Open Access
November, 1980 Unbiasedness of Invariant Tests for Manova and Other Multivariate Problems
Michael D. Perlman, Ingram Olkin
Ann. Statist. 8(6): 1326-1341 (November, 1980). DOI: 10.1214/aos/1176345204

Abstract

Let $Y:p \times r$ and $Z:p \times n$ be normally distributed random matrices whose $r + n$ columns are mutually independent with common covariance matrix, and $EZ = 0$. It is desired to test $\mu = 0$ vs. $\mu \neq 0$, where $\mu = EY$. Let $d_1, \cdots, d_p$ denote the characteristic roots of $YY'(YY' + ZZ')^{-1}$. It is shown that any test with monotone acceptance region in $d_1, \cdots, d_p$, i.e., a region of the form $\{g(d_1, \cdots, d_p)\leq c\}$ where $g$ is nondecreasing in each argument, is unbiased. Similar results hold for the problems of testing independence of two sets of variates, for the generalized MANOVA (growth curves) model, and for analogous problems involving the complex multivariate normal distribution. A partial monotonicity property of the power functions of such tests is also given.

Citation

Download Citation

Michael D. Perlman. Ingram Olkin. "Unbiasedness of Invariant Tests for Manova and Other Multivariate Problems." Ann. Statist. 8 (6) 1326 - 1341, November, 1980. https://doi.org/10.1214/aos/1176345204

Information

Published: November, 1980
First available in Project Euclid: 12 April 2007

zbMATH: 0465.62046
MathSciNet: MR594648
Digital Object Identifier: 10.1214/aos/1176345204

Subjects:
Primary: 62H10
Secondary: 62H15 , 62H20 , 62J05 , 62J10

Keywords: canonical correlations , characteristic roots , complex multivariate normal distribution , FKG inequality , growth curves model , HPKE inequality , hypergeometric function of matrix arguments , MANOVA , maximal invariants , monotonicity of power functions , noncentral distributions , Noncentral Wishart matrix , pairwise total positivