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Introduction 

Let F C LP( - st, ~), 1 < p ___ oo, and consider the extremal problem 
inf lip + flip, f in Hp. For notations and basic results on H~-spaces, see [6]. This 
problem was extensively treated by i%ogosinski and H. S. Shapiro in [10] and also 
by Kavinson in a series of papers. Havinson studied the corresponding problem 
in general domains. We refer to the survey [13] by Toumarkine and I-Lvinson, 
which also contains a quite complete bibliography. 

The case p = oo is of a special interest. I t  can also be formulated as a problem 
on so called I-[ankel matrices and is in this way of importance in probability. We 
wish to mention in particular the papers by Nehari [9], I-Iartman [4], I-Ielson and 
Szeg5 [5] and Adamyan, Arov and Krein [1]. We shall here consider continuous 
~' and look for results on the best approximation f, whereas in the above mentioned 
papers (except [5]) the results are expressed in terms of the matrix. I t  is easy to 
see tha t  in this case a unique best approximation f exists in H ~. One might ask 
to what extent do F and f have the same regularity. The investigation of these 
problems is the main object of the present paper. We shall see that  the answer is 
about the same as for conjugate functions. We shall also restrict ourselves to the 
case of the unit  disc U. I{owever, the function-theoretic proofs in sections 2, 3 
and 4 are all of a local character, and so all the results can easily be carried over 
to any region which has in each case a sufficiently regular boundary. 

In section 1 we have stated the dual problem and collected some well-known 
material. Theorem 1 is originally due to Bonsall [3] and Shapiro [11]. Section 2 is 
devoted to the s tudy of the extremal functions of the dual problem in H 1. In the 
case F E L ~, de Leeuw and i%udin [8] have examined the question of uniqueness 
for the corresponding extremal function in H I. We give a complete solution of 
this problem, provided F is in C. In  section 3 we treat  our main problem and in 
section 4 we give an example which shows that  the conditions in Theorem 3 a 
can not be weakened as long as the regularity of _~ is expressed only in terms of 
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its modulus  of  cont inui ty .  I n  par t icu lar  we const ruct  an F E C whose best  
approx ima t ion  f is no t  in A ---- H + N C. This was f i rs t  done b y  Adamyan ,  Arov  
and  Kre in  [1], R e m a r k  3.2 p. 13. 

1. The dual problem 

We s ta r t  wi th  the  following simple bu t  useful corol lary of  the  ~ a h n - B a n a c h  
theo rem,  a technique  which has now become s tandard.  

L ~ A  1. Let B be a Banach space, M a linear subspace and denote by M ~ 
the annihilator subspace of B* corresponding to M. Then for any L E B* we have 

i n f l l L - - 1 ] l =  sup IL(x) I,  
1EM ~ x E M ,  I]x]] <_ 1 

and there is always an l E M ~ for which the inf  is attained. 

For  a p roof  see e.g. [12], t heorem 4.3-F, p. 188. I f  we app ly  this l emma to B ---- L 1, 
M z H 1 (the subspace of  H 1 of  funct ions vanishing at  the  origin), we get  

m = inf  lip + fl]~ = sup F(e~~176 , 
fEHOO hEHo~llh]h < 1 - -~  

since in this case /~* ---- L +, M ~ ---- H *. Thus,  there  is always an f E H + for which 
[[~P + f l [ ,  ~ m. Since we avoid  the  t r ivial  case m -~ 0, we m a y  suppose m ~- 1 
and  the  sup can of  course be t aken  of  the  real  pa r t  of the  integral  as well. 

The  ne x t  quest ion is whe ther  a maximiz ing  h E H01 exists. Wi th  the  aid of  Feidr 's  
t heorem and  the  t heo ry  of  normal  families, i t  is easy to  prove  the  following, cf  [3] 
Theorem 4 or [8] Theorem 10 a. 

TgEORE~ 1. I f  f '  E C ~- H ~176 in particular i f  2' E C, then at least one h in 
the unit ball of H~ exists maximizing 

1/ 
Re ~ F(e'+)h(e~+)dO. 

COROLLARY. Under the above conditions on F the minimizing f E H ~ is unique. 

