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SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP

By PETER J. BICKEL! AND DavID A. FREEDMAN?
University of California, Berkeley

Efron’s “bootstrap” method of distribution approximation is shown to be
asymptotically valid in a large number of situations, including ¢-statistics, the
empirical and quantile processes, and von Mises functionals. Some counter-

~ examples are also given, to show that the approximation does not always
succeed.

1. Introduction. Efron (1979) discusses a “bootstrap” method for setting confidence
intervals and estimating significance levels. This method consists of approximating the
distribution of a function of the observations and the underlying distribution, such as a
pivot, by what Efron calls the bootstrap distribution of this quantity. This distribution is
obtained by replacing the unknown distribution by the empirical distribution of the data
in the definition of the statistical function, and then resampling the data to obtain a Monte
Carlo distribution for the resulting random variable. This method would probably be used
in practice only when the distributions could not be estimated analytically. However, it is
of some interest to check that the bootstrap approximation is valid in situations which are
simple enough to handle analytically. Efron gives a series of examples in which this
principle works, and establishes the validity of the approach for a general class of statistics
when the sample space is finite.

In Section 2 of the present paper, it will be shown that the bootstrap works for means,
and hence for pivotal quantities of the familiar “¢-statistic” sort; an extension to multi-
dimensional data will be made. Section 3 deals with U-statistics and other von Mises
functionals, and suggests the wide scope of the theory. Section 4 deals with the empirical
process: one application is setting confidence bounds for the theoretical distribution
function, even if the latter has a discrete component. In Section 5, the quantile process will
be bootstrapped, leading to confidence intervals for quantiles. Trimmed means and
Winsorized variances are also studied. In Section 6 some examples will be given where the
bootstrap fails, for instance, when estimating 8 from variables uniformly distributed over
[0, 61.

Some of the problems discussed in this paper have been studied independently by Singh
(1981).

2. Bootstrapping the mean. Let X;, X;, ..., X, be independent random variables
with common distribution function F. Assume that F has finite mean u and variance o2,
both unknown. The conventional estimate for p is the sample average, denoted here by
Wr. To analyze the sampling error in p,, it is customary to compute the sample standard
deviation s,, defined as

1
s = 5 Y (X — ).
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By the Classical Central Limit Theorem, the distribution of the pivotal quantity
Qn = Vn(pn — 1)/sn

tends weakly to N(0, 1). So, in this situation, the asymptotics are known. However, there
is some theoretical interest in seeing how the bootstrap would perform.

Let F, be the empirical distribution of X;, .- ., X,, putting mass 1/n on each X;. The
next step in the bootstrap method is to resample the data. Given (Xi, ---, X,), let
X*, -+, X7 be conditionally independent, with common distribution F,. We have allowed
the resample size m to differ from the number n of data points, to estimate the distribution
of the bootstrap pivotal quantity Q% = vm(uk — p.)/s%, where uk = (1/m) Y2, X¥ and
sm=(1/m) T (X} —pk)

In the resampling, the n data points Xi, ..., X, are treated as a population, with
distribution function F, and mean p,; and p}, is considered as an estimator of y,. First,
take m = n. The idea is that the behavior of the bootstrap pivotal quantity @} mimics that
of @,. Thus, the distribution of @} could be computed from the data and used to
approximate the unknown sampling distribution of @,. Or even more directly, the bootstrap
distribution of «/r_z(,u,’:‘ — itz) could be used to approximate the sampling distribution of
\/;(,u,l — w). Either approach would lead to confidence intervals for u, and would be useful
if the Central Limit Theorem were not available, and if the bootstrap approximation were
valid.

Now take m # n. The resample size m does have some statistical import. For instance,
a sample of size n can be bootstrapped to see what would happen with a sample of size
n? or «/)_z, or 10. Furthermore, with m and n free to vary separately, the second-moment
condition in Theorem 2.1 becomes quite natural. If m goes to infinity first, then the
conditional law of vm( fm — pn) tends to normal, with mean 0 and variance s2. As n tends
to infinity, this converges if and only if s2 does.

Mathematically, there is something rather delicate even about the present simple case,
with m = n. Comparing the classical «/Z(un — ) with the bootstrap vn( Ur — W), the
parameter u is replaced by p,,. But this change is of the critical order of magnitude, namely
1/ \/)_1, and cannot be ignored. However, there is a second error: the X’s have been replaced
by X*’s. In fact, these two errors cancel each other to a large extent. Our proof will make
this idea precise, by showing that the distribution of the pivot does not change much if the
empirical F, is replaced by the theoretical F. The theorem is an asymptotic one, so the
data Xj, .- -, X, should be visualized as the beginning segment of an infinite series.

THEOREM 2.1. Suppose X1, X,, -- - are independent, identically distributed, and have
finite positive variance o®. Along almost all sample sequences X1, X;, ---, given (X,
.-+, X,), as n and m tend to «:

(@) The conditional distribution of ~/;n—( Wm — Ma) converges weakly to N(0, ¢2).

(0) s — o in conditional probability: that is, for € positive,

P{|sh—o|>€|X1, -+, Xs) > 0as.

Relations (a) and (b) imply that the asymptotic distribution of the bootstrap pivot @
coincides with the classical one: convergence to the standard normal holds. There are
several equivalent ways to prove these results. We choose an argument which is qualitative,
but requires some machinery. Let T'; be the set of distribution functions G satisfying
J x* dG(x) < », and introduce the following notion of convergence in I';:

G.= G iff G,— Gweakly and J 22 dG.(x) > J x% dG(x).

The strong law implies

(2.1) F,= F along almost all sample sequences.

The conclusions of the theorem hold along any such sample sequence.
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Our notion of convergence in I'; is metrizable, for instance, by a “Mallows metric” ds.
The d»-distance between G and H in I'; is defined as follows: d»(G, H)? is the infimum of
E{(X - Y)2} over all joint distributions for the pair of random variables X and Y whose
fixed marginal distributions are G and H respectively. This metric was introduced in
Mallows (1972) and Tanaka (1973); it is related to the Vassershtein metrics of Dobrushin
(1970), Major (1978), or Vallender (1973). For a detailed discussion of d;, see Section 8 of
the present paper.

Now let Z,(G), - - -, Z.(G) be independent random variables, with common distribution
function G. Let G™ be the distribution of

Su(G) = m ' ¥ [Z,(G) — E(Z,(G)}].
If G €T, sois G™. By Lemma 3 of Mallows (1972),
(2.2) do[G™, H™] = do[G, H].
Also see Lemma 8.7 below, and (8.2).
Proor oF THEOREM 2.1, Part a. The bootstrap construction can be put into present
notation as follows: conditionally, the law of Vm(u% — p.) is just F¢™. But F, is close to F

in the dy-metric on I's, by (2.1). So F'™ is close to F™ by (2.2). Now use the ordinary
Central Limit Theorem on F™.

Part b. This can be proved the same way. Let I'; be the set of G’s with [ | x| G(dx)
< o, and define the metric d; on I'; as the infimum of E {| X — Y |} over all pairs of random
variables X and Y with marginal distributions ' and G respectively. Let G be the
distribution of (1/m) Y -1 Z,(G). The requisite analog of (2.2) is
(2.3) d\[G™, H™] = d[G, H].

