Best uniform approximation by analytic functions
LENNART CARLESON and SIGVARD JACOBS

Introduction

Let FE€LP(—m,n), 1<p< oo, and consider the extremal problem
inf |F + fllps f in HP. For notations and basic results on HP?-spaces, see [6]. This
problem was extensively treated by Rogosinski and H. S. Shapiro in [10] and also
by Havinson in a series of papers. Havinson studied the corresponding problem
in general domains. We refer to the survey [13] by Toumarkine and Havinson,
which also contains a quite complete bibliography.

The case p = oo is of a special interest. It can also be formulated as a problem
on so called Hankel matrices and is in this way of importance in probability. We
wish to mention in particular the papers by Nehari [9], Hartman [4], Helson and
Szegd [5] and Adamyan, Arov and Krein [1]. We shall here consider continuous
F and look for results on the best approximation f, whereas in the above mentioned
papers (except [5]) the results are expressed in terms of the matrix. It is easy to
see that in this case a unique best approximation f exists in H*. One might ask
to what extent do F and f have the same regularity. The investigation of these
problems is the main object of the present paper. We shall see that the answer is
about the same as for conjugate functions. We shall also restrict ourselves to the
case of the unit dise U. However, the function-theoretic proofs in sections 2, 3
and 4 are all of a local character, and so all the results can easily be carried over
to any region which has in each case a sufficiently regular boundary.

In section 1 we have stated the dual problem and collected some well-known
material. Theorem 1 is originally due to Bonsall [3] and Shapiro [11]. Section 2 is
devoted to the study of the extremal functions of the dual problem in H!. In the
case F € L, de Leeuw and Rudin [8] have examined the question of uniqueness
for the corresponding extremal function in H!. We give a complete solution of
this problem, provided F isin C. In section 3 we treat our main problem and in
section 4 we give an example which shows that the conditions in Theorem 3 a
can not be weakened as long as the regularity of F is expressed only in terms of
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its modulus of continuity. In particular we construct an F € C whose best
approximation f is not in 4 = H® N C. This was first done by Adamyan, Arov
and Krein [1], Remark 3.2 p. 13.

1. The dual problem

We start with the following simple but useful corollary of the Hahn-Banach
theorem, a technique which has now become standard.

Lemma 1. Let B be ¢ Banach space, M a linear subspace and denote by M°
the annihilator subspace of B* corresponding to M. Then for any L € B* we have

inf|L —1]= sup |[L{),

leM® x€M, [l <1

and there is always an 1€ M° for which the inf is attained.

For a proof see e.g. [12], theorem 4.3-F, p. 188. If we apply this lemma to B = L1,
M = H; (the subspace of H! of functions vanishing at the origin), we get

m = if||F + fll, = sup

1 _—

feH® he By, <11 27 _»[ F(Eh(e")0 ! ’
since in this case B* = L®, M® = H®. Thus, there is always an f € H® for which
(lF - fll, = m. Since we avoid the trivial case m = 0, we may suppose m = 1
and the sup can of course be taken of the real part of the integral as well.

The next question is whether a maximizing » € H; exists. With the aid of Fejér’s
theorem and the theory of normal families, it is easy to prove the following, cf [3]
Theorem 4 or [8] Theorem 10 a.

TraroreM 1. If F €C 4+ H®, in particular of F €C, then at least one h in
the unit ball of Hy exists maximizing

1 —_—
Re o fF(e Y (e®)do .

CoroLLARY. Under the above conditions on F the minimizing f € H® is unique.

This follows from Theorem 14 in [10] and also simply from the following fact. For
any pair of extremals f and %, we have



BEST UNIFORM APPROXIMATION BY ANALYTIC FUNCTIONS 221

T

1 = Re %; f (F(e®) + f(e®Nh(e®)db < 1, and so

(F(e°) + f(e)h(€?) = [I(e”)| ae. (*)

From this variational equation and the fact that F € 0, we shall obtain all our
information.

2. Properties of the extremals in the dual problem

Everything in this section will depend on the fact that if F €C and if
F(e") = 0, then by (x), fh has its values in a small sector for 0 close to = and
we can make use of the following theorem.

LeMMA 2. If v is real valued and harmonic in the simply connected domain D
and |w(z)| < p, z€D, then the analytic function g = e**™ 4s in HF(D) for
P < 72

A proof which easily carries over to any simply connected domain D may be found
in [7], Theorem 1.9, p. 70.

Before announcing the theorems we want to make a definition.