This follows f rom Theorem 14 in [10] and  also s imply f rom the  following fact.  F o r  
any  pa i r  of  ex t remals  f and  h, we have  
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1/ 
1 = Re ~ (F(e i~ -]-f(e~~176 < 1, and  so 

- - x r  

(F(e ~~ + f(d~ ~ -~ Ih(d~ a.e. (*) 

F r o m  this var ia t ional  equa t ion  and the fact  t h a t  av E C, we shall obta in  all our  
informat ion.  

2. Properties of the extremals in the dual problem 

E v e r y t h i n g  in this section will depend on the  fac t  t h a t  i f  F E C and  if  
/~(e i~) = 0, t he n  by  (*), f h  has its values in a small  sector for  0 close to  T and 
we can make  use of  the  following theorem.  

LwMMA 2. I f  v is real valued and harmonic in the simply connected domain D 
and Iv(z)[ < #, z C D, then the analytic function g =-e u+~€ is in HP(D) for 
p < ~/2#. 

A proof  which easily carries over  to any  s imply connected domain  D m a y  be found 
in [7], Theorem 1.9, p. 70. 

Before announcing the  theorems we want  to  make  a defini t ion.  
Definition. Le t  f be analy t ic  in a region D having a smooth  b o u n d a ry  0D, 

D not  necessari ly s imply connected and  assume e.g. f E HI(D).  We say t h a t  f 
is outer  in D i f  for  z E D  

1 s OG(z, ~) 
log If(z)l - -  2:~ J an 

Oo 

G being the  Green's  funct ion of D. 

- -  log ]f($)lds, 

TI~nOREM 2. I f  aV C C, then we have for the corresponding h E H~ 
a. h E H ~ for every p < oo. 
b. h is outer in some annulus t l  o~- {z]r o <  lzI < 1}. 

_Remark. :For la te r  use we observe t ha t  the  assumpt ion  on h can be localized 
to  h e Hi(R) for some annulus  /~ = {zIr < [z I < 1}. The conclusions are then  
val id in some _R 0 wi th  r o > r .  

The following corollaries are consequences of the  proof  of Theorem 2 b r a the r  
t ha n  of  the  result .  

COROLLAnr 1. I f  f~ = f  + F(ei~), then f~ is outer in subregions D r of 
D o = {z = rd~ < r < 1, IO --  T1 < 6} with smooth boundaries. We can choose 6 
and r o independently of 7. 
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COROLLARY 2. I f  h (1) and h (2) are extremals corresponding to the same F E C, 
then h~ (2) is a rational function. 

COROLLARY 3. I f  1~ E C, a necessary and sufficient condition for h E H 1 satisfying 
(*) to be unique is that h -1 6 H 1, and this implies that h -1 E H e for every p < ~ .  

Remark 1. I f  we restr ic t  h to be in HI,  Corollary 3 should be fo rmula ted  
with h replaced b y  h 0, where  ho(z ) ~ h(z)/z. 

Remark, 2. In  the  ease _P E L ~ de Leeuw and  Rud in  have  proved,  [8] Theorem 
8, t h a t  a suff icient  condi t ion for h 6 H I to be unique  is t h a t  h -~ 6 H ~. Necessary  
is t h a t  h is outer  and t ha t  for  h~(z) ~ h(z)/(z - -  e~a) ~, h~ fails to  be in H I for  
eve r y  real  ~. We shall give a p roof  which shows t h a t  h -1 6 H 1 is sufficient also 
in the  general  case F E L ~. 

F o r  the  p roof  of  Theorem 2, set ~v = F - -  iV(e t~) and  f~ ~ f + F(e") so t h a t  
F~(e t~) = 0 and  (,)  reads 

(F (#o) to to + L(e ))h(e ) :  [h(et~ a.e. 

F ix  an a r b i t r a ry  p < ~ ,  choose s > 0 so small  t h a t  arc tg  e/(1 - -  e) < ~r/2p 
and  let  ~ be such t h a t  ]F~(et~ < e for 0 E ~  = {0110 --  z] < 5}. Observe 
t h a t  this  implies ]f~(ele)] > 1 - - e  a.e. on y~. P u t  f f l = u + i v .  F o r  0 E v ~  
we t he n  have  u(e t~ > (1 - -  e)]h(#~ and  Iv(#~ < e]h(#~ a.e. Thus,  if  
(1 ~- fi)e : 1, 1 ~ u(e ~~ =~ flv(e ~~ ~ 1 a.e. on 7~, and  since f~h 6 H 1, this implies 
t ha t  1 + u(z) ~ flv(z) > I in D~ = {z]lO - -  z[ < 81 ( 8, r T < Iz] < 1}. 