For details on di, See Section 8, especially Lemma 8.6. 0

The following generalization to higher dimensions may be of some interest. Let || - ||
denote length in R*.

THEOREM 2.2. Let Xi, X, --- be independent, with common distribution in R".
Suppose E{|| X, ||*} < . Let F, be the empirical distribution of X:, -+, X,. Given X,
oo, X, let X%, ..., X} be conditionally independent, with common distribution F,.

Along almost all sample sequences, as m and n tend to infinity:
(a) The conditional distribution of

1 m 1 n
m (Z o X7 =~ T X,)

converges weakly to the k-dimensional normal distribution with mean 0, and
variance-covariance matrix equal to the theoretical variance-covariance matrix
Of X 1.

(b) The empirical variance-covariance matrix of X%, - - -, X converges in conditional
probability to the theoretical variance-covariance matrix of X.

The requisite metrics are developed in Section 8. If, e.g., E{|| X |*} < o then the
estimated variance-covariance matrix can be bootstrapped in turn, and so on. We do not
pursue this further.

Efron considers the possibility of resampling not from F,, but from some other
estimator, call it F,, of F. The argument for Theorem 2.1 shows that this works too,
provided F, = Fin I, i.e., F, gets F almost right in the weak topology, and also gets the
second moment almost right.
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As a lead-in to the treatment of U-statistics in Section 3, fix a function A on (—oo, o)
and let I, be the set of distribution functions G satisfying

j h%(x) dG(x) < oo.

Then the estimator (1/n) Y-, A(X,) can be bootstrapped, provided the distribution of the
X’s is in T's. The relevant notion of convergence seems to be this:

G.,=GinTl, iff j h?dG,— J h*dG, and f (h) dG, — f 0(h) dG

for all bounded continuous functions # on the line. This just repeats the theorem, in a form
more convenient for use in Section 3.

Let F, be an estimator of F. We continue to assume that F € I';. Consider bootstrapping
(1/n) ¥, h(X,), but resampling from F, rather than F,. When will this be asymptotically
right? What is needed is the analog of the strong law of large numbers,

(2.4) j v(x) dF.(x) — f v(x) dF(x) a.s.

whenever [ |v(x) | dF(x) < «. The exceptional null set may depend on v. In particular,
suppose F, = Fj where Fy is some parametric model under consideration and 0(X1, -+,
X,) is an estimate of §. Efron calls this the parametric bootstrap. Then (2.4) holds when F
= F,, if 0, is strongly consistent and the map 8 — [ v(x) dFy(x) is continuous at §, whenever
[ |v(x) | dFy(x) < oo.

To close this section, we set our results in the general context introduced by Efron. He
considers real valued functions Z,(-, -) on Z" X &% where & is a set of probability
distributions on R containing the “true” F and all distributions with finite support. The
bootstrap works if the conditional distribution of Z, {(X%, ..., X}), F,} is close to the
distribution of Z,{(X;, ---, X,), F}. We interpret this as follows: If the law of
Z,{(X,, .-, X,), F} tends weakly to a limit as n — oo, then the conditional distribution of
Zm - {(X%, -+, X}), F,} given (Xi, .-, X,,) tends weakly to the same limit law with
probability one as m, n — o. Theorem 2.1 shows this for

Z, {(Xy, -+, X)), F} = nl/“’{n_1 Y X — f xdF(x)} .

The present notion of convergence is stronger than Efron’s, who requires only that the
onditional distributions converge weakly to the same limit law in probability. Efron has
sstablished convergence in his sense for the mean, when F has finite support.

3. Bootstrapping von Mises functionals. Suppose X, - - -, X, are independent iden-
tically distributed p vectors. Many pivots of interest which have limiting normal distribu-
tions can be written in the form

n'’?{g(S./n) — g(w)}

u(T,./n)
whereg: R* > R,v: R'—> R,
(3.1) Sn = Y= h(X)),
(3.2) T, =Y r(X),

h:R?—> R* r:R?—> R’, and
(3.3) u= Eh(Xy), v = Er(X;).
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The asymptotic theory for such things is, of course, based on linearization for the
numerator

T
(3.4) n'? {g<—if) - g(u)} = g"(/x)n”z(% - #) + 0,(1)

provided that E || A(X;) ||* < », g has a total differential g1« at y, and for the denominator
that v is continuous at » in the sense

(3.5) v<%> = v(r) + 0,(1).

The bqotstrap commutes with smooth functions in exactly the same way. Let
S =3 (YY),  Tu=3mir(Y).
If E || A(X1) ||* <  and g exists in a neighborhood of p and is continuous at u then,

~ a\T
(3.6) nlﬂ{g(&) - g(ﬂ)} = g(,u)nl/2<§ - §> +A4,
n n n n

where A, — 0 in conditional probability and, of course, if v is continuous

-~

3.7) v<ﬂ) — v(»)
n

in conditional probability. The proof of (3.6) in a more general setting is given in Lemma
8.10 below.

Suppose now that g is a functional g : # — R where  is a convex set of probability
measures on R™ including all point masses and F. Suppose also that g is Gateaux
differentiable at F with derivative g(F) representable as an integral

(3.8) EF)NG—-F)= a%g(F +€(G = F))|emo = J Y(x, F) dG(x)

where necessarily

(3.9) J Y(x, F) dF(x) = 0.

Such g are often called von Mises functionals. Asymptotic normality results in nonpara-
metric statistics relate to quantities of the form n'/?{g(F,) — g(F)} or asymptotically
equivalent quantities. The result we usually want and get is that n'/* {g(F,) — g(F)} and
n'? [ Y(x, F) d(F, — F) have the same N(0, [ y*(x, F) dF) limit law. As Reeds (1976)
indicates, this reflects a general Taylor approximation

(3.10) g(F,) — g(F) = gr(F, — F) + An(Fu, F)
where
An(Fn, F) = 0,(gr (Fn — F)).
It is natural to hope that if we let G, be the empirical d.f.of X{, --., X5, then
&(Gy) — g(F,) = gr,(Gn — Fu) + 8u(Gn, Fr),
where for almost all X, X5, ---
(3.11) n'?A. (G, F,) —> 0

in conditional probability, and thence that the conditional law of

(312) n'?gr (G, — F,) = n7"? Y1 Y(X¥, F,) tends to N(O, J Vi(x, F) dF(x)).
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Simple conditions for the validity of (3.11) can be formulated using the theory of
compact differentiation as in Reeds (1976). However, verification of these conditions in
particular situations poses the same requirements for special arguments as in Reeds’
verification of various examples of (3.10). Moreover, whereas convergence in law under F
of [ Y(x, F) dF, is immediate if [ ¢*(x, F) dF < o, further continuity conditions on y as
a function of F seem necessary to ensure that the conditional distributions of [ ¢(x, F,)
dG, tend weakly to N(0, [ y*(x, F) dF (x)).

The simplest conditions sufficient to guarantee this behavior seem to be

1) J’ Y23(x, F) dF (x) < oo.
ii) j (Y(x, F,) = y¥(x, F))* dF, - O as.
Condition (ii) implies that for almost all X;, X3, - - -,

nTV2 Y, [tl/(Xf", F.) - {\P(Xz*, F) - J Y(x, F) an}] -0

in conditional probability, while condition (i) ensures the satisfactory behavior of
n” VY (X, F) — [ Y(x, F) dF,. These conditions are exploited in Theorem 3.1 below.

