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ESTIMATING A BOUNDED NORMAL MEAN

BY GEORGE CASELLA! AND WILLIAM E. STRAWDERMAN®

Cornell University and Rutgers University

The problem of estimating a normal mean has received much attention
in recent years. If one assumes, however, that the true mean lies in a bounded
interval, the problem changes drastically. In this paper we show that if the
interval is small (approximately two standard deviations wide) then the Bayes
rule against a two point prior is the unique minimax estimator under squared
error loss. For somewhat wider intervals we also derive sufficient conditions
for minimaxity of the Bayes rule against a three point prior.

1. Introduction. The problem considered is that of estimating the mean of a normal
distribution under the additional assumption that the mean lies in some bounded interval.
While the assumption of boundedness of the true mean can be useful in practice, it
introduces some surprising difficulties in theory. It has long been known that the sample
mean is an inadmissible estimator under quadratic loss. Admissible (proper Bayes) esti-
mators are plentiful, but minimax estimators have not yet been explicitly found.

Ghosh (1964) proved the existence of a unique minimax estimator for a more general
problem than considered here. Applying his results to this problem he constructed a
sequence of estimators which converge to the minimax estimator. The estimators are
rather difficult to evaluate, however, and the limit cannot be explicitly found. Ghosh’s
results point out that a least favorable prior would put mass on a finite number of points.
In this paper we show that if the interval containing the parameter is small enough
(approximately two standard deviations wide), then a two point prior is least favorable
and the associated Bayes estimator is minimax.

For somewhat wider intervals we derive sufficient conditions for minimaxity of the
Bayes estimator against a three point prior. The conditions needed to prove minimaxity
seem to be stronger than necessary, however, for we also present numerical evidence that
the “three point” Bayes rule is minimax for an interval wider than those covered by our
theorem.

In Section 2 we develop the necessary notation. Section 3 contains the results for the
two point prior and Section 4 contains the results for the three point prior.

2. Notation. Let x be an observation from a normal population with mean 6 and
variance 1, i.e.,, x ~ n(f, 1). We assume that § € [—m, m] for some fixed m > 0. No
generality is lost in assuming the interval to be symmetric about zero.

For any estimator §(x) we define the loss incurred by estimating 8 with §(x) to be

L8, 8(x)) = (8 — 8(x))"
The risk is defined as

R(6, 8) = E4(8 — 8(x))?,
and the Bayes risk with respect to the prior distribution () is
r(r, 8) = E.Es(6 — 8(x))".
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Let 7, denote the two point prior putting equal mass on x=m, and letéd, (x) denote the
Bayes rule against 75,. It is straightforward to check that

(2.1) dm(x) = m tanh (mx)

Let 75, denote the three point prior putting mass a at 0 and (1/2)(1 — «) at £m. The
Bayes rule against 7, is given by

(1 — a)m tanh (mx)

(2.2) Om(x) = .
1 2
l—a+a exp(§ m ) sech(mux)

3. Minimaxity of the Bayes rule against a two point prior. The main result of
this section is given in Theorem 3.1, which gives conditions under whiché, (x) is a minimax
estimator of §. Before the theorem is proved we must establish two preliminary results.

LEMMA 3.1. Let x ~ n(6, 1), § € [—m, m]. Let 85, (x) be the Bayes estimator (2.1)
against 75,. Then

maxpe(-m,m & (6, 85) = max{R(0, 85), R(m, 8,)}.

Proor. For notational convenience letd,, (x) = §(x) = m tanh(mx). Note that §'(x) =
m? — 8% (x) and 8" (x) = —28'(x)8(x). The derivative of the risk is

(3.1) (d/d)R(6, 8) = 2E,((6 — 8(x))(1 — §'(x))).
Adding +ux, integrating by parts, and collecting terms yields
(3.2) (d/dO)R (6, 8) = Es((x — 8(x)) — 8"(x)(x + 8(x))).

