, ) =
(0, o, B1). Then if either 0 <7r <oy or f; <r <1 we have

“ﬁ('— ¥, %, 51) Hé(’r: &9 51>U(') < 1‘#(_ 7, 0%, 18) !(f)(’l‘, &, ﬁ)a(r) ’
while if o« <r < f the opposite inequality holds.
Proof. Consider the set
I= {('u” V)i S u <o, ﬁ <v S/gl’ and ‘15(97'“”(”) = 4’(9:0"6)}

which defines a function v —u(v) and a funection % — v(u). Then we shall show
for fixed » that

d
7y Lig(—= 7, u(v), 9)|$(r, u(v), )] <0 (5.1)

when either 0 <r <&, or f; <r <1 and

d
75 LI$(— 7, w(v), 9)|$(r, u(v), vy’ > 0 (5.2)
when &« <r < 8. To prove (5.1) and (5.2) we observe that

W e+ wl + ue)
& = (o + o)l + v9) (5-9)

and hence that

d
(1 — s%)7He + 2)(1 + vo) 5 log |§(s, w, v)| = N(s,v) — Nis, u),
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where N(s,x) = (¢ + =}(1 4 xo)/(s + x)(1 4 sx). It follows for fixed r where
0<r<1 and r¢{u,v} that

d
(L — )7 e + o)(1 + vo) 7 log{I$(— 7, u, 0)$(r, w, v)°V} = p(r,v) — p(r,u), (5.4)

where y(r, ) = N(— r, ) 4+ o(r)N(r, z).
We shall prove that
(a) When 0 <r <oy, log p(r, -)| is a decreasing function and ¢(r, ) is a positive
function on (o, 1),
(b) When o <7 <f, w(r,u) <0 << y(r,v),
(¢) When B, <r <1, log|y(r, )| is an increasing function and wu(r,*) is a
negative function on [0, ;).
Since &; < u <<ax <f <v<f;, we have the following consequences of (5.4),
(a), (b), and (c), respectively. ’
(@) w(r,-) is a decreasing function on (&g, 1) and (5.1) is true for 0 <r <,
(b’) (5.2) is true when « <7 <8,
(¢’) w(r,*) is a decreasing function on [0, ;) and (5.1) is true when f; <7 << L.
To complete the proofs of (5.1) and (5.2), it only remains to prove (a), (b), and
(¢). To prove (a) we write

p(r, x) = 1/’1(96)1/’2(7‘, w)’/’s(", x),
where () = (¢ + #)(1 + xo),

pa(rs @) = {(2® — (1 — %)}t
Pa(r, ) = r(1 — a(r))a® + (1 4 o(n))(1 + r*)z + (1 — o(r))r.

We claim that
d 1
T g ln@) < —, 0<a<l1,
0 -2
g 08 )| < ——, 0<r<e<l,
0 1
7 g wna) < —, 0<e<l.

The proofs of these statements are straight forward and are omitted. Using
these inequalities we see that (a) is true.

The proof of (b) is immediate from the definition of 4. The proof of (c) is also
simple and we omit the details. This proves (5.1) and (5.2).

Using (5.1) and (5.2) we conclude that
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I¢(_ 75 %y, ﬁl)]¢(r: &1 ﬁl)g(') = lim ]¢(— 7, W, 'U)l(ﬁ(’l’, U, v)u(’) <

v—>5y

< lim [$(— 7, u, ) |$(r, w, )0 = [§(— 7, «, B)I$(r, &, B)"
>0
when either 0 <7r <«; or f; <r < 1, and that the reverse inequality holds when
o <r < B. This completes the proof of Lemma 2.

6. Desecriptive properties of F

To continue the proof of Theorem 1, we recall that we are assuming 7, < 1.
Then in § 4 we showed that F is a finite Blaschke product with negative zeros.
In this section we prove that F satisfies (iii)—(vii) of Theorem 1. Theorem 1 is
thereby established for 7y << 1 save for (i) and (ii) which we treat in § 7. We begin
by proving (iii). Let 0 <« << 1 and suppose that — « is a multiple zero of F.