We pursue these general considerations slightly in Section 8. Here we content ourselves
with checking the bootstrap for the simplest nonlinear von Mises functionals

(3.13) g(H) =”'w(x,y) dH (x) dH(y)

where w(x, y) = w(y, x) and H is such that g(H) is well defined. In particular,
g(F) = n? Y Y 0(X, X)),
A closely related statistic of interest is the U-statistic of order 2 defined by

n - n 1 n
(3.14) gn(Fn) = <2> 2,<J w(X,-, Xj) =n—_-1~g(Fn) —mzi=1w(X,, X;).

It is well known (von Mises, 1947) that if

(3.15) J’ wi(x,y) dF (x) dF (y) < o

and

(3.16) f w%(x, x) dF (x) < oo,

then

(3.17) n'*{g(F,) — g(F)} tends weakly to N(0, o)
where

2
(3.18) 02=4U {j w(x, y) dF(y)} dF (x) —gz(F)].

This is in accord with (3.8) and (3.10), since in this case

(3.19) Y(x, F) = 2{] w(x,y) dF(y) — g(F)}.

THEOREM 3.1 If (3.15) and (3.16) hold, and g is given by (3.13) and o® by (3.18), then
for almost all X1, Xz, - -, given (X1, --+, Xy),

n'?{g(G,) — g(F,)} converges weakly to N(0, o2).
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ProOF. Define y and A, as in (3.19) and (3.10). Then we will establish that (3.11) and
(3.12) hold.

PROOF OF CLAIM (3.11). A, (G., F,) = [ [ w(x, y) d(G, — F.)(x) d(G» — F,)(y). By
an inequality of von Mises (1947) (see also Hoeffding, 1948),

E{A?t(Gny Fn)lev tt Xn} = n_2{Cl j J wZ(x’ y) an an +%fw2(xy x) dEl}

where C; and C; are universal constants. Now

j wi(x, x) dF, - Ew? (X1, X1)

f f wz(x,y) dF, dF, = (nﬁ 1) <g> 2;‘</ wz(Xi, X;)

+n7? %, (X, Xi) > Ew®(Xi, Xz)

almost surely by the strong law of large numbers, as generalized to U-statistics (see Berk,
1966, page 56) and (3.11) follows.

ProOOF OF cLAIM (3.12). As we noted earlier, it is enough to show that
J {¢(x, F,) —y(x, F))* dF, > 0
with probability 1. But,

f {$(x, Fn) = ¥(x, F)}? dF.(x) = n7' 3 (Y(X,, F) —¥(X,, F)Y’

2
nt Y {n_l 2 w(Xi, X)) - J w(Xi, y) dF(y)}

n3 Yk 0(X, X)w (X, Xe)
-2n7?Y,, w(X;, X)) j w(X;, y) dF

2
+n'Y {J' w(X;,y) dF} .

By an argument using a strong law of large numbers for U-statistics, these last three terms
tend with probability 1 to

Ew(X1, Xo)w (X1, X3), 2E[w(X1, X2)E {«' (X1, X2)|X2}],and E[E* {0 (X1, X2)| X2 }],
respectively. The sum of these numbers is 0 and claim (3.12) and the theorem follow. [

If Ew*(X;, X2) < ® and Ew?(X;, X1) < o, the conclusion of Theorem 3.1 clearly holds for
the bootstrap distribution of the U-statistic g.(F,) and, more generally, any convex
combination of g, (F,) and n™' ¥ w(X,, X,) where the weight on g, (F,) tends to 1. Failure
of the conditions, however, can cause failure of the bootstrap (see Section 6).

As an example of the applicability of this result, it is valid to bootstrap the distribution
of Wilcoxon’s one sample statistic

{nl/z(n +1)

-1
5 } Y (I(X,+X,>0) — P(X,+ X,>0)}

in order, for instance, to obtain approximations to its power.
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Extensions of the theorem to the von Mises statistics corresponding to U-statistics of
arbitrary order, vector U-statistics, U-statistics based on several samples, etc., is straight-
forward, provided, however, that the hypotheses appropriate to the von Mises statistics, as
in Fillipova (1962), are kept.

Extending a remark made in Section 2, we can bootstrap U-statistics by resampling
from a general { F,}, provided that { F,} possesses a property analogous to the strong law
of large numbers for U-statistics, viz.,

J’ jv(xl, cee,xp) dF, (x1). .. dF, (x2)

—>f fv(xl, ceo,xz) dF (x1). . .dF (x2) a.s.
if f|v(x1, <o, xx) | dF (x1). . .dF (x1) < 0.

4. Bootstrapping the empirical process. The object of this section is to bootstrap
the empirical process, (Theorem 4.1), and to obtain a fixed-width confidence band for the
population distribution function which is valid even when the latter has a discrete
component (Corollary 4.2). We first give two preliminary lemmas and then recall notions
of weak convergence. Throughout this section, B is a Brownian bridge on [0, 1]. Theorem
3 of Komlos, Major and Tusnady (1975) implies the following result.

LEMMA 4.1 There exist, on a sufficiently rich probability space, independent random
variables Uy, Us, . . . with common distribution uniform on [0, 1], and a Brownian bridge
B on [0, 1] with the following property. Let H,, be the empirical distribution function of
Ui, -+, Un and let

Bn(u) =m'*{H,(u) —u} for0=u=<1.
Then for some constant K,, and €., = (log m)/m'"*
P{||Bn — B|| = Ki€n} = Ki€n.

To state the next result, which is an integrated form of Levy’s modulus of continuity,
let

4.1) w(8, f) =sup{|f(s) — f(t)]:|t — s| = &)}
1/2
h(6)=<610g1> for0=d8=%
4.2) 8
= h(1/2) for § = %

LEMMA 4.2 There is a constant K, such that E{w (8, B)} = K:h(8) for0 < = %.

ProoF. Represent B as
B(u)= W) —uWwW@l) for 0=u=1l,
where Wis a Wiengr process on [0, ©). Now
w(8, B) = w(s, W) + 8| W()|.
So it is enough to prove the lemma with W in place of B. Abbreviate
M5 = sups {| W(s) — W(kS)|:k8 = s= (k + 1)§)}.
Let K be the integer part of 1/8. By the triangle inequality,
w(8, W) =3 max, (Ms:0=k = K}.

Of course, the M,; are independent and identically distributed, so

E{w(s, W)} =J'

0

P{w(s, W) >x) dx = 3J’ [1-{1—-P(M,>x)*"]dx



1204 PETER J. BICKEL AND DAVID A. FREEDMAN

If x < 2'2h(8), the integrand may be replaced by the trivial upper bound of 1. The integral
over bigger x’s is negligible for small §; this may be seen by estimating the integrand as
follows:

1-Q1-pf'=(K+1)p for0=p=1
P{M, > x} = 4(8/27)"*x " e X%

and then making the change of variables y = § "/?x. 00

Let D be the space of all real-valued functions f on [—o, ], such that f vanishes
continuously at +o, and is right continuous with left limits on (—o, ). Give D the
Skorokhod topology. Let I" be the set of all distribution functions, in the sup norm. For G
€T, let Zi(G), ---, Z»(G) be independent with common distribution G. Let G, be the
empirical distribution of Z:(G), - - -, Z,(G), and set

(4.3) Wom(£) = Vm[Gn(t) — G(t)]  for —o0 < t < o,

extended to vanish at +o. Let ¥, (G) be the distribution of the process Wen. Thus, ym (G)
is a probability measure on D. In this notation, the usual invariance principle states that
Ym (G) tends weakly to the law of B(G) as m — o, where B is the Brownian bridge, and
B(G)(t, w) = B{G(?), w}.