Hence ,  log (1 + f f l )  is ana ly t ic  in D~ and  [arg (1 +A(z)h(z) l  < arctg 1/fl < 
< z / P p ,  z E D  . B y L e m m a 2 ,  f f l E H q D ) ,  and  since If~(et~ 1 - - e  a.e. on 

r~, ]h(#~ PdO < m. Now F is un i fo rmly  cont inuous on the  un i t  circle which 

can thus  be covered b y  a f in i te  n u m b e r  of  y,'s. Hence  f ~  [h(e ~~ fdO < ~ .  
Next ,  choose p = 2 and  def ine  ~ b y  ~ ( 0 ) =  - - i  arc tg  v(e~~ ~ i f  0 E V~ 

and  h(e t~ ~ O, and  ~(0)  = 0 elsewhere. F o r m  

7~ 

1 fle t~ + z 
= e x p  3 

B y  L e m m a  2, k E H 2. Thus,  for G~ ~-- f f l k  we have  b y  Theorem 2 a tha t  G~ E H i, 
and  b y  the  cons t ruc t ion  of G~, t h a t  G~(# ~ ~ 0 a.e. on y~. This implies t h a t  G~ 
can be analy t ica l ly  cont inued over  7,, and in par t icu lar  t h a t  G~ is outer  in D~ 
for a n y  (~1 < ~ i f  on ly  r~ is suff ic ient ly  close to 1. The factors  of  G~ are thus all 
outer  in D r This  proves  Theorem 2 b and  also Corol lary 1, excep t  t h a t  we have  
to p rove  t h a t  there  is an r 0 which will do for eve ry  ~. In  Theorem 2 b this is evident ,  
since [ - -  7~, ~r] can be covered b y  a f in i te  n u m b e r  of in tervals  of  length  2~ 1 = ~. If ,  
however ,  r~ is suff ic ient ly  close to 1, we also f ind  f rom the  representa t ion  formula  for 
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outer  funct ions tha t  [f~(z)] > 1(1 - -  e) in D .  Since f~ = f~ -4- F(e ~) - -  -F(e~), 
f~ is also outer  in D i f  l a - - v l < ~ - - ~ .  The  same r w i l l t h e r e f o r e  do for 
la - -  v[ < rain (~x, 6 - -  ~x), and b y  the  same a rgumen t  as above  the  p roof  of  
Corollary 1 is f inished. 

To prove  Corollary 2, suppose t ha t  h r and  h (2) C H ' bo th  sat isfy (,) .  Th ey  
mus t  then  have  the  same a rgumen t  on 7 .  Thus  ~(') = w~(2), k~l) = k~(2) and  
so the  funct ion  ~ = h(~)/h(2)= G!~)/G~ 2) is ana ly t ic  in a ne ighbourhood  of 7~ 
except  for possible poles on 7~ and R takes posi t ive values there.  I t  now follows 
t ha t  R is a ra t ional  funct ion.  

I f  F E C, we f ind  a lmost  immedia te ly  b y  the  preceding a rguments  t h a t  a 
suff icient  condit ion for the uniqueness of h is t h a t  h -1 E H i. L e t  us, however ,  for 
the  mom e n t  suppose only  tha t  ( ,)  is sat isfied wi th  F in L ~. I f  h -1 E H 1, then  
h = k ~, k outer ,  k -1 E H e. Le t  hi = glk~ be a n y  ex t remal  funct ion corresponding 
to the same F ,  where gl is an inner  funct ion  and  k 1 is outer  wi th  k 1 E H  e . B y  

(*), glkl k-1 = ]~1 k-1 a.e. ]-Ience gxk~k -1 = const.,  whence gl = ela, k l  = e-la/2]~ 
and hi = h. 