We write

24+ x

14z

where g is analyticin {[z| << 1} and |g] < 1. Let ¢(-,%,v), 0 <u <v <1, be
as in Lemma 2 and put « = 8. Choose «y, §;, suchthat 0 <oy <a =< <1
and (o, o, B1) = (o, %, §). Since F € B, it follows by Lemma 2 that G =
¢(-, &y, By)g satisfies

[G(— )Gy < [F(— )Py < at+0)

F(z)==( ) 9(z), [zl <1,

when ¢ €[0,x]U[B, 1), 0 <r <7, and F(—r)# 0. Using this inequality
we find that if «; and f; are near «, then G € E and

G(— NIGr)? < a'+®

for 0 <r <r,. However, since F(g) = G(g) and G € E we must have (see (3.4)),
|G(— 8)|G(s)® = @'t for some s € [0,7,]. Again we have reached a contra-
diction. Hence (iii) of Theorem 1 is true.

The proof of (iv) is similar to the proof of (iii). Let —ry < —f << —a <0
be two zeros of F and suppose that

LF(— 7)|Fry® < olt0, « <r <B. (6.1)

Then F = ¢(-,x, B)f, where f is analytic in {Jz| << 1} and |f] < 1. Choose
oy, By, such that 0 <oy <a<<f<By<<1l and (g, B) = (0, %y, By). Let
I = ¢(-, , B)f- Using (6.1) and Lemma 2 we find for «; near & and f; near f
that I € £ and

(= ) @r)0 < a0, 0 <r <.
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However, since I(g) = F(p) we must have by (3.4), [I(— s)|I(s)’® = ot
for some s € [0,r,].- Again we have reached a contradiction. Hence (iv) is true.
The proofs of (v) and (vi) are exactly the same as the proof of (iv). We omit
the details.
To prove (viii), let ¢, = min {r : F(— r) = 0}. From (iii) we see that #; > 0.
We assert that
|F(— 1) |F(r)’® < F(0)0 (6.2)

when 0 <r <t;. Indeed, for fixed o(r) the function g(z) = log |F(— 2)||F ()17,
2] < ¢, is harmonicin {Jz| < t,}. Moreover from (2.6) we see that min,_, g(z) =
g(—s) for 0 <s <. Since minp_,g(z) is a nonincreasing function of s, it
follows that (6.2) is true.

Next we note that supy<, <, {|F(— r)|F(r)"® - a=@ D} = 1. Indeed, otherwise
the function G(z) = F(2)0(z, t)/0(z, ¢;) isin E for ¢ near ¢, t>t#, and G(g) >
F(p), as follows easily from Lemma 1. This fact and (6.2) imply F(0) = a. Hence
(vii) is true.

7. The final proof for r, <1
To prove (i) and (ii) of Theorem 1 we shall want the following lemma.

LevMA 3. Let n and m be two positive imtegers. Let 0 <t <<... <<t <1

n (z-+; m [z -+ s.-)
and 0 <8 <...<sm<<l Put f(z) :U(l —}—t,-z)’ and g(z) =U(1 )
Let ty= 0. For given ¢ €(0,1) suppose that f(o) < g(o). Then either f=g or

there exists a positive integer j§, 1 <j <m, such that

(= DIfey? < lg(— n)lgty’®, r €1 1) .

Proof. We first assume that »n = 1.

If m =1, then from (3.2a) and the fact that f(o) < g(o), we deduce # < s;.
If t, = s, then clearly f=g. If ¢ <s;, we apply Lemma 1 with & =¢,, and
& = 8. Using this lemma, we obtain

(= nIfe)y? < lg(— n)lgtry™® (7.1)

when r €[0,#]. Hence Lemma 3 is true for n =1 and m = 1.

Let k be a positive integer and suppose that Lemma 3 is true when ever n = 1
and 1 <m <k Then if m =k + 1 we see from (3.2a) that # <s <s << L.
Let ¢(-,u,v), 0 <u <wv <1, be asin Lemma 2. We also consider the function
I, defined by

Iy={(u,v): 4 <u<v<1 and ¢(o, u, v) = @(0, 81, 83)} -
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Since dv/du < 0 (see (5.3)), there exist z,, yp, such that (z,, ¥,) € I, and
g <u <v <y, when (u,v) €Tl,. (7.2)

We claim that y, = 1. Clearly either 2z, =14 or y, =1, since otherwise (7.2)
would be contradicted. If a, = #; then since f(p) << g(p) we must have ¢, = 1.
Hence g, = 1.

We consider the function

24 xo) g(z)
1+ xz) (2,81, 8)

Using Lemma 2 with &; =2, & =¢;, f=28, and f; =1, we obtain

[h(— ) [BrY?D < |g(— 7)|g(r)™®), 0 <r <. (7.3)

h(z):( ] < 1.

Moreover kh has k zeros and h(g) = ¢g(o). Hence either h=f or
Lf(—= YD < [h(— nREy?, 0 <r<t.

In either case we conclude from (7.3) that Lemma 3 is true when n =1 and
m = k -+ 1. Hence by induction Lemma 3 is true for n = 1.
Let q be a positive integer and suppose that

Lemma 3 is true for » <q. (+)

Then if n =gq -+ 1, we first assume that m = 1. In this case if # <s;, then
from Lemma 1 with «; = ¢, and & = s;, we see that (7.1) is valid for 0 <r <{¢,.
If ¢, > s, then from Lemma 1 with « = ¢, and &; = s;, we see that (7.1) is valid
for ¢, <r <t,., Hence Lemma 3 is true for m =1 and » =gq + 1.

Let k be a positive integer and suppose in addition to (4) that

Lemma 3 is true for n =¢+ 1 and m <k. ()

Thenif n =¢ 4+ 1 and m =k + 1, we assume, as we may, that f and g have
no common zeros. Indeed, if s, 0 <<s << 1, ig such that f(— s§) = g{— s) = 0, then
14 sz 1+ sz

fiz) = TN f(z) and ¢(2) = PRI g(z), |2] <1, have ¢ and k zeros
respectively in {|z| << 1}. Using this fact and (+4) we obtain that Lemma 3 is
true for f,¢,, and thereupon for f,g.

We proceed under the above assumptions. We consider the situation,
(a) For some positive integer 7 (1 <4 < n — 1) there exists a positive integer’ p
(1 <p<m—1) such that s, s,,, are in (i, £,).

If situation (a) occurs, we define the function Iy by

N ={(uv):t<u<v<t, and ¢ u,v) = ¢(o, Sps sp+1)} .

Then since dvfdu << 0 we see there exist z;,y,, such that (x,,y,) € I3 and
n <u<Lv<y when (u,v)€rlj. (7.4)
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Clearly either #; =4¢, or y, =1{;,,, since otherwise (7.4) would be contradicted.
If Ty =1 a'nd Y << tH—I’ we pl].tv

1 t;
fa(2) = (zi tz) f@), k<1,

_ (z 1 91)9(2)
%) = T yr)p 5, 5,00)

Then fy(0) <g,(0) and f,, 9., have ¢ and k zeros respectively in {|z| < 1}.
Using these facts and (-++) we find that either f, = g, in which case n =m = 2
or for some positive integer j (1 <j<m, j# 1)

ol DIAREY < lga(— n)lgalr)?, 0 <7<ty (7.5)

If fo=g¢, then f=4¢(,t,t) and g = (-, 8, ). Applying Lemma 2 with
& =1t, « =8, =28, and f; =1, we obtain that (7.1) is valid for 0 <r <¢;.
If (7.5) is true, we again apply Lemma 2 with &, = {;, x = Spy B = 8,41 and By =y,.
Then by this lemma and (7.5) we have for Lt <r <,

(r-{—t,-
147

2] < 1.

7‘——-ti

= ey = 15—

l¢(_ 7, ti, 3/1) ]?S(r’ ti: yl)a(r) .
I‘IS(_‘ T, Sp, 8P+1) [‘ﬁ(T’ Sps 8P+1)0(r)

Hence in either case Lemma 3 is valid for 2, = ¢,

The proof for y; =1t;,; is similar. We omit the details. We conclude that if
situation (a) occurs, then Lemma 38 is valid for n =¢ 4+ 1 and m =k + 1.

We now suppose that situation (a) does not occur. We first assume that
m==Fk-+1<n=g¢g-4 1. In this case we claim there exists a positive integer ¢
(1 <4< n) such that

ofr)
) [fa(— 1) !fz(")u(r) <

< lg(— glr’® < lg(— n)lglry®

§€[ti_1, 8] when 1 <j<m. (7.6)

If m <mn, then clearly (7.6) is true. If m = n, then (7.6) is true, since otherwise
it follows that s <¢, 1 <j <mn, and thereupon from (3.2a) that g(g) < f(o).