The weak topology on the space of probability measures on D is metrized by a dual
Lipschitz metric as follows. Let y metrize the Skorokhod topology on D, and in addition
satisfy

(4.4) Yy =|lf-glal

Here f and g are elements of D, i.e., function on [—o, «], and | - || is the sup norm. Now

J’ Ordm — J Ordn’
D D

where 7 and 7’ are probability measures on D, and # runs through the functions on D
which are uniformly bounded by 1 and satisfy the Lipschitz condition

|0(f) —6(g)| =v(f, 8).

(4.5) p(m, 7’') = supg

ProPOSITION 4.1. There exists a universal constant C such that
p[¥m(F), Ym(G)] = Clen + h(|F — G|)],

~12 log m and h was defined in (4.2).

where €, =m

Proor. Recall B,, from Lemma 4.1 Clearly, y,,(F) and y,,(G) are the probability
distributions induced on D by B,,(F) and B (G) respectively. By the definition (4.5) of
the dual Lipschitz metric p,

plYm(F), ¥m(G)] = supe E{|0[Bn (F)] — 0[Bn(G)]|} = E{y[Bn(F), B»(G)]}.
Now (4.4) implies
(4.6) E{y[Bn(F), Bn(G)]} = E{|| Bx(F) — B (G) | A\ 1}
Since || f — g|| A 1 is a metric, the triangle inequality implies
(4.7) E{y[Bn(F), Bn(G)} =2E{||B» — B| A1} + E{w(|F — G|, B)}.
Now use Lemma 4.1 to estimate the first term on the right in (4.7):

E{|B.—B|| A1} = Kien + P{|| B» — B|| > Ki€n} = 2K €m.

The second term on the right in (4.7) can be estimated by Lemma 4.2. 0
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Return now to the setting of Section 2, but with no moment condition. There is a
sample of size n from an unknown distribution function F, which is to be estimated by the
empirical distribution function F,. Given X, ---, X,, let X, -.-, X% be conditionally
independent, with common distribution F,. Let F,, be the empirical distribution function
of X¥, ..., X%. And let

(4.8) Wam(t) = Vi {Fum (t) — Fo(t)}  for —o0 < ¢ < oo,

extended to vanish at +co. The next result is the bootstrap analog of the invariance
principle, which states that Vn (F,-F) converges weakly to B(F') as n — . No conditions
are imposed on F; as usual, B is the Brownian bridge on [0, 1].

THEOREM 4.1. Along almost all sample sequences, given (X,, ---, X,), as n and m
tend to infinity, W,,, converges weakly to B(F).

Proor. This is almost immediate from Proposition 4.1. Conditionally, W, = Wr.m
has the law Y, (F,,), and || F,, — F|| = 0 a.s. by the Glivenko-Cantelli lemma, so y, (F.,), is
nearly Y, (F'). The latter is almost the law of B(F) by the ordinary invariance principle.
Indeed, the argument shows that the p-distance between ,, (F,) and the law of B(F) is at
most a universal constant times €, + A (| F, — F|). O

COROLLARY 4.1. For almost all X,, Xz, - -+, given (X1, ---, X,), as n and m tend to
infinity, | Fom — F|| tends to 0 in probability. Here, F,,, is the empirical distribution of the
resampled data, as defined above.

We now consider confidence bands for F which will be valid even when F has a discrete
component.

COROLLARY 4.2. Suppose F is nondegenerate. Fix a with 0 < a < 1. Choose ¢(F,)
from the bootstrap distribution so that

P{n'” sup; | Fun(x) = Fa(x) | S ea(Fo) | X1, -0, Xa} > 1 -
Then
P{n'? sup,|F.(x) — F(x)| = cx(Fn)}) > 1 — a.
ProoF. Indeed, c,(F,) must converge to the (1 — a)-point of the law of sup, | B(F (x)) |,

which is continuous: see Lemma 8.11 below. So, F,, + c,(F,) is the desired band.

Preliminary calculations suggest that the mapping F — ., (F) is uniformly equicontin-
uous, in the sense that there is a function q(¢) — 0 as t — 0, and for all m, F and G:

plYm(F), Ym (G = q(|F - G|).

The argument rests on the following inequality, which may be of independent interest.
Suppose F and G concentrate on [0, 1] and | F — G| < §. Then

Lebesgue measure of {£:0=¢=1 and |F7'(t) — G'(t)]|> Vo) < 6.

This is immediate from Chebychev’s inequality; see (8.1).

Suppose the resampling is from another estimator F, for F. Bootstrapping may still be
valid. Given (Xj, .-, X,,), it can be shown that WF  tends weakly to B(F') as m and n
tend to oo, provided F, > F as. in the sup norm. Here Wi,g was defined in (4.3). This
result can even be proven under the weaker hypothesis, that F,, — F a.s. in the Skorokhod
topology.

5. The quantile process. Another interesting process in terms of which various
statistics and pivots can be defined naturally is the quantile process @, which we define on
(0, 1) by
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Qn(t) = n'?{Fy'(¢) — F7' ()}
where the inverse of a distribution function H is given, in general, by
H7'(t) = inf{x:H(x) = t}.

Our aim in this section is to justify the bootstrapping of this process. Applications which
will be sketched briefly after the theorem include confidence intervals for the median and
pivots based on trimmed means and Winsorized variances.

For convenience, throughout this section we use ° to denote composition. For example,
fo F ' meansf(F™).

It is well known (see Bickel, 1966, for example) that given 0 < {, = ¢, < 1, if

(5.1) F has continuous positive density f on R,
then
(5.2) Q. tends weakly to B/f > F~' in the space of probability measures on D[ #, & ].
Write G, for F,, as defined for (4.8) and let
Q. =n"*(G;' - F;").
THEOREM 5.1. If (5.1) holds, then along almost all sample sequences X, X, - - -,

given (X,, -+, X,,), Q. converges weakly to B/(foF™") in the sense of weak convergence
for probability measures on DIt,, t].

PROOF. An equicontinuity argument does not work here since the behavior of the
quantile process depends on the density of the limit distribution. This is also the reason we
take m = n. We present a relatively ad hoc modification of an argument due to Pyke and
Shorack (1968).

It is convenient to denote the sup norm in D[z, ¢] by || - ||. Write

(FoG,' — FoF,")
= 1/2
Qﬂ n Rn ’

where

FoG;' — FoF;'
S

Continue by writing
nV FoG;' — FoF;') = nV[{(F,°G:' — F°G,") — (FnoF;' — FoF;")}
(5.3) + {GroGy' = FroGr'}]
— n2(F,oFy" — GooGyY).