I f  conversely  h is known to be unique  it  can have  no zeros in U, cf [8], p. 479. 
Namely ,  suppose h(a) = O, a E U, and  form 

( z  - b ) ( 1  - -  g z )  
h ( 1 ) ( z )  ---- �9 h ( z ) ,  

( z  - a ) ( 1  - a z )  

with b # a. Then  h (~) E H 1 and  h (1) also satisfies (*). 
Now, assume again iv E C and  f ix  an  a r b i t r a r y  p < ~ .  Since, b y  L e m m a  2 

again, ffl~ E HP(D),  we will be th rough  i f  we can prove  t h a t  G~ -~ E H~(D~), and  
this is fulfi l led i f  G~ is free f rom zeros on 7~. I f  G~(e ~') = 0, the  zero is of  even 
order  and  so wi th  G ~ ) ( z ) = -  d % G ~ ( z ) ( z -  d~) -~, G~ 1) is posi t ive and  ana ly t ic  
on 7~. Thus  h (1) = G(~)/f~k~ E H i ( D )  and  then  h (1) E H ~ since also h(~)(z) ~- 
--  e~zh(z)(z - -  e~) -2. ~Vforeover h (~) satisfies (,),  and  we have  p roved  t h a t  for  a 
un ique  ex t rcmal  h we necessari ly have  h -x E H y for eve ry  p < ~ ,  p rov ided  
t ha t  F is cont inuous.  

3. The regularity of the minimizing f in relation to that of the given F 

Le t  C~o denote  the  class of  funct ions  being Dini-cont inuous.  T h e y  fo rm a 
1 1 

Ba na e h  algebra under  the  no rm []F]]~ ---~ m a x  IF(x)[ -~ f o  CoF(t)t- dt, w F s tanding 
for the  modulus  of  con t inu i ty  of  F.  A s is the class of  funct ions  which sat isfy 
Lipschi tz  condit ion of  order  a, and  b y  / v E C  n+a, h E N ,  0 < a <  1, is mean t  
t ha t  F E C  ~ wi th  F (n) in A s. 

T~EO~n~ 3. a. 2'  E C~o ~ f E A and in general F (n) E Co., ~ f(") E A.  
b. I f  0 < ~ < 1 ,  then F E A s ~ f E A s and also F E C n+~ ~ f E Cn+% 
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Consequently F in C + implies f in C ~, cf. [1], p. 17 and we have moreover 
e. There is a q independent of +n such that 

(Hf(n,H~ 11/n (l[[?,k,t[r ~l/k 
V v - .  ] <- �9 

I f  thus F E C(M,) where the sequence (M,/ni) 1/" is non-decreasing, then f, 
regarded as a function of 0, belongs to C(M~+I). A rough estimate by  the Cauchy 
and Bessel inequalities also gives 

(++) + + 
n n n 

whence f, regarded as a function of z, is in C(M~+2). The following theorem 
has been proved by  H. S. Shapiro [11] in the case M~ = n! 

COROLLARY. I f  the sequence (M,/nt) 1I~ is non-decreasing and if log M ,  = O(n2), 
then F in C(M~) implies f in C(M~). 

That log M n =  O(n ~) is a sufficient condition for C(M~) and C(M,+t ) to 
coincide is proved in [2], Theorem VII. 

The proof is based on the result in Corollary 1 in the preceding section. Now 
if f is outer in D~ and if g(z) = f(ei~), ther~ g is outer in a corresponding region 
D: in the upper half-plane. Accordingly, it is sufficient to prove the theorem for 

the upper half-plane under the conditions that  IF(x) + f(x)] ~ 1 a.e. and that  
F ( T )  -~ 0 implies f outer in a region D+ whose boundary contains the interval 
(v -- ~, ~ + ~), F and f being periodic with period 2z. By doing so we reach 
a typographic simplification but, above all, we do not have to distinguish between 
derivatives with respect to arc length and derivatives with respect to z, when 
studying the behaviour of f on the boundary.  Before proving the theorem we shall 
state a simple lemma on Cauchy integrals. 

f l  ~,(t) LEMMA 3. I f  Ilc(:J: t)] ~ og(t) a.e., where - ~ -  dt < ~ and if 

f ~  lc(t) = - -  dr, then for  z e So(~) = {z  = x + iyrlxl < y, lz[ < ~), 
~ t - - z  

/ ++ f ~ Ix(z )  - ~ ( 0 ) l  < A - 7 -  dt + A l z l  ~ d t .  
0 I~[ 

~(z) = 

I f  instead [k(:~ t)t ~_ Itineo(t), then 
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Izl a 

lu(~)(z) - -  x(~)(O)] < Ann! ~ dt + A~n!Izl T -  dt for  

We only  have  to  es t imate  the  i~tegrMs 

[=1 a 

}) fl - zl -~- m(t)dt and t - - z  t 
o M 

u s i n g t h a t  I t - -  zl > AIt[ i f  z Es 

z e &(6 ) .  