Definition. Let f be analytic in a region D having a smooth boundary oD,
D not necessarily simply connected and assume e.g. f € HY(D). We say that f
is outer in D if for z €.D

1 Gz, {)

log |f)l = 5~ f o log 1f(€)lds

aD

G being the Green’s function of D,

TueoreMm 2. If F €C, then we have for the corresponding h € H,
a. h € H? for every p << co.
b. h is outer in some annulus Ry = {z|r, < |z| << 1}.

Remark. For later use we observe that the assumption on % can be localized
to h € HY(R) for some annulus R = {z|r < |z| << 1}. The conclusions are then
valid in some R, with 7, > r.

The following corollaries are consequences of the proof of Theorem 2 b rather
than of the result.

CororLarY 1. If f =f4 F(e¥), then f, is outer in subregions D, of
D)= {z =re®lr,<r <1, |0 — 1| < 8} with smooth boundaries. We can choose o
and 1y, independently of 7.
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CoroLLARY 2. If KM and B are extremals corresponding to the same F € C,
then WY/R® is a rational function.

CororrarY 3. If F €C, anecessary and sufficient condition for h € H' satisfying
(*) to be unique is that b= € H', and this vmplies that h= € H? for every p << co.

Remark 1. If we restrict b to be in Hg, Corollary 3 should be formulated
with & replaced by &y, where &hy(z) = h(z)/2.

Remark 2. In the case F € L® de Leesuw and Rudin have proved, [8] Theorem
8, that a sufficient condition for » € H' to be unique is that A~ € H*. Necessary
is that A is outer and that for A (z) = h(z)/(z — ¢™)?, h, fails to be in H* for
every real x. We shall give a proof which shows that A-* € H* is sufficient also
in the general case F € .L°. .

For the proof of Theorem 2, set F_= F — F(¢") and f, = f + F(e") so that
F (¢") =0 and (%) reads

(F(e°) + [€°)h(e”) = |h(e")] a.e.

Fix an arbitrary p << o, choose &> 0 so small that arctge/(1 — &) << #/2p
and let 6 be such that |F (e*)] <e for 0 €y, = {0]|0 — 7| << 6}. Observe
that this implies [f(e®)] >1—¢ ae. on 9, Put fh=wu -+ iv. For 0 €y,
we then have wu(e®) > (1 — &)lh(e®)] and |v(e®)| < e|h(e®)] a.e. Thus, if
I+ Pe=1, 1+ u(e®) 4 pv(e®) > 1 a.e. on y,, and since fh € H', this implies
that 1+ u(2) 4= o) > 1 in D' ={z]|0 — 7| < &, <4, r, < |2| <1}

Hence, log (1 4+ f&) isanalyticin D, and |arg (1 + f,(2)k(z)| << arctg 1/8 <
< n/2p, 2z€D,. By Lemma 2, fk € H?(D,), and since |f(¢®)]>1—¢ a.e. on
Vo f |h(¢*)|Pd6 << 0. Now F is uniformly continuous on the unit circle which

can thus be covered by a finite number of y,’s. Hence f ~ . [R(e®)|PdO < 0.
Next, choose p = 2 and define ¢, by ¢,(0) = — i arctg v(e®)/u(e®) if 0 €y,
and h(e”) # 0, and ¢/(0) = 0 elsewhere. Form

e‘e—}—z
)—expé—y;f — ¥do .

By Lemma 2, k, € H2. Thus, for ¢, = fhk, we have by Theorem 2 a that ¢, € H,
and by the construction of &, that G (¢®) > 0 a.e. on y,. This implies that @,
can be analytically continued over y,, and in particular that ¢, is outer in D,
for any d; < ¢ if only r, is sufficiently close to 1. The factors of @, are thus all
outer in D,. This proves Theorem 2 b and also Corollary 1, except that we have
to prove that there is an 7, which will do for every 7. In Theorem 2 b this is evident,
since [— =, 7] can be covered by a finite number of intervals of length 24, = §. If,
however, r, is sufficiently close to 1, we also find from the representation formula for
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outer functions that |f(2)] > 1(1 —&) in D, Since f = f -+ F(¢°) — F(e),
f, is also outer in D, if |¢ — 7| < d — J,. The same r, will therefore do for
|6 — 7| << min (d;, § — J§;), and by the same argument as above the proof of
Corollary 1 is finished.

To prove Corollary 2, suppose that A" and A® € H' both satisfy (). They
must then have the same argument on v, Thus ¢® = ¢® kM =i® and
so the function R = hV/A® = GM/GP is analytic in a neighbourhood of ¥,
except for possible poles on ., and R takes positive values there. It now follows
that R is a rational function.