We will show that the expectation in (3.2), as a function of #, can have at most three sign
changes. This will follow from Theorem 3 and Corollary 2 of Karlin (1957) if we can show
that the integrand has at most three sign changes as a function of x.

At x = 0 the integrand is zero and, for x > 0, it is zero only if

(3.3) 1- 5 = 8’(x)(1 +&> .
x x

For x > 0 it is straightforward to check that 8(x)/x and &(x) are both positive and
decreasing. Thus 1 — 8(x)/x is increasing and §(x)(1 + &(x)/x) is decreasing and equation
(3.3) can have at most one solution. Since the integrand in (3.1) is an odd function a similar
argument shows that equation (3.3) has at most one solution for x < 0. Also, since §(x) and
&’(x) are bounded, the integrand in (3.2) is positive for large positive x, hence, as x varies
from —o to + oo the order of the sign changes is —+—+.

The results of Karlin state that the expectation has at most three sign changes, and the
sign changes are in the same order. It is easy to check that

Eo((x — 8(x)) — 8" (x)(x + 8(x))) =0
and
Es((x — 8(x)) — & (x)(x + 8(x))) = —E_4((x — 8(x)) — 8" (x)(x + 8(x))).

Therefore, if R (6, §) has an extremum for § > 0 that extremum must be a minimum, since
the sign change in the derivative is from negative to positive. Since R(f, 8) is an even
function the same is true for § < 0. Thus for § € [—m, m], R(6, ) has its maximum either
atd=0orf=m.0
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In order for 8, (x) to be a minimax estimator of 6, its maximum risk must equal its
Bayes risk. The next lemma establishes conditions on m that insure that the maximum
risk is R(m, 82).

LEmMma 3.2. The function
f(m) = R(0,85) — R(m, 83,)
changes sign only once as m varies from 0 to «. This sign change is from negative to

positive and hence there exists a unique value m, such that f(m) < 0 for all m < m,.

REMARK. An IBM 360/165 computer was used to evaluate m,. The value m, =
1.056742 gives a value of f(m,) which is zero to six decimal places.

Proor. To show that f(m) has only one sign change from negative to positive it is
sufficient to show that

g(m) = E, tanh*(mx) — E,.(1 — tanh(mx))?

is increasing, since f(m) = m’g(m). Differentiating g(m) with respect to m, we have after
an integration by parts

(3.4) (d/dm)g(m) = 2Eoxtanh(mx)sech?(mx) + 2E,.(x + m)(1 — tanh(mx))sech?(mx).

The first expectation is positive since the integrand is positive. To see that the second
expectation is also positive consider the function

h(8) = Ey(x + m)(1 — tanh(mx))sech®(mx).

The integrand has only one sign change, from negative to positive. Thus, proceeding as in
Lemma 3.1, if we can show A(0) > 0 it follows that A(m) > 0 and g(m) is increasing. Now,
by symmetry we have

h(0) = Eo(m sech®(mx) — x tanh(mx)sech®(mx)).
Integrating the second term by parts and collecting terms yields
h(0) = Eo(m sech®(mx)(1 + 2 tanh*(mx) — sech®(mx)) > 0,
since the integrand is always positive. Since A(0) > 0 the lemma is proved. O

We are now ready to prove the main theorem of this section, asserting the conditions
for minimaxity of 85, (x).

THEOREM 3.1. Ifx ~ n(6, 1) and 8 € [-m, m], 0 = m < m, thend;, (x) = m tanh(mx)
is minimax against squared error loss and 5, is a least favorable distribution.

Proor. From Lemma 3.1 and Lemma 3.2
(3.5) maxee(-mm) R(0, 87) = R(m, 87) =r(ry, 8n).