I f  co r 0 is a modulus  of cont inu i ty ,  t hen  for eve ry  e > 0 there  is an V such 
t h a t  Ix(z) - -  ~(0)[ < Aco(s) i f  z E So(T), for 

f f f -(') Izl - ~  dt < re(e) whil~ - 7 -  dt and  lzl ~ -  dt 

both  t end  to  zero wi th  [zl. I f  o~(t) = t ~, 0 < ~ < 1, we f ind  t h a t  lz(z) - -  z(O)l < 
A(~)Izl  ~, z e $o(6 ). Also let  us observe t h a t  the  resul ts  hold  as well for  

f ~ § tz k(t) 
x ( z )  = t ~ z 1 q -  t 2 

- -  d t  

since this integral  differs f rom the  Cauchy integral  on ly  b y  a constant .  
F ix  an  a rb i t r a ry  3 E_R and  fo rm F~ and  f~ as in the  p roof  of  Theorem 2. 

We know tha t  f~ is bounded  away  f rom zero in a region D r of length  26. L e t  
L~ ---- log f~ and  let  z e Dr, t hen  

a f 1 q -  t z  log If~(t) I 

L (z) = i~ t - -  z 1 q- t 2 
--3 

dt q- X~(z) = ~(z)  -f- ,~(z) ,  

where 2 r can be analy t ica l ly  cont inued over  ( 3 -  6, 3-r  Now 1 -  [fr(x)l~ = 
IF~(x)l ~-~ 2 Re F~(x)f~(x) a,e. and so ]1 - -  I f d x ) l ~ l  < A~,F(ix-- 31) a.e. Thus  
also ilogrf~(x)][ ~ Ave(Ix - -  3[) a.e. in (3 - -  6, 3 -~ 6). B y  L e m m a  3, i t  is then  
possible for  a ny  e > 0  to f ind  an  V such t h a t  Iz~(z)--x~(3)t < e  for z in a 
sector  S~(V) wi th  radius 7. The  a rguments  a f te r  L e m m a  3 Mso show t h a t  ~ can 
be chosen so as to  be independen t  of  3. Since 2~ is ana ly t ic  over  (3 - -  6, z q- 6), 
[2~(z) - -  2~(3)[ < A l z  - -  3[, and  since the bound  of  ~ in D~ and  the  length  and  
height  of  D~ are all independen t  of  3, so is A. Thus  [L~(z) - -  L~(3) Z < 2s for  
z e S~(V), i.e. the  same ~ will do for eve ry  3. Accordingly  

[exp (L~(z) - -  L~(3)) - -  I r < 3e, fL(z) - -  L(3) J < 3e and  If(z) - -  f(3)[ < 3e 
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for z in S,(~). I f  l a - - 3 I < ~  we can then  f i n d a  z 0ES . (v )  NS. (~)  such t h a t  

If(Zo) --  f(3)] < 3e and  If(Zo) - - f (a ) ]  < 3e, and  we have  If(a) - -  f(3) l < 6s for 

[a - -  3f < v. 
The  proof  of the  f i rs t  pa r t  of  Theorem 3 b can be carr ied out  on exac t ly  the 

same lines. L e m m a  3 will now give [n,(z) - -  ~ ( 3 ) 1  < Aiz - -  31 ~, z E S , ( 6 ) .  Thus 
I f ( z ) - - f ( 3 ) l  < A ] z - - ~ 1  ~ for  z in S~(V) and  A and  ~/ are independen t  of  T. 
As [%- -31  ~-4- 1 % - - a l  ~ < 2 1 a -  3[ ~ for a sui table z 0 E S ( ~ ) N S o ( ~ )  we have  
]f(a) - -  f(3)[ < A la --  3 [~ for I a ~ 3[ < ~/, and this inequa l i ty  then  holds general ly  
wi th  an A independent  of  a and  3. 

Also the  proofs of  the  second par t s  of  Theorems  3 a and  3 b are a lmost  identical.  
We prefer  to  ca r ry  out  the second of t hem which is somewhat  more  involved  since 
we have  to  check t ha t  all the  constants  occurr ing are independen t  of  3. 