If Fe€C, we find almost immediately by the preceding arguments that a
sufficient condition for the uniqueness of % is that k1 € H. Let us, however, for
the moment suppose only that (%) is satisfied with ¥ in L®, If A € H!, then
h =k, k outer, k1 € H%. Let h; = ¢g;k; be any extremal function corresponding
to the same F, where ¢, is an inner function and %, is outer with k, € H?. By
(%), gkt = kb a.e. Hence g¢kk? = const.,, whence g, = €%, k = e ™%
and by, = A.

If conversely A is known to be unique it can have no zeros in U, cf [8], p. 479.
Namely, suppose h(a) =0, ¢ € U, and form
(z — b)(1 — bz)
with b # a. Then A" € H' and A" also satisfies (x).

Now, assume again ¥ € C and fix an arbitrary p << «. Since, by Lemma 2
again, fk, € H?(D,), we will be through if we can prove that G '€ H*(D,), and
this is fulfilled if @, is free from zeros on y,. If @, (e) = 0, the zero is of even
order and so with GV(z) = — ™G, (2)(z — ¢™)72, G is positive and analytic
on y,. Thus Y =GOk € H(D) and then A™ € H' since also AP(z) =
— €®2h(z)(z — €™®)~%. Moreover A\ satisfies (x), and we have proved that for a

unique extremal % we necessarily have A= € H? for every p << oo, provided
that F is continuous.

h(l)(z) =

3. The regularity of the minimizing f in relation to that of the given F

Let O, denote the class of functions being Dini-continuous. They form a
Banach algebra under the norm ||F||, = max |F(z)| + f (1, wp(t)t~'dt, wp standing
for the modulus of continuity of F. A, is the class of functions which satisfy a
Lipschitz condition of order «, and by F € C"% n €N, 0 <a < 1, is meant
that F €C" with F™ in 4,

THEOREM 3. a. F €C, = f€A and in general F™ €, = f™ € A.
b. If 0<<a<1, then FE€A, = f€A, and also F €0t = f€ e,
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Consequently F in C® implies f in C®, cf. [1], p. 17 and we have moreover
c. There is & q independent of m such that

o) \Um @y \Uk
()" < mas ()

If thus F € C(M,) where the sequence (M ,/n!)"" is non-decreasing, then f,
regarded as a function of 8, belongs to C(M, ;). A rough estimate by the Cauchy
and Bessel inequalities also gives

I <Zn’( ) lel < Zk2"+2lc P2 ( Z Hv <

n

< A||feH), < A,

whence f, regarded as a function of 2, is in C(M,.,). The following theorem
has been proved by H. S. Shapiro [11] in the case M, = n!

CorROLLARY. If the sequence (M, /n!)'" is non-decreasing and if log M, = O(n?),
then F in C(M,) implies f in C(I,).

That log M, = O(n?) is a sufficient condition for C(M,) and C(M,.;) to
coincide is proved in [2], Theorem VIIL.

The proof is based on the result in Corollary 1 in the preceding section. Now
if f is outer in D, and if g(z) = f(¢”), then ¢ is outer in a corresponding region
D in the upper half-plane. Accordingly, it is sufficient to prove the theorem for

T

the upper half-plane under the conditions that }j"(—x) + f(x)] =1 a.e. and that
F(r) = 0 implies f outer in a region D, whose boundary contains the interval
(t—96, v+ 6), F and f being periodic with period 2z=. By doing so we reach
a typographic simplification but, above all, we do not have to distinguish between
derivatives with respect to arc length and derivatives with respect to 2z, when
studying the behaviour of f on the boundary. Before proving the theorem we shall
state a simple lemma on Cauchy integrals.

s
LEMMA 3 If E(L )] <o@) a.e., where foﬁdt<w and if x(z) ==

_/_ ——dt then for z € 8,(0) ={z == + iy|lz| <y, lz| < o},

I3

|(2) — =(0 I<A/——dt+A||f—dt

If instead |k(E 8)] < [(]"w(f), then
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Il
(2) — #7(0)] < A™n 'f—th - A™nllz lf—-dt for z €8,(8) .