Theorem 1, page 90, of Ferguson (1967) can now be used to finish the proof. For
completeness we note that (3.5) implies

(3.6) infs sup, (7, 8) < r(r5, ,) < sup. inf; r(r, 8)

and thus 75, is least favorable. The inequalities in (3.6) are, in fact, equalities sor(rs, d5)
is the minimax value of the risk and 5 (x) is the minimax estimator. O

If x ~ n(f, o%), o®> known, then the restriction on m becomes 0 = m < m, ¢ and 83, (x)
= m tanh(mx/o0) is a minimax estimator of . Thus, if an experimenter can assert the value
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of @ to within one standard deviation. §,, (x) can provide a substantial decrease in the risk
over that of the usual estimator 8(x) = x. Table 1 gives values of the minimax risk for
m = .1,1.05(.1) and Figure 1 shows the graphs of the risk function R(4, 8,) for m =
.25,1(.25). We also want to note that at § = 1 all risk functions were below the value of 1,
the risk of x.

An obvious competitor for 8., (x) is the maximum likelihood estimator (MLE), un(x),

where
m fx=m
Um(x) = 1§ x if|x|<m

m if x <-—m.

For |§]| < m it is clear that u.,(x) dominates x. The following theorem shows when 4, (x)
dominates un(x).

THEOREM 3.2. Ifm <1 then R(6,85) < R(0, un) for all § € [—m, m].

Proor. The proof uses a sign change argument similar to that of Lemma 3.1 and will
only be sketched. Let § = 65, and u = u,. Using an integration by parts the difference in
risks A(S, u, #) = R(6, 6) — R(6, u) can be expressed as

A8, u, 0) = Eg[(8(x) — u(x))(8(x) + u(x) — 2x) — 2(Lm,m(x) — 8'(x))].

If m < 1, the function inside the expectation has only one sign change, from negative to
positive, as x varies from 0 to . Since § is Bayes with respect to the two point prior with
mass at +m, it follows that A(8, u, m) is negative and hence A($, u, 4) is negative for all
|0l <m.O

Figure 2 displays the risk functions of §5, and u, for m equal to .5 and .1. For |§| < m
=< 1 there is a definite advantage in using 85, rather than u,. In fact, for values of m close
to 1, numerical evidence suggests that the maximum risk of §5, is less than the minimum
risk of u,, (for | 8| < m). For large 6, u,, dominates 8., but only by a small amount since,
as @ increases, 8m = m = Un,.

4. The Bayes rule against a three point prior. In this section we demonstrate
that my is the largest value of m for which 85, (x) is minimax, and investigate the minimaxity
of the Bayes rule against a three point prior. We start with the following lemma, which
displays a prior that will later be seen to be more unfavorable thanry, .

LEMMA 4.1. If m > m, there exists a unique three point prior t5 putting mass a* on
zero and (1/2) (1 — a*) on £m such that
(4.1) R(0, 83) = R(m, 6%,),
where 85 (x) is the Bayes rule (2.2) against 75 under squared error loss.

Proofr. Let 75, be the three point prior which puts mass « on zero and (1/2) (1 — @) on
+m. The Bayes rule is given by (2.2). Using the same technique as in the proof of Lemma

TABLE 1.
Selected values of the minimax risk, m < 1.05

m .10 .20 .30 40 .50 .60 .70 .80 .90 1.0 1.05

Risk 010 .038 083 .138 .199 262 321 374 417 450 461
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3.2 it is easy to verify that

d
— (R(0, 6%) — R(m, o7)) <O,
da

so that the difference in risks is decreasing. The lemma will be proved if we can show that
equation (4.1) has a solution for 0 = a = 1.

At a = 0 it follows from Lemma 3.2 that R(0,6, ) > R(m,6,. ) and at « = 1 we have
R(0, 8)) < R(m, 81,) (since 8, = 0). Thus (0, 85) changes from positive to negative as «a
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F1c. 2. Comparison of risk functions of the MLE (dashed lines) and &, (x) (solid lines).

varies from 0 to 1. Since the difference is continuous and decreasing, there is a unique «
which satisfies equation (4.1). 0

We can now use Lemma 4.1 to show that m, is the largest value for which the two point
prior 75, is least favorable.