Let p be the minimum of the set of positive integers ¢ for which (7.8) is true.
We shall prove that (7.1) is valid for ¢, ; <r <, If p=1, then 4 <g; for
1 <j <m. Using this fact and applying Lemma 1 with & =¢ and « =g,
1 <j<m, we obtain for 0 <r <§

(= DI <TT 10— 7, 1160, 50 <
: (1.7)

< Tmr 10(— 7, )10, )0 = lg(— )g(r)"® .
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If p=m+41, then g < for 1 <j<m. Using this fact and applying
Lemma 1 with o =3¢ and o =14, 1 <j<m, we find that (7.7) holds for
by 1 <y

If 1 <p<m, then from the definition of p we see that s < when
1<j<p—1 and t; <s when p <j <m. We apply Lemma 1 with o = g;,
«=1%, when 1 <j<p—1, and with o =1¢;, x =3¢, when »p <j<m. We
obtain that (7.7) is true for ¢,_; <r <, Hence, if situation (a) does not occur
and if m =%k +1 <% =¢q-+ 1, then Lemma 38 is true.

Finally suppose that situation (a) does not occurand n=¢ + 1 <m =k + 1.
In this case we assert that f, <s,_; <s, < 1. Indeed, otherwise it follows that
& <1, 1 <j<wm, and thereupon that g(g) < f(o)-

We let I, be the function defined by

={v}:t, <u<v<1 and &g, Sm_1> Sw) = P(0, %, v)} .

Since dv/du < 0 we see there exist ,, ¥,, such that (z,, %,) € Iy and

z, <u<v<y, when (u,v) €Tl,. (7.8)
Clearly either «, =1, or y, =1, since otherwise (7.8) would be contradicted.
If y,=1, we put
2+ % 9(2)
L+ 22 92, 81, 8m)
Then gs(0) = g(0) and g; has % zeros in {[|z] < 1}. Using (4 ) it follows that
either f= g, or for some positive integer j (1 <j < n)

If(— DIFEY? < lgs(— 7)lga(r)®, g, <r <.

Applying Lemma 2 with o; = @, & = 8,,_;, § = 8, and B; = 1, we find in either
case that Lemma 3 is true for g, = 1.
If %, =1¢, and 9, <<1, we let

gs(z) = o] <1.

1 4tz
W=\ ) e, k<1,
o (z + yz) g(2) <1
s = 1 +Z/22 ¢(Z,8 -1 Sm) ’ ]z. < '

Then f,,g,, have ¢ and k zeros respectively in {|z] < 1} and f,(o) < gu(0)-
Using these facts and (4) we see that either f, = g, or for some positive integer j,
1<j<n-—1, '

(= DIOLRED < lgy(— 7)Ogy(r) ), basr<y.

Applying Lemma 2 with «;, =1{,, & = §,,_;, B = $,,, and B, = ¢, we find in either
case that Lemma 3 is valid for x, = f,. Hence if situation (a) does not occur, then
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Lemma 3 is true for » = g + 1 and m = k + 1. Since we have already considered
the possibility that situation (a) does occur, we conclude that Lemma 3 holds for
n=¢q-+1 and m==%+ 1.

Now by induction on m we see that Lemma 3 is valid for n =¢ + 1 and
m a positive integer. Then by induction on » it follows that Lemma 3 is true when-
ever n and m are positive integers. This completes the proof of Lemma 3.

To continue the proof of Theorem 1, let E be as in § 3 and suppose that F € £
satisfies (3.1). Then in § 6 we proved that F has properties (iii)—(viii) of Theorem
1 for 7y < 1. We now use Lemma 3 to show that F satisfies (i) and (ii).

Let 7 be a fixed number and 0 < 7 << 1. Let G be an analytic function in
{lz] << 1} for which G € ¥ and

G{(t) = sup M(z,f).
FeE
We see that G satisfies (iii)— (viii) of Theorem 1 for 7, << 1. Applying Lemma 3
with f=F, g = @, and ¢ = 7, we obtain that either F = G or for some positive
integer j,
|F(— nIFr)® < |G(—n)]GE)"Y, 1 <r <. (7.9)

The latter situation cannot occur. Indeed, if (7.9) were true, then from properties
(iv)—(vii) of F' and the fact that @ € E, we would have for some r €[0,7,]N
1, )

@0 = |F(— n)|F@)D < |6(— n)|Gey? <a'td),

Hence, F = @. From this equality we conclude that F satisfies (i).