¢ I

We only have to estimate the integrals

]
1
/(It | —+ )w(tdt and /"t~z—7 w(t)dt

using that [t — 2| > At if z € §y(d).
If w # 0 is a modulus of continuity, then for every & > 0 there is an % such
that |x(z) — #(0)] << Aw(e) if z € Sy(n), for

z\f——-dt<w(a Whllaf—(dt d}]/—Hdt

Il

both tend to zero with [z]. If w(t) =1 0 <& <1, we find that [x(z) — »(0)] <
A(x)z]*, 2z € 8y(5). Also let us observe that the results hold as well for

s
%@):‘/‘1+%z. Ko
-3

t—~z 14

since this integral differs from the Cauchy integral only by a constant.

Fix an arbitrary 7 € B and form F, and f, as in the proof of Theorem 2.
We know that f, is bounded away from zero in a region D, of length 28. Let
L, =log f, and let z €D, then

1 1 -+ ¢z log [f.(%}]
- f 2O 1) = 10 + A0,
where 2, can be analytically continued over (v — 8, 7 + 8). Now 1 — |f(z)]2 =
(F )24+ 2 Re F(x)f(x) ae. and so |1 — |f(2)7?] < dwg(lx — 7]) a.e. Thus
also llog| f,(x)]| < Aw(lx — 7[) a.e.in (v — 4, v+ J). By Lemma 3, it is then
possible for any &> 0 to find an % such that |x,(2) — #,(7)] <e for z in a
sector §,(n) with radius 7. The arguments after Lemma 3 also show that 5 can
be chosen s0 as to be independent of 7. Since A, is analytic over (v — 8, 7 -- 9),
[4,(2) — 2,(7)] < 4]z — 7|, and since the bound of 4 in D, and the length and
height of D, are all independent of 7, sois A. Thus |L,(z) — L(7)] < 2¢ for
z €8,(n), ie. the same 7 will do for every 7. Accordingly

lexp (L,(z) — Ly(v)) — 1] < 3&, [f(2) — fi(7)] <8z and [f(2) — f(7)] < 3Be
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for z in S,(n). If lo — 7| <#n we can then find a z, € S,(n) N S,() such that
If(ze) — f(7)] < 3¢ and |f(z) — f(o)] < 3¢, and we bave |[f(o) — f(r)] < 6e for
o — 7} <.

The proof of the first part of Theorem 3 b can be carried out on exactly the
same lines. Lemma 3 will now give |[#,(z) — #,(7)| < 4|z — 7|*, 2z €8,(8). Thus
Ifz) — f()) < Alz — 7|* for z in S(n) and 4 and % are independent of .
As |zg — TI* 4 |zg — 0| < 2|6 — 7|* for a suitable z,€8,(n)N S, (y) we have
If(e) — f(z)] < Alo — =|* for |o — | <<, and this inequality then holds generally
with an A4 independent of ¢ and 7.

Also the proofs of the second parts of Theorems 3 a and 3 b are almost identical.
We prefer to carry out the second of them which is somewhat more involved since
we have to check that all the constants occurring are independent of 7.

Now form

" p® " T
F (x) = F(x) — % k!(T) (x — 7 and f(2) = f(z) + 20: -T’(Z) (z — 7).

As long as we restrict # and 7 to some compact set we have |1 —|f,(x)]?] <
< Alx — 7]"** with A independent of 7. For L_ thus

8

n! f log |£(0)]

iw J (t— )t

L) = dt + A7),

and |log| f.(t)]| < A}t — 7|"** if |t — 7] << 8. By Lemma 3 we get
[ (2) — WN7)| < Alz — 7|* for z €8,(9),

and by the same argument as above it follows that |L{(z) — LI(7)| < A}z — =|*
for z in 8,(n), with 4 and 5 independent of 7. Assume that we have proved
the theorem up to and including » — 1. Then also |f®(z) — fB(7)] < Az — ©|%,
0<k<n-—1, with 4 independent of v as long as |2| and 7 belong to some
compact set. Form g = LM — f®/f.  Since o, = R(f,...,f" V), where
R(xy, . .., %, 1) is differentiable with bounded derivatives if |xy| > m > 0 and
v w2 < M, it follows that [y,(2) — v,(v)] < Alz — 7| with A independent
of v if 2€8,(n) and v €[— =, #]. Thus also

O )
L) fD)

Further, () and L")(z) are both bounded for 7 € [— &, x], and then so is
f9(2). Hemoe |fOz) — fO1)| < Az — 1* and [f0) — ()] < AJz — o]
for z € S(y) with 4 and #% still independent of 7. (They of course depend on
n.) An application of this result in two sectors S, and S, gives |f™(0) — f©(z)]| <
< Alg — z|* for |oc— 7| < 9.