Now form 

,, F(k)(~:) . F~k~(3) 
F,(x)  : F(x)  - -  ~0 k! (x - -  3) ~ and L(z) ~--f(z) + ~'o ~.. (z - -  "~)~. 

As long as we res t r ic t  x and  ~ to some compact  set we have  I1 --lf,(x)12/ < 
< ~ A l x - - 3 I  ~+~' with  A independen t  of 3. F o r  L,  thus  

and  

., f tog IL(t)l dt + 2~")(z) 
L~~ = i -~  (t - -  ~)"+~ 

--3 

[loglL(t)ll < A i t  - -  zl "+~ if  it - -  ~] < 0. B y  L e m m a  3 we get 

[~!=)(z) - -  ~!")(311 < AIz  - -  31 ~ for z E S,(61 , 

I f!")(z) f!n)(3) I 
L(z)  L(3)  < A I z - - T [  ~, z ~ S , ( ~ ) .  

Fur the r ,  ~G(3) and  L!")(3) are  bo~h boun d ed  for 3 E [ ~  ~, ~], and  then  so is 

f~)(~). Kenee  [f~")(z) --f~')(~)l  < A1 z - -  ~l ~ and If~O(z) - -  f(")(~)[ < AI  z - -  z] ~ 
for z E S~(~) wi th  A and V still independen t  of  v. (They of  course depend on 
n.) An appl ica t ion  of  this resul t  in two sectors S~ and  S~ gives ]riO(z) - -  f(")(3)[ < 

< A l a - - 3 1  ~ for l a - - 3 1  < ~ / .  

and b y  the  same a rgumen t  as above  it  follows t h a t  IL!")(z) - -  L!")(3)[ < AIz - -  3[ ~ 
for z in  S,(V), wi th  A and  V independen t  of  3. Assume t h a t  we have  p roved  
the  t heo rem up to  and  including n - -  1. Then  also If~k)(z) - -  f!k)(3)] < A t z  - -  3[ ~, 
0 < k < n - - 1 ,  wi th  A independen t  of  ~ as long as Iz] and  3 belong to  some 

= = ~(~- ~)~ where compact set. Form ~ L!"~--f!~ Since ~ ~ ( L , . . . , ~  , ,  

R(xo . . . . .  x ,_O is different iable  wi th  bounded  der ivat ives  if  Ix01 > m > 0 and  
~'~-~ [x~L 2 < M ,  i t  follows t h a t  [~(z) - -  ~v (3)[ < A[z  - -  3I ~, with  A independen t  
of  T i f  zES~(V) and v E [ - - ~ r , ~ ] .  Thus  also 
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In  the proof  of Theorem 3 c we suppose t ha t  lim~_~ (]lF('Ollo)/n!)~/" = oo. The 
case when F is analyt ic  is more easily t rea ted with  the aid of the principle of 

reflection as IF(x) + f(x)[ = 1, and  we omit  it. Le t  8 -1 = max0<k_<~ (llF(k)lloJk!)xz~, 
where n is to be taken  so large t ha t  ~ is sufficiently small. I t  will mean no restric- 
t ion i f  we choose ~ = 0. The construct ion of F o and Taylor 's  theorem yield 

x 

1 f (F(~ - -  ~(~)(0))(-- tydt .  t0(x)  - (~ _ ~)!o 

With  o~ = oF("), we have ]F0(x)l < ]x[~%(lx])/n! This implies t h a t  [F0(x)[ _< �89 

i f  Ix] ~ 8. For  o~(Ix[) < o,(~) < ~. j~  o~(t)t -~ dt <_ 1liFO)lie ~ ln !8-n  if  
lxl < 8 .  t Ience 1 <  Ifo(X)l < ~  and so I~--Ifo(x)?l <Alxl%~(Ixl)/n! and 
f loglfo(x)I  1 <Atx ln~o=( tx l ) /n !  if  Ixl _<8 with  A independent  of  n. ~or  

1 f 1 + tz log If0(t)[ 
z~ = i z  t - -  z 1 -~ t ~ dt J 

thus 

Aj! f l  ~n(t) 8 n 
f~J)(O) < ~-. J tn-J t at <_ Aj!  8-J . ~ [IF(~ < Aj! 8-J , 

0 
i f  0 < j < n. B y  induct ion i t  is now easily proved t h a t  ](noP)(J)(0) [ __< A P ( j  + 1)P-lj!8 - j  
for every p E i V  and  0 < j _ < n .  Wi th  k 0 = C  ~ this gives 

j~ 
i~J)(0)l < j +----~ e ~(i§ �9 ~-J < j! qJS-J, 0 _< j < ~ .  