Property (ii) of F (unicity) is now an immediate consequence of (i) and the
Identity Theorem for analytic functions.

This completes the proof of Theorem 1 for r, << 1.

8. Proof of Theorem 1 for 7, =1

We wish to prove Theorem 1 when ry= 1. To do so it will be necessary to
indicate the dependence of F on 7, when 0 < r, << 1. Therefore we shall often
write F(-,r,) for F.

Let 0 <7, <rf < 1. Then since

P (— 1, 73) (e, )0 < al+0

when 0 <r <1, we see from Theorem 1 that F(r,r5) < F(r,r,) for 0 <r <L
Hence, F(r,1) =lim, , F(r,r)) exists for each r € (0, 1). Using this fact and a
normal family argument, we see that F(z, 1) = lim, ,, F(z, 7,) exists and is analytic
for |z| < 1. Moreover, F(-, 1) satisfies (1.3) and (1.4) when 7, = 1. Also, F(-, 1)
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satisfies (i) of Theorem 1 when 7y = 1. Indeed, if f satisfies (1.3) and (1.4) for
ro=1, then M(r,f)<F(r,7) when 0<r<1 and 0<r,<<1 Hence
M(r, f) < F(r, 1). Property (ii) of F(-, 1) is now an immediate consequence of (i)
and the Identity Theorem for analytic functions.

To prove (viil) we first note from (2.2) that

(= —1)
z+1

Here 0 <& < o and either B* =1 or B* is a Blaschke product. If « > 0,
then from (8.1) we see that lim,_; |F(— r, 1)|F(r, 1)@ = 0. Using this fact, we
find that

F(z, 1) = exp [oc } B*(z), lzj << 1. (8.1)

|F(— r, DIF(@r, 1)°0
0i‘:<1 PR =
since otherwise for small ¢ > 0 the function f(z) = F((z + ¢)/(1 -+ ), 1), |z]| <1,
would satisfy (1.3) and (1.4) for 7y, = 1, and F(r, 1) < f(r), 0 <r <1, (see 3.3)).

It also follows as in § 3 that there are at most a finite number (> 0) of points
r in [0,1) where [F(— 7, 1)|F(r, 1)°® = g'*°®). Using the argument of Heins
as in § 4 we now obtain that F is a finite Blaschke product. Since « > 0, we have
reached a contradiction. Hence « = 0.

To complete the proof of (vii) for 7, = 1, we observe from (8.1) that #(-, 1) has
an infinite number of zeros, since otherwise we would have lim, ,; |F(— »)|F(r)"®
= 1, in contradiction to (1.8). Hence, F(-, 1) has property (viii).

The proofs of (iii), (iv), and (vii) are exactly the same as in the case 7, << 1.
We omit the details. Here (v) and (vi) are trivially true.

This completes the proof of Theorem 1.

9. Remark

We remark that Heins [3, §§ 4—6] gave two methods for determining F when
ro=1 and ¢(r) =0, 0 <r < 1. Here we consider the problem of determining
F when ofr), 0 <r <1, is constant on [0, 1]. In this case we put o(r) = o,
0<r<1.

First suppose that 7, <<1. Let (—#¢)], where 0 <{ <{,,;, denote the
zeros of F and put ¢, = 0. We assert that

(*) If f€EE and f satisfies (iii)—(viii) of Theorem 1 for 7, < 1, then f=F.

This assertion is verified by using Lemma 3 as in the proof of (7.9). We also assert
that
¥ty If 1 <¢<n, then log {|F(— nIF(r)"} is a concave function of logr on

(ti—h ti)'
This assertion is verified by arguing as in the proof of (6.2).
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Hence (**) is true.
Using (**) and (iv)—(vii) of Theorem 1 we deduce that

If 1<i<n and ¢ €[0,ry], then [F(— r)|F(r)° = a'*” (+)
for exactly one point in [f,_;, #].
If t, €(ry, 1), then #,_, €[0,7,) and either |F(— n)|F(r)" = a'™® (4-)

for exactly one point 7 €[t,_,, t,] or F(— r)|F(ry)’ = a'*e.