< Alz —t|% z€8,(n).
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In the proof of Theorem 3 ¢ we suppose that —liTn,,_m (IF™Y /a)» = co. The
case when F is analytic is more easily treated with the aid of the principle of
reflection as |F(z) + f&)] = 1, and we omit it. Let 61 = maxXgcy<, (1F®)], 7k,
where » is to be taken so large that 4 is sufficiently small. It will mean no restric-
tion if we choose 7 = 0. The construction of F, and Taylor’s theorem yield

1
o) = [ @0 — roo)— iy
0

With o, = wgm, Wwehave |Fyx)| < |x["w,(jz])/n! This implies that |Fy(z)| <%
if @] <6 For o)) <) <1 o tdt < YFOY, < dnlo  if
lo| < 6. Hence § <|fy®)] <% and so |l —|fy(@)P| < Alz["0,(lz)/n! and
log| fo@)]] < Alz2"w,(Jx}}m! if |z] <6 with 4 independent of n. For

8
1 f 1 -+ tz log | fo(f)

S R R

dt

-8

thus
d

A | 6n. ]
oy < 20 [ o 2O gy < ajroa. Ty, < agro,

if 0 < j <n. By induction it is now easily proved that |(»5))(0)| < 4P(j - 1P~ 41677
for every p €N and 0 <j <n. With k, = e* this gives

. 4!
D) < -
O < 5
The maximum principle shows that [Re »,(z)] < 4. If for some a << J we can
prove that |Re Lyz)] <A for 2] <a, Imz >0, we find that 1, = L, — %,
is analytic in the disc |z] < a with |Re Ay(z)] < A there. Let [, = ¢~ The
Cauchy estimate then gives [I{?(0)] < A4jla™, and for f)=kJl, we get
If™M0)] < alga™™. We will find that @ = 6/3 will do. For

= [FO(0)| n (PO

P <> "’akgzl(aa—l)"<—12-

1

AN . 577 <lgis™i 0<j<n.

if a = §/3. Thus, if n is sufficiently large, Theorem 3 a tells us that
1<) <Z if |2/ <9/3, Imz>0, and so |Re Lyz)] < 4 in this region.

As i)y = f(”)(()) + F®(0), we also have [f®(0)] < nlg"a~" with
~ = 3 max (|[F9)], /).
0<k<n

This proves Theorem 3 ¢, since all constants are easily seen to be independent
of the choice of .
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4. The weakest condition on «, which guarantees f to be in A

THEOREM 4. For every continuous, non-decreasing and subadditive function o
with »(0) =0 and f ; w(t)tdt  divergent, there is an F € C with wgp(t) < w(t)
for which the best approximation f€ H® is not in A.

For the proof we require the following lemma.

Lemma 4. Let o be as in the theorem and put F(e") = w(t — 7) in [7, v + 6],
F(")=0 i [v— 6,7) and continuous elsewhere. If the corresponding f € H*
s in A, then [f(e") = -Li. We assume F io be defined in such a way that

IF + fll, = L.

We suppose f € A with Re f(e”) # 0. Let w(6) = log |f(e®)]. Since F(e) = 0
and |[F(e®) + f(e°) = 1, u(r + 1) < — Aw(t) or u(t + t) > Aw(t) for t € (0, &)
and some 4 > 0, depending on whether Re f(¢*) is positive or negative. For
t € (— 8., 0), on the other hand, wu(z %) equals zero. Thus

ju(r+t)—u(~c~t)
¢

Jim
>0

dtl:oo,

&

whence, see e.g. [14], Theorem 7.20, p. 103, lim, ,  |arg f(ré")| = co. This contra-
dicts f in A with |[f(¢")] =1, and the lemma is proved.

Nowlet §,==n-2"", n=0,1,2,..., and put ,0) = o0 — §,) for 6 in
[ 6, + 8,1 0n + 0ns
O 2 2
elsewhere. Let ¢, =0, 2=% or ¢-2-% depending on whether #» is even, n =1,
mod 4 or n =3, mod 4 respectively. Put F(e®) = >7 c,0,(0). It is easily seen
that ¥ € C with wg(f) <o(t) if ¢ <=z/4. Assume the corresponding f to be in
A. Lemma 4 then tells us that f(e,,,,) = Fm-¢ and f(e,, ;) = & m, where
&, =€ and m = ||F + fll, > 0, as F(®) =0 in (— z, 0). Since lim §, = 0,
this is, however, inconsistent with f in A4. e

], w,(6) = w(d,_; — D) for 6 in [ , 6,,_1J and w, () =0
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