The m a x i m u m  principle shows t h a t  [Re no(Z)] < A. I f  for some a < ~ we can 
prove tha t  ] t~eLo(z)l_<A for [z[__<a, I m z > _ 0 ,  we f ind  tha t  ~ o = L o - - n o  
is analyt ic  in the  disc tz] ~ a  wi th  IRene(Z)] < A  there. Le t  l o = e  z~ The 
Cauchy  es t imate  then  gives [l(oi)(0)] ~ A j ! a - J ,  and  for f o = k o l  o we get 
lf(on)(0)l < n!q"a -~. We will f ind  tha t  a = 8/3 will do. For  

IF(k) (0 ) ]  ak < ~ [[F(k)ll~ ak < ~ (a(~-- l )k  <~ 1 

i f  a = 8/3. Thus, i f  n is suff icient ly large, Theorem 3 a tells us t h a t  
1 �9 . . . . .  < Ifo(Z)l < � 8 8  i f  [z] < (~/3, I m z  > 0, and  so [ReLo(z)] < A  in this region. 

As f~o")(0)= f ( " ) (0 )+  F0)(0), we also have If(")(0)[ < n!q"a-"  with  

a -1 = 3 max  (llF(k)llo~[k!)X/k. 
0 ~ k ~ < n  

This proves Theorem 3 c, since all constants  are easily seen to be independent  
of  the choice of ~. 
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4. The weakest condition on ~F which guarantees ] to be in A 

THEOREM 4 . . F o r  every continuous, non-decreasing and subadditive function ~o 
1 

with ~o(0) = 0 and f o ~(t)t-idt divergent, there is an .F ~ C with o~(t) ~ (9(t) 
for which the best approximation f ~ H ~ is not in A.  

F or  the p roof  we require the  following lemma.  

LEM~A 4. Let co be as in the theorem and put  F(e i') : m(t -- ~) in [% ~ + ~], 
F(e/') --~ 0 in [v - -  ~, T) and continuous elsewhere. I f  the corresponding f e H ~ 
is in A,  then f(e ~ ) =  =~= i. We assume F to be defined in such a way that 

Il~ + fIl~ = L 

We suppose f C A with  Re f(e i~) =/= O. Le t  u(O) = log if(d~ Since F(e ~) = 0 

and  lF(e ~~ + f(e~~ = 1, u(r  ~- t) < -- Ao~(t) or u('~ d- t) > Aco(t) for t E ( 0 , ~ l )  
and  some A > 0, depending on whe the r  l~ef(e ~) is posi t ive or negat ive.  F o r  
t E ( - -  @ 0), on the  other  hand,  u(~ + t) equals  zero. Thus  

1 

f u(~ + t) - u(~ - t) Jim dt = oo 
~-~0+ t ' 

E 

whence, see e.g. [14], Theorem 7.20, p. 103, lim,_~l_ ]argf(re~*)] = oo. This contra-  
dicts f in A wi th  lf(d~)[ = 1, and  the  lemma is proved.  

Now let d ~ = z . 2  -~, n = 0 , 1 , 2 , . . . ,  and  p u t  co~(0) = w ( 0 - -  ~ )  for 0 in 

~ ,  , o)~(0)= co(~_ 1 - - 0 )  for  0 in 2 , d~_l and o ~ ( 0 ) = 0  

elsewhere. Le t  c~ = 0, 2-~ or i .  2-�89 depending on whether  n is even, n ~ 1, 
rood 4 or n - -  3, mod 4 respect ively.  P u t  F(e ~~ = ~.~ c~c%(O). I t  is easily seen 
t ha t  2' E C wi th  coF(t ) _< co(t) if  t < ~/4. Assume the  corresponding f to  be in 
A. L e m m a  4 then  tells us t ha t  f(sd~+x ) = 4 - m - i  and  f(ed,+a ) = 4 - m ,  where 
e n = e id~ and  m = Ill ~ -4-fl[o~ > 0, as -F(e ~~ = 0 in ( - -  ~, 0). Since lim d~ = 0, 
this is, however ,  inconsis tent  with f in A. ~-~ 
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