We observe from (vii) that r = 0 is the unique point in [0, ¢,] for which (+)
is true. From (4) and (+--) we see that F is the solution of the equations
A) F(0) =a,

By If n =2, if 1 <i<n--1, andif ¢, €(0, ], then for some r € [{, ¢ ,]
we have |F(— n)|F(r)” = o™ and d/dr|F(— 7)|F(r)" = 0.

(C) If n>2 and if ¢, €(ry 1), then either |F(— 7)|F(r)°=a'* and
d/dr|F(— r)|F(r)° = 0 for some r satisfying ¢,_, <r <1y, or |F(— ry)|F(r)° =
a’t! and for some 71 € (ry, t,), [F(— r)|F(r)° = a'*".

From (A), (B), (C), () and (++) we see that F is the solution of 2n — 1
equations in 2» — 1 unknowns. ;

Conversely, suppose f is a finite Blaschke product with simple negative zeros
(— ¢)7 and that [ is a solution of (A), (B), and (C) with f= F. Then from (**)
with f=F we see that f€ E and f satisfies (iii)—(viii) of Theorem 1. Hence
by (*), f = F. We conclude that if we can find a solution f of (A), (B), and (C),
then we have found F.

In practice an explicit determination of F may be quite difficult even in very
simple cases. Consider for example the associated problem of determining for fixed
o, a, and k the largest possible value of 7, for which F(-, a, o, 7)) has k zeros.
If & = 1, then from (A) we see that F(z) = (z + a)/(1 4 az). Moreover, ry = ry(0, 1)
is the unique point in (0, 1) for which

—_— | o
7o a o T @ . gite
1 — ary/\l - rqa

If 6 =0, we see that 70, 1) = 2a/(1 4 a?). Also,if ¢ isreplaced by — 1 and 1
in the above equation, and if the resulting equations are solved, then we obtain

V' 2a2/(1 4 at) < 70, 1) < 1.

Of course an explicit determination of ry(o, 1) for — 1 <o <1 is difficult.
If =2, then
246\ 2z -+ t2)
= 1
Fee) (1 + t,z)(l + 8,2/’ I<ti<th<lI,

can be found by solving the equations
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bLirty=oua {9.1)

d
— F(— n\F{@) = o', o F(— r)F@ry =0, (9.2)

for some r € (t;,1,), 74(0,2), 0 <7y <1, is then found by solving the equation,
F(— r))F(r,)° = o’*°. For o = 0 this solution is given by

Here p = 2a/(1 4 a?). Moreover, 7,0, 2) = 2V p/(1 + ).
Again an explicit determination of F and 7,0,2) is difficult when
— 1 <o < 1. However it can be shown that

F(z) =

Ve vV 10 + u) < ryo,2) < 1.

Here p* = 2a4%/1 4 ot

Finally we remark that Heins [3, (4.9)] determined F and 7, explicitly when
=0 and k= 2". Here » is a positive integer.

Suppose now that ¢ and a aregivenand 7y = 1. Let (— )7, 0 <t <, <1,
denote the zeros of F(-, a, ¢, 1). Then as in the case 7, << 1, we see that F(0) = a
and for some r €[, ¢,,],

d
[F(— n)IF@) = @+, — F(— Py =0, (9.3)

Conversely, let f be an infinite Blaschke product with simple negative zeros
(— &), 0<s, <8, 1 <1. We replace F by f in (9.3). If f(0) =0 and (9.3)
is true for some r €[s;,s,,.,], 1 <4¢ << o0, then from (**) we see that f satisfies
(1.3) and (1.4). We assert that f= F. Indeed, if f# F, then for some g,
0 <<p <1, we would have f(p) << F(p). Let n and k be positive integers and
suppose that »n > k. Put

nfz4+1 k(z+s;
F.(2) = =
) U(l + tiz) and filz) U(l + Siz) )
Since F,(z) — F(z) and fi(2) > f(z), |2] <1, we see for k sufficiently large that
Ju(e) < F,(¢) whenever n > k. Applying Lemma 3 we obtain for some positive
integer j that

(= Dfalr)” < [Fu(— DIFL(), 5, <r<s;.
Here if j=1, then s, = 0.
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Letting n — oo through a properly chosen sequence we obtain for some positive
integer 4 that
[fil— D() < F(=0)IF@), s =<7 <s.