Let the probability space be rich enough to support the processes B, and B of Lemma 4.1
as well as another pair (B,, B) with the same distribution as (B,, B) and independent of
them.
We now represent nV*(G, — F,) as B,°F, and n?(F, — F) as B,°F and call these
processes W, and W, respectively. Then we can write the right-hand side of (5.3) as
—{(WnoGr' — WooFR') + WooGr' Y= n'2{(FpoFy' — I) — (GooGR' — 1)}

where I is the identify. Therefore, to prove the theorem it is enough to show that the
following five assertions, (5.4)-(5.8), hold for almost all X;, Xs, - .-

(5.4) | FuoFit = I = o(n™2),
(5.5) R GGyt = I| > 0
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in (conditional) probability,

(5.6) |Rr — foF~'||—0

in (conditional) probability,

(5.7) —W,oG;! converges weakly to B, on [#,, t;]
(5.8) | WeoGr' — waoFr| — 0

in (conditional) probability.
Proor oF (5.4). F, has jumps of size 1/n only.

Proor oF (5.5). Bound (5.5) by
nY? sup, {Gn(x + 0) — Gn(x)} = sup,| W,(x + 0) — W, (x)| + n72,
Since F is continuous and strictly increasing, so is F ' and
(5.9) supe| Wo(x + 0) — W, (x) | = sup| Woo F Y (x + 0) — WoF ' (x)|.

By Theorem 4.1, given (Xy, ---, X,.), W,oF ! converge weakly to B which is continuous.
Therefore, the expression in (5.9) tends to 0 in conditional probability and (5.5) follows.

Proor oF (5.6). By Corollary 4.1 since, by hypothesis, F~! is continuous on (0, 1),
(5.10) |Gt = F*'|—0

in conditional probability, for almost all X;, X;, - .- . Similarly, by the Glivenko-Cantelli
Theorem, with probability 1,

|F.' = F'||—o.

Claim (5.6) follows since the assumed continuity of F on R implies that F is uniformly
differentiable on all compact subsets of R.

Proor ofF (5.7). By (5.10) and Theorem 4.1, given (Xi,---,X,), the processes
(=W,oF~!, FoG;') viewed as probability measures on D[t,, t,] X D[t,, t:] converge
weakly to (B, I). By the continuity of the composition map M:(f, g) — fog at all points of
C[0, 1] X D[t,, t,], we have —W,oG,,! converging weakly to B and (5.7) is proven.

Proor orF (5.8). We have to be careful here to control W, with probability 1. Since
|FeF,' — FoG,'|| — 0 in conditional probability and W, = B,°F, it is enough to check
that if 6, — 0,

w(8,, Bn) = 0 as.

But this follows for instance from Komlos, Major and Tusnady (1975, Theorem 3). The
theorem is proved.

REMARKs. (1) If F7}(0+) > —o and F~!(1) < « and f is continuous on [F~!(0+),
F~'(1)], the conclusion of the theorem holds in D[F~'(0+), F~'(1)]. For instance, if F is
uniform on (0, 1), convergence holds in D[0, 1]. More generally, we may have one end of
the support finite and the other infinite and have the appropriate theorem hold.

(2) Suppose {F,} is a general sequence of probability measures depending on X, - - -,
X, and G, is the empirical d.f. of Y1, --- , Y, which, given (X;, .- , X,), are i.i.d. with
common distribution F,. We can give simple conditions for Vn (GZ' = Fi') to converge
weakly, given (X1, -- . , X,.) (as probability measures on D ([¢,, t:]) to B/(f-F~'), provided
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that we require the convergence to hold in probability as in Efron. All we need in addition
to (5.1) is that (i) n'/?(F, — F) converge weakly (as probability measures on D) to a limit
with continuous sample functions, and (ii) sup,| F, (x + 0) — F,, (x) | = 0, (n"/?). Hence the
parametric bookstrap woArks if, for example, F' = Fy satisfies (5.1) and (8/06) Fy|s, is
continuous in x and n'%(8, — 6,) = O,(1).

Here are some applications which follow fairly easily from the theorem.

The median. Let m* be the median of the X} and m the median of the X,.

ProrosiTION 5.1. If F has a unique median p and [ has a positive derivative f
continous in a neighborhood of i, then along almost all sample sequences Xi, X, -+ - ,

given (Xi, -+ , X,), n**(m* — m) converges weakly toN| 0, , the limit law of

)
4f*(u)

n'2(m — p).

By this result the quantiles of the bootstrap distribution of n’/*(m* — m) can be used to
set an approximate confidence interval for p. An asymptotic pivot in which we estimate
the density f and then scale can also be bootstrapped.

A more careful argument shows that Proposition 5.1 holds under the weakest natural
conditions: p is unique and F has positive derivative f at p.

Quantile intervals. The usual interval for the population median is [X®), X¢n-#+1]
where X < .-+ < X, are the order statistics of the sample, and % is determined by the
desired confidence coefficient through the relation

P Xy <p=Xg+n) = (7) 2™

valid for all continuous F.
Since X,y = F,'(j/k) is the j/k quantile of the law of X}, given (X1, --- , X,), the
bootstrap principle leads us to believe

k 4
(5.11) PXp<M=X,|F.} = P{F“l(;> <ms= F“1<;>}
where P(. | F,) is the conditional probability, given (X, -- -, X,). Efron, by exact calcu-
lation, gets the unexpected approximation

(5.12) PXpy<M=Xn|F}) = P Xpy<p=Xon).

If we interpret =~ as meaning that the difference of the two sides goes to 0 along almost
all sample sequences, then both (5.11) and (5.12) can be established under the assumptions
of Theorem 5.1.

Linear combinations of order statistics. " Theorem 5.1 establishes the validity of the
bootstrap for linear combinations of order statistics with nice weight functions concentrated
on[a,1— a],0 < a < ¥%. That is,

nlﬂ{ f F(¢) dAn(t) — f F7() dAn“)}

can be bootstrapped under condition (5.1) provided that A, — A weakly. As a special case,
if we take A, to be the uniform distribution on [a, 1 — «], we see that the bootstrap
provides confidence intervals for the center of symmetry of a symmetric distribution based
on the a-trimmed mean. The bootstrap is also valid for estimates of the asymptotic
variance of such linear combinations of order statistics and for pivots based on ¢-like
statistics.



ASYMPTOTICS FOR BOOTSTRAP 1209

6. Counter-examples. In Sections 2 and 3 we checked the validity of the bootstrap
for various functionals R, { (X1, - -+ , X,); F.}. Roughly, the bootstrap will work provided
that

(6.1a) R, {(Y1, ---, Ya); G} tends weakly to a limit law .%; whenever Y, --., Y, are
ii.d. with distribution G, for all G in a “neighborhood” of F into which F, falls
eventually with probability 1,

(6.1b) the convergence in (6.1a) is uniform on the neighborhood,
and
(6.1c) the function G — %; is continuous.

In the examples of this section, the bootstrap fails because uniformity does not hold on
any usable neighborhoods.

Counter-example 1: a U-statistic. Let

n

(6.2) Rn(Yy, -++,Yu;G) = n1/2{<2> i [w(Y,, Y)) - J' w(x, y) dG(x) dG(y)]}

a normalized centered U-statistic. As we have noted in the previous section, by a theorem
of Hoeffding, if

(6.3) f w’(x, y) dF (x) dF(y) < o,
then
(6.4) R, (Xi, -+, X,; F) converges weakly to a N(0, ¢*) random variable,

where o? is given by (3.18).
To bootstrap the U-statistic, however, we have to assume not only (6.3) but also the
von Mises condition

(6.5) J’ w(x, x)? dF(x) < o

Absent this condition, the bootstrap can fail: indeed, |R (X}, --- , X}¥; F,) | can tend to o.

