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THE QUADRATIC LOSS OF ISOTONIC REGRESSION UNDER
NORMALITY

By CHU-IN CHARLES LEE

Memorial University of Newfoundland

The maximum likelihood estimator ji of a nondecreasing regression func-
tion has been studied in detail in the literature. However, little is known about
its quadratic loss pointwise. This paper shows that the mean square error of
fi, is less than that of the usual estimator X; for each i when X, - - -, X, are
independent normal variates.

N

1. Introduction. Let X;, ..., X, be independent normal variates with unknown
means y; satisfying p; < pz < .-+ =< p, and with variances Var(X;) = o*/w; where w; are
given positive weights. The isotonic regression (fi:, ---, fiz) of unknown parameters
(1, + -, ) is defined as the optimal solution to the least squares problem

mingy,,...,v, Zf=1 X — Y) w;

subject to the condition Y; < Y, < ... =< Y,. This optimal solution ({1, - -, fi) which is
also the maximum likelihood estimator of (u1, -« -, p) can be easily manipulated by the
Pool-Adjacent-Violators algorithm proposed by Ayer et al. (1955). Most of the applications
of statistical inference under order restrictions which appeared in the literature prior to
1972 can be found in Barlow et al. (1972).

Brunk (1965) showed that

Y X = ) w = T (X — 1) wi + T (s — ) ’wi.

Thus the total mean square error of the maximum likelihood estimator, Y1 E(ji; — u:)*w;,
is strictly less than that of the usual estimator, Y*; E(X; — u:;)*w,. The aim of this paper
is to show that the inequality

(1.1) EX, — )’ > E(pi — m)*

holds pointwise. Consequently the inequality also holds if p; > pir1 > p: — ¢; for some i. For
instance, if £ = 2 and w; = w. = 1, then ¢; can be as large as 1.118 o.

2. The inequality. We shall verify the inequality (1.1) by mathematical induction.
But first let us consider the isotonic regression in the absence of X, and that in the
presence of X;. We shall let (71, - - -, #,—1) and ({1, - - -, fix) denote the isotonic regressions
based upon (Xi, -+, Xz—1) and (X, .- -, X}), respectively. By the min-max formula, i.e.,
Equation (1.11), page 19 of Barlow et al. (1972), we have that for each i < &,

2.1) ji; = min,<, Max.<; Av(s, £) < min;<;<; MaXe=; Av(s, t) = ¥
where

Au(s, t) = Yjms Xjw;/ Yims ).
It follows that if »; > fi;, then
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(2.2) i = max.<; Av(s, k) = Av(l, k).

By the independence and the normality of the variates Xi, ..., X, Av(m, n) —
Au(s, t) and Auv(l, k) are stochastically independent. The event [ji; = Av(s, £)] can be
represented as the intersection of N;=I[Av(j, ¢) < Au(s, t)] and N} [Av(s, /) = Au(s, )] by
the min-max formula and by the max-min formula. Therefore the indicator 1ji= Avsey and
Au(l, k) are stochastically independent; so are 15=avmm1 and Av(l, k). It follows that for
i<k

E[(: — i)Av(1, k)] = ¥ E {[Av(m, n) — Auv(s, £)]JAU(1, k) Liz=avimm) Lig-aves, 01}
2.3) =Y E{[Av(m, n) — Au(s, t)]l[;:l=A;;(m,n)] lii—avis, 01 E[AV(, R)]

= E@ — ;) E[Av(1, B)].

THEOREM. Let Xi, .-, X, be independent normal variates with unknown means Wi
satisfying p1 < p2 < --- =< wx and with variances Var(X;) = o*/w; where w, are given
positive weights and k = 2. Then for each i we have

EX; — w)? > E(ju — w)?,

where (ju, - - -, fix) is the maximum likelihood estimator of (w1, - - -, jux).

ProOF. Assume that the result holds for 2 — 1 so that

(A) E(X; — w)* = E(b:; — ju)* where j; is the isotonic estimator of p; based upon
(X1,° . -,Xk_1), i= 1, 2, LN k- 1, and

(B) EX; — w)* = E(% — w)* where # is the isotonic estimator of p, based upon
(Xo,eo+, X2),0=2,8, -+, k.

Case 1. Let p; < E[Av(l, k)], i < k. From Condition (A), we have that
EX: — w)* =z E( — w)*
= E(ii; — w)* + EG: — fi)* + 2EG; — i) (d; — a).
From (2.1) and (2.2),
E@: — i) — Av(1, B)] = E(; — i) [fi. — Av(1, k)]l = 0.
From (2.3) and (2.1),
E@: — p)[Av(1, k) — p:] = E(3: — ) E[Av(L, k) — p;] 2 0.

Therefore, E(X; — p;)* = E(: — 1:)* > E(juu — m:)>. When & = 2, we have identities in
Conditions (A) and (B).

Casg 2. Let u; = E[Au(1, k)], i > 1. Use Condition (B) and results analogous to (2.1),
(2.2) and (2.3) but with the inequalities reversed.

One consequence of the proof of the theorem is that one can show
EX - .ui)z - E(fli - .ui)2
> min{E[X; — Av(i — 1, 9)]*1ix._=x), E[Xi — Av(, i + 1)Plixex.}

for 1 < i < k. See Wright (1978) for numerical examples of pointwise mean square errors
E(fi — w)>.
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