However for some r €[s;,_;,s;) we have
= |f(— N)Ifry < full— DAY < [F(— n)F@)y < a'.

We have reached a contradiction. Hence F = f.
We conclude that F is uniquely determined by the equations (9.3) and the
condition that F(0) = a.

10. Proof of Theorem 2

Let o, 75, and I, be as in the statement of Theorem 2. We recall that I', is
the set of all analytic functions &, in {|z| << 1} which can be represented in the
form (1.8).

Let

u(n) = inf sup m(r, b,)M(r,b,)° and put a'*° = u(n).
b€l 0<r <y
We replace n by k in (1.8). Then the clags of functions which can be written in the
form (1.8) where 0 < k < n is compact. Hence by a normal family argument there
exists a member @ of this class with % zeros (0 <k < =) for which
sup m(r, HM(r, G) = p(n) = o'+ .

0<lr<r,
Now k= m, since otherwise f(z) = 2" *G(z) is in I, and
sup m(r, /)M(r, f)* < p(n) .

d<r<r,

Let G* be the function associated with & asin (2.2). Then from (2.3) and (2.5)
we see that G* € I, and

sup |G*(— 7r)|G*(r)’ = &' = u(n) . (10.1)
0<r=<r,
We claim that G* satisfies (iii)— (viii) of Theorem 1. We first show that G* satisfies

(vil).
If G¥0)<a, let x=min{r>0:G*—r) =0} Let o« be such that
o <<oq <1 and put
0(z, %)6*(2)
glz) = T

Here 6 is as in Lemma 1. From Lemma 1 we see that

[z} < 1.

max |g(— r)lg(r)” < max |[GH(— r)|G¥(r) < o'

GErsn GSrn,
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Also from (**) of § 9 we deduce |g(— 7)lg(r)” < ¢g(0)'*° when 0 <r <. Since

G*(0) < a, it follows for «; mear « that
max |g(— r)lg(r)” < a'*.

0<r<r,

Since g € I, we have reached a contradiction. Hence, G*(0) = a.

Also, G* has no zeros in (— 1, — 7,]. Otherwise using Lemma 1, we could
obtain a contradiction. Hence, (v) and (vi) are trivially true. Moreover, Lemma 1
and (**) of § 9 imply that

[G*(— 1) |G*(ry)” = a'*° . (10.2)

Finally, we show that G* has property (iv). Let —«, — f, 0 <ax << f <1,

be two zeros of G*. Choose o4, B, 9, such that 0 << o <<1 and 0 <oy <a <
B <Bi<l Put

h(z) = i(—(z—::—:—ﬁ—;) G*(z), lz] << 1.

Here ¢ and « are as in Lemma 2. From Lemma 2 we see that
(= 7)[A(r)” < |G*(— 7)|G*(r)
when 7 €[0,0,]U[F;, 1) and G*(— r) £ 0. Then if

max |[G*(— 7r)|G*(r)° < o't
a<r<§
it follows for «,, By, near «,f, that
max |[k(— 7)|h(r)> < a't°.
0<r<r,
Since & € I',, we have a contradiction. Hence, G* has property (iv) of Theorem 1.
Property (iii) of G* is an obvious consequence of properties (iv) and (vii). We
conclude that G* satisfies (iii)—(vii) of Theorem 1.
Let F = F(-,a,0,1,) be as in Theorem 1. Then from the discussion in § 9 we
see that F = G*. It remains to show that for some 0, 0 < 0 < 2w, we have
G* = ¢°G. To prove this we let o(r) — 1 in (2.5). We obtain that

|G¥(— 7)|G*(r) < m(r, M(r,G), 0 <r<1. (10.3)

Thenif @ # €°G* forsome 0, 0 < 6 << 27, we see from (2.3) that M(r, G) < G*(r)
for 0 < r << 1. Using this inequality, (10.2), and (10.3), we obtain

al™" = [GF(— 1) [G*(ry)” =
|G*(— 7o) |G (ro) - G*(ro)" ™" < mlry, N M(rg, G) - M(ro, @)77" < @l

We have reached a contradiction. Hence, for some real 0 we have @G = ¢*F.
This concludes the proof of Theorem 2.
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