Suppose F is the uniform distribution on (0, 1) and write w = w; + ws where w;(x, y) =
w(x, y)I(x # y). Let R.1, Rne be the U-statistics corresponding to w;, w; respectively. Then
R, = R.1 + Rye. If (6.3) holds, by Theorem 3.1, given (Xi, --- , X,), the conditional
distribution of R, (X{, --- , X¥; F,.) tends weakly to N (0, 6%). An example will be given
where | R (Xf, .-+, X¥; F,)| tends to « in probability. Of course, Rn2(X1, -+ , X,; F)
= 0.

To develop this example, write

(6.6) Rno(XF, -+, Xk F,) = {n"%n— 1)}7‘1 Y w(X;, Xl){”in(”m -1 _nr_L 1} ,

where
(6.7) vin is the number of j’s with 1 =j = n and X = X,.

LetZ;= w(X,, X\),i=1,---,nand Zy = - . - = Z, be the corresponding order statistics.
Take

w(x, x) = e~

We claim

(6.8)  the conditional distribution of {n'*(n — 1/Zu}Rue(X¥, ---, X¥; F,) converges
in probability to a limit law, namely the distribution of »(» — 1) — 1 where v is a
Poisson variable with mean 1.
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Moreover

(6.9) n*/Z ) tends to 0 in probability as n — oo, for every positive A.
So R.; does indeed dominate R.,;.

Our assertions about the behavior of R, are proved as follows. Let X1, < +-- < X be
the order statistics of X, - .. , X,.. Then the distribution of

n(Xe — X))

n~'(log Zn — log Zn_1) =
g < § Ln=n (n°X) X))

converges to a limit concentrating on (0, «), since nX(;) and n(X¢ — X)) converge jointly
in law to two independent exponentials. Therefore,

(6.10) n*Zn-1)/Z» tends to 0 in probability, for any positive A.
Let I be the “antirank” of Z,, defined by Z; = Z,,. Then,

n1/2(n - I)RnZ(Xik, crey X:, Fn)/Z(n) = Vin (VIn - 1) + Op {n2Z(n—1) /Z(n)};

since Y vin(vin — 1) = n(n — 1).

Now (6.8) follows: given Xj, - .., X,, conditionally »;, has a binomial distribution with
n trials and success probability 1/n, whose limit is Poisson with mean 1. The remainder is
negligible, by (6.10).

The claim (6.9) follows by a previous argument, since n™' log Z(») = (nU;))~" converges
in law.

Counter-example 2: the maximum and spacings. If F is uniform on (0, ), the usual
pivot for # is n(§ — X,))/6 which has a limiting standard exponential distribution. If we
think of 6 as the upper end point of the support of F then it is natural to bootstrap
(n(@ — Xny)/0 by n(Xny — X)), where X < --. <X, are the ordered X} . This does
not work. In fact,

P{nXm — X&) =0|F.} > 1—e7' =0.63.
More generally, it is easy to see that for almost all X;, X;, - - -,
P{Xty < Xpn-r+e1)| Fr} = 7%, k=1, ...

Thus, with probability 1, the conditional distribution of n(X. — X%,)/X does not
have a weak limit: since lim sup n (X — Xn-z+1)) = %, and lim inf n(Xn) — Xn_z+1) =0
a.s. for each k.

This unpleasant behavior cannot be mended by simple smoothing, e.g., replacing F, by
F, which puts mass 1/(n — 1) uniformly into each interval [X—x+1), X(ns ], for £ = 0,

, n — 2. Nor does this behavior have much to do with the maximum. The conditional
distributions of the spacings n(X# — X%-1)) do not have weak limits, even though n (X
— X#-1) has an exponential limit.

The problem is the lack of uniformity in the convergence of F, to F. Uniformity does
hold for the parametric bootstrap, where F is estimated by F), which is uniform on the
interval (0, X(,)). If X¥, ... , X} are a sample from F,, then

LXY [ Xy, o+, X5 [Xw) = L(X0 /0, -+, X, /6)

7. Other work. Freedman (1981) has pursued the use of the bootstrap for least
squares estimates in regression models when the number of parameters is fixed, and arrived
at results very similar to those obtained for means in the one-sample problem. Work is in
progress at Berkeley on the behavior of other types of estimates in these models, as well
as on the general theory of bootstrapping von Mises functionals in one-sample models.

The authors are studying the behavior of the bootstrap in regression models when the
number of parameters is large as well as the sample size; also considered is the sampling
of finite populations. An interesting new phenomenon surfaces: the bootstrap can work for
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linear statistics based on large numbers of summands even though the normal approxi-
mation does not hold. On the other hand, the bootstrap fails quite generally when the
number of parameters is too large.

8. Mathematical appendix. In Section 2, we used the Mallows metric d; and its
cousin d;. It may be helpful to give a fuller account of such metrics here. Let B be a
separable Banach space with norm ||-|. The only present case of interest is finite-
dimensional Euclidean space, in the Euclidean norm. Let 1 = p < o; only p = 1 or 2 are of
present interest.’?

Let T', = I',(B) be the set of probabilities y on the Borel o-field of B, such that
[ 1 x||” y(dx) < ». For « and 8 in T},, let d, (@, 8) be the infimum of E {|| X — Y||”}"” over
pairs of B-valued random variables X and Y, where X has law a and Y has law .

LEmMA 8.1. (a) The infimum is attained.
(b) d,is a metriconT,.

PRrOOF: Claim (a). Let X and Y be the coordinate functions on B X B. Using weak
compactness, it is easy to find a probability = on B X B, such that 7X ™' = a, and 7Y "' =
B,and [ | X — Y||? d= is minimal.

Claim (b). Only the triangle inequality presents any problem. Fix «, 8 and y in I',.
Using the first claim, choose 7 on B X B so [[ | X — Y||” d7]'”? = d,(a, 8). Changing
notation slightly, let Y and Z be the coordinates on another “plane” B X B; find 7’ on this
BXxBso[f|Y—Z|”dn’]"" = d,(B, y). Now stitch the two planes together along the Y-
axis into a 3-space B X B X B. More formally, let X, Y, Z be the coordinate functions on
B X B X B. Define 7* on B X B X B by the requirements:

* the 7*-law of Y is §3;

* given Y, the variables X and Z are conditionally 7 *-independent;

¢ the conditional 7*-law of X given Y = y coincides with the conditional 7-law of X given
Y=y,

* the conditional 7*-law of Z given Y = y coincides with the conditional 7’-law of Z given
Y=y

In particular, the 7*-law of (X, Y) is «; the #*-law of (Y, Z) is 7.
Minkowski’s inequality can now be used, as follows:

1/p
dp(a, y) = {J’ |X - Z|? d’h’*}

1/p
= {f UxX-Y|+|Y-2]1 dﬂ*}

1/p 1/p
g{fﬂX—Ywdw} +{qu—zwwﬁ}
1/p 1/p
={J’ ||X—Y||”d7r} +{J ||Y—Z||”dw’}

=d,( B) + dy(B,7) ' o

On the real line, Lemma 8.2 below gives a very convenient representation for d, (see
Major, 1978). In this case, the probabilities a and B are defined by their distribution
functions F and G.