THEOREM 4.1. If m > my then 15, is not least favorable.

Proor. Let a* be the solution to R(0, 8%) = R(m, 8% ). Since 82 is Bayes against 7,
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F1G. 3. Risk functions of 83 (x) for m = 1.25, 1.5, 1.75, 2.0, and the risk function of the Bayes
estimator against a four point prior for m = 2.25.

we havg R(m, 8%) < R(m, 8%) and since R(m, &%) = r(r%, 8%), we have r(r2, 83) <
r(tym, O8m) so T4 is not least favorable. 0

As the interval containing § widens the least favorable prior will put mass on an
increasing number of points. Thus, it seem reasonable to inquire at this point if the three
point prior 75 is least favorable for some values of m. The associated Bayes estimator 82
(x) has the property that its risk is constant on the points of the prior. Hence, if it can be
shown that the maximum risk is attained at these points it will follow that 82 (x) is
minimax.

It might be conjectured that for m; < m < 2 (say) that 83 (x) is minimax. Indeed, from
numerical evidence (see Figure 3) this seems to be the case. Unfortunately, as might be
expected from the complex form of 85 (x), this conjecture is quite difficult to prove.
However, Theorem 4.2 asserts the minimaxity of §2 (x) for m in a subset of the interval
[mo, 2], approximately for 1.4 < m < 1.6. We again need a preliminary lemma.
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TABLE 2.
Selected values of the Bayes risk of 85 , 1.1 = m < 2.0.

m 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Risk 472 492 513 .535 .556 577 .596 .615 .631 .645
a* 050  .143 214 .269 318 .345 371 .392 .408 420

Risk

+
T v T

0 .5 1.0 1.5 2.0
Parameter

F1G. 4. Comparison of the risk functions of the MLE (dashed lines) and 8% (x) (solid lines).
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LEMMA 4.2. Let §;,(x) be the Bayes estimator against t5,. If a and m satisfy
(4.2) (m? — 1)(m* — 1 + exp(m?/2))"' < a < 2(2 + exp(m?/2))!
then max_m<p<m R(8, 85) = max{R(0, é5.), R(m, 65)}.

Proor. The proof is very similar to that of Lemma 3.1 and is omitted. We remark that
expression (4.2) insures that, for x > 0, (d/dx)(8%(x)) < 1 and (d?/dx*) (8% (x)) < 0. These
conditions are needed to apply the sign change arguments of Lemma 3.1. 0

THEOREM 4.2. Let 75 be the three point prior described in Lemma 4.1, and let 85, (x)
be the associated Bayes rule under squared error loss. If a* satisfies (4.2) then 85 (x) is
minimax and 7, is least favorable.

Proor. Similar to that of Theorem 3.1.0

For m = 1.1, 2.0(.1) values of a* have been calculated and are presented in Table 2. The
only values which satisfy condition (4.2) are those for which 1.4 < m =< 1.6. This is
disappointing but, due to the difficult form of 8% (x) we don’t expect much improvement
over these bounds. Figure 3 shows the risk function of 83 (x) for m = 1.25, 2.0 (.25). In each
case the function indicates that the estimator is minimax, hence our conjecture that 83 (x)
is minimax for m, < m =< 2. Numerical evidence suggests that 8% (x) will not be minimax
for values of m much greater than 2. Indeed, we include in Figure 3 the risk function, for
m = 2.25, of the Bayes estimator against the four point prior with mass .255 on +.5633 and
mass .245 on £2.25. Calculations suggest that this estimator is minimax with a maximum
risk of .675 attained at the points of the prior.

Figure 4 compares the risk of 8, (x) with the MLE. Since the risk functions cross inside
the interval [0, m], there is no hope for a result analagous to Theorem 3.2. However, the
graphs indicate that 85 (x) is preferable to the MLE since it can provide a large risk
improvement for small values of §, and not be significantly worse for large values of 4.
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