3 The essential supremum corresponds to p = « and can be handled analogously. The extension to
Orlicz spaces might be useful: see Zaanen (1953) or Zygmund (1935).
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LeEMMA 8.2. If B is the real line, with | x| = | x|, then
1 1/p
d,(F, G) = {j |F7' (@) — G™He) )P dt}
[
The case p = 1 is especially simple because

(8.1) f |F~'(¢) — G7(¢) | dt=j |F(t) — G(t)] dt.
[ —o0

Indeed, both sides of (8.1) represent the area between the graphs of F and G.
Return now to the general setting.

LEMMA 83. Let an, a €ET,. Then dp(a,, a) = 0 as n — x is equivalent to each of the
following.

a) a, — a weakly and [ || x ||Pan(dx) = [ | x||Pa(dx).
b) a, — a weakly and | x||? is uniformly a,-integrable.
¢) [ ¢ dan— [ ¢ da for every continuous ¢ such that ¢ (x) = 0(]| x||”) at infinity.

PrOOF. a) “Only if”. Suppose d,(ax, a) — 0. Let &, have law «,, and { have law «, and
E[| ¢ — ¢[”17 = dp(an, @). Then

1/p 1/p
UII x |[Pon (dx>] - UII x |Pa (dx)} = E{|& P} - E{I£IPY”
SE{|&-5IPYP >0

Likewise, if f is Lipschitz, that is || f(x)— f(»)|| = K| x — y||, then

Uf(x)an (dx)—J’f(x)a (@y) | =|E{f(&) — f(O} = E{|f&) - O}

SKE(|& - ¢} = KE[||6 - SIPT7 — 0.

Then a, — a weakly by a routine argument.

“If”. Suppose a, — a weakly and [||x||’a» (dx) — [| x|°a (dx). A routine argument
reduces the problem to the case where a, and a concentrate on a fixed bounded set, using
the condition on the norms; then the reduction to the case where a, and a concentrate on
a fixed compact set C is easy, using Prokhorov’s theorem (Billingsley, 1968, page 37). Cover
C by a finite disjoint union of sets C; of diameter €, with a(dC;) = 0, where d represents the
boundary. Choose x; € C,. Replace a, by &,, where &,{x;} = a,{C:}. Likewise for a.
Clearly d,(an, a») = € and d, (&, a) = €. But d, (&», &) — 0 by an easy direct argument. The
rest is immediate. [

The argument for the “if” part of (a) is a variation on an argument for Vitali’s theorem.

LEMMA 84. Let X, be independent B-valued random variables, with common distri-
bution u € T',. Let u, be the empirical distribution of X, +- -, X,. Then dp(p., u) — 0 a.e.

Proor. Use Lemma 8.3 and the strong law. 0

For B-valued random variables U and V, write d, (U, V) for the d,-distance between
the laws of U and V, assuming the latter are in I',. The scaling properties of d, are as
follows:

(8.2) dp(alU, aV) =|al|-d,(U, V) for any scalar a
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(8.3) dp(LU, LV) =||L||-dp(U, V)  for any linear operator L on B.
The next lemma involves two separable Banach spaces B and B’, e.g., two finite-

dimensional Euclidean spaces. Let 1 = p, p’ < .

LemMmA 85. Suppose X, is a B-valued random variable and || X, || € L,; likewise for
X; and dp (X, X) — 0. Let ¢ be a continuous function from B to B’, and ||¢ (x)||?’ =
K{1 + || x||*}, where K is some constant. Then d,[¢(X,), $(X)] — 0.

Proor. Use Lemma 8.3.

Can d, [¢(X.), $(X)] be bounded above by some reasonable function of d,(X,, X)?
Apparently not. Suppose B = B’ is the real line, p = 2 and p’ = 1 and ¢(x) = x2 Find real
numbers x, and y, with (x, — y»)> = 0 but |x% — y2| —» «. Let X, = x, and Y, = y, a.s.
Then do(X,, Y,) — 0 but di(XZ2, Y2) - .

LEMMA 8.6. Let U, be independent; likewise for V,; assume the laws are in T',. Then

dp XU, Y2 V) S YR do (U, V).

Proor. In view of Lemma 8.1, assume without loss of generality that the pairs
(U,, V;) are independent and

E{(IU = V;IP}'"* = dp(Uj, V).
Now by Minkowski’s inequality,
&R U, X V) = E(|IZ7 (U = V)IPY'?
=YL E(IU, - ViIPYP =3 dp(U, V). O

In the presence of orthogonality, this result can be improved.

LemMA 8.7. Suppose B is a Hilbert space with inner product (-,-), and p = 2.
Suppose the U, are independent, likewise for V,; assume the laws are in s, and E (Uj)
= E(V;). Then

d2(X 721 Uj, X2 V)P = 3R da(U;, V)2
PrOOF. Make the same construction as in the previous lemma. Now E {(U; — V,, U,
— Vi)}is 0 or do(U,, V;)? according as &  j or &k = j. So
A3 UL, YR V)P S E((RR (Ui — V), $R0(U, - V)
=Y R da(Uj, V)2 O
LeEmMA 8.8. Suppose B is a Hilbert space with inner product (-, -), andp = 2. Let U
and V be B-valued random variables, with | U|| and || V|| in L,. Then
do[U, VI? =do[U — E(U), V- E(V) + |E(U) — E(V)|P.

ProoF. Write @ = E(U) and b = E(V). Choose U and V so that E(|U — V||?) =
d2(U, V)2 Now

E(I(U-a) = (V-0)"} =E(|U - V|*) - |la - b|f
SO

dx(U—a, V-b)=ds(U, V)’ - |la — b2
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For the other inequality, choose U and V so that
E{(U—-a) = (V=0)|*} =d:(U—a, V- b) 0

For simplicity, the next result will be given only for the line.

LEMMA 89. Suppose B is the real line, |x|| = |x|, and p = 2. Let d} be the
corresponding Mallows metric. Let Uy, - - -, U, be independent and identically distributed
Ls-variables, and let U be the column vector (Ui, ---, U,). Let V1, ---, V, and V be

likewise. Suppose E (U;) = E(V;). Let A be an m X n matrix of scalars. Now AU, AV are
random vectors in R™, equipped with the m-dimensional Euclidean norm. Write d¥ for
the corresponding ds-metric. Then

dF(AU, AV)® = trace(AA"). d}(U,, V;)~

PrOOF. As usual, suppose (U;, V;) are independent and E {( U, — V:)%}/2 = ds(U,, V,).
Now

d:(AU, AV = E{|AU - AV|]*}
= E {trace[A(U — V)(U — V)'A']}
= trace(AA").d}(U;, V,)?

because E{(U — V)(U — V)*} = Lixn-d3(U,, V.)?, where I,x, is the n X n identity matrix,
and trace CD = trace DC, provided both matrix products make sense. 0

The next result expresses the idea that the bootstrap operation commutes with smooth
functions. Let ¢ be a function from one separable Banach space B to another B’. Let x,
€ B; most of the action will occur near xo. Suppose that ¢ is continuously differentiable at
xo in the following sense. For some 8, > 0, if || x — xo|| = 8o, then as real A — 0,

o(x + hy) — ¢ (x)
h

for all y € B, where ¢’(x) is a bounded linear mapping from B to B’. Assume too that if
[|xr — x0|| = O then || ¢’(x) y — ¢’(x0) ¥ || = O, uniformly on strongly compact y-sets. By the
uniform boundedness principle, there is a positive §; = § such that || x — xo|| = 8, entails
¢’ ()| = K.

LEmMA 8.10. Let X, be a B-valued random variable and a, a scalar tending to
infinity, and x, € B with x, — x,. Suppose the law of a.(X, — x,) converges weakly to the
law of W. Let ¢ be a smooth function from B to B’, as above. Then the law of a.[¢(X,)
— ¢ (x,)] converges weakly to the law of ¢’ (x0) W.

— ¢'(x)y weakly

Proor. The argument is only sketched. Fix a bounded linear functional A on B, an x
€ B with ||x — xo|| < % 81, a y € B with | y]| < % 8, and let ¢ be real with | ¢| = 1. Then

(8.4) (—%?\[«b(x +ty)] =Alo'(x + ty)y].

The right hand side of (8.4) is a bounded function of ¢, so t —> A[¢(x + ty)] is absolutely

continuous, and
t

8.5) Ale(x + ty)] =Alo(x)] + f Alo'(x + uy)y] du.

0

Since (8.5) holds for all A,

t

(8.6) d(x + ty) = ¢(x) + J' ¢'(x +uy)y du

0

where u — ¢'(x + uy)y is strongly integrable by a direct argument. If n is large, || x, — xo||
< %36;; and || X» — x| < %8: with overwhelming probability. Then, except for a set of
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uniformly small probability, by substitution into (8.6),

1

(8.7 an[$(Xn) — ¢ (x)] =J' ¢’ + w(Xn — 2)] 0n (X — %) dua.
0

By Prokhorov’s theorem, except on a set of uniformly small probability, a,(X, — x,) € C,

a fixed large compact set. So, except for a set of uniformly small probability, the integrand

on the right is uniformly close to ¢'(xo) @.(X, — x,); this final approximation is even

uniform in . 0O

REMARK. The interaction of two standard terminologies is perhaps unfortunate: if b,
and b € B, then b, — b weakly means A (b,) — A(b) for all bounded linear functionals A
on B. On the other hand, if W, and W are B-valued random variables, the law of W,
converges weakly to the law of Wiff E (§(W,)} — E {§( W)} for all bounded functions 8
on B which are continuous in the strong topology.

LEmMA 8.11.  If B is the Brownian bridge and T is a closed subset of [0, 1] which
contains points other than 0 and 1, then supr| B(t)| has a continuous distribution.

Much more is probably true. The distribution of supr|B(¢)| may well have a C*
density, and likewise for other diffusions. However, Lemma 8.11 is all we need for Corollary
4.2. To prove the lemma we need a couple of sub-lemmas. Recall that B(-) is a continuous
Markov process.

LEMMA 8.11.1. Let B(t+) be the o field in C[0, 1] of events which depend only on
path behavior right after t (Freedman, 1971, page 102). Let P be the probability measure
on C[0, 1] which makes the coordinate process a Brownian bridge. 8 (t+) is trivial, i.e.,
if A € B(t+), then the conditional probability

P(BEA|B(t))=0 or 1
with probability 1.

Proor. Given B(t) = ¢, the process B(t + u) for 0 = u = 1 — ¢t is Gaussian with the
same joint distribution as

1-1¢ 1-¢

J1_—tB< u )+c“‘t‘”
By a remark of Doob (1949) this in turn has the same joint distributions as

Jr:t(l_l‘jt)w< u >+c‘1“‘“’

1-t—u 1-¢

where W is a Wiener process on (0, ©) and W(0) = 0. Lemma 8.11.1 follows from the
Blumenthal 0 — 1 law (see Freedman, 1971, page 106, for example).

LEMMA 8.11.2. We can represent T as the union of two sets, Ty, and T — Ty, such
that every point in T1; may be approached by other points in T from both sides and T —
T\ is countable.

Proor. We can write T'= T U T> where T} is a closed perfect set and 7% is countable
(Hausdorff, 1957, page 159). Call a point of T an endpoint if it can only be approached on
one side by points in 7. The set of endpoints, call it Ty, is clearly countable. Write T'.
= T1 - T11.

Proor oF LEMMA 8.11. Note that supr|B(t)| is actually a maximum since B is
continuous and, moreover, that maxr| B(¢)| > 0 with probability 1 since T includes points
other than {0, 1}. So what we need to prove is, for each ¢ > 0,

P[maxr|B(t)|=c]=0.
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A simulation, in which the bootstrap distribution is compared to the theoretical distribution.

We claim it is enough to show

(8.8) Plmaxr,|B(t)|=c, |B(t)|<c:ite T—T]=0

since for ¢ > 0,
8.9) S{P[|B(t)|=cl:itE T — T} =0.

Associate with each ¢ € T, in a measurable way a decreasing sequence s,(t) | £, s.(t)
€ TV n, t. For example, take s,(¢) to be the largest point in T which lies between ¢ and
t + 1/n. Now let o be the first ¢ € T such that | B(¢)| = c and ¢ = 1 otherwise. Then,

(810) P[maxr,|B(t)| = ¢, |B(t)| <c,t€ T — Ty
= P[0 € T, | B(s:.(0))| <|B(o)| for large n].

But by Lemma 8.11.1, for any ¢t € T},
(8.11) P[|B(s.(t))| <|B(t)| for large n|B(¢)]=0or 1.

Since t € Tz, lim inf, P[|B(s.(t))| = |c| | B(¢) = ¢] > 0 for any finite ¢ and hence the
probability in (8.11) is 0. By the strong Markov property the right-hand side of (8.10) is 0.
Then (8.8) and the lemma follow. 0O

9. A simulation. To illustrate Theorem 1.1, a simulation was performed. The popu-
lation consisted of the 6,672 Americans aged 18-79 in Cycle I of the Health Examination
Survey.* The variable of interest was systolic blood pressure, with an average of 130.3 and
a SD of 23.2 millimeters of mercury. The distribution had a longish right tail: the minimum
was 73, the maximum 260, with skewness of 1.3 and kurtosis of 2.4.

A sample of 100 was drawn at random, with replacement. The sample average systolic
blood pressure was 129.6 with a SD of 21.4. Consider these sample results from the point
of view of a statistician who does not know the population figures, and has forgotten the
“SD/+n” formula. Such a statistician could estimate the sampling error in the sample

* These 6,672 subjects were themselves a probability sample drawn from the American population.
The data were provided by the National Center for Health Statistics.
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average by the bootstrap principle (Theorem 1.1). The sampling error follows the theoret-
ical sampling distribution of
Xi+ - + X0
100 -

where X, is the blood pressure of the ith sample subject, and y is the population average.
This is approximated by the bootstrap distribution of

X¥+ oo + Xioo _ Xi+ oo + Xio
100 100 ’

where the X;* are drawn at random with replacement from {X, - - -, X100}, conditioning on
these original X’s.

Figure 1 compares the bootstrap istribucion (dashed) with the theoretical distribution
(solid). Both are rescaled convolutions, one of the population distribution, the other of the
sample empirical distribution. These convolutions were computed exactly, using an algo-
rithm based on the Fast Fourier Transform. As the figure shows, the bootstrap distribution
follows the theoretical distribution rather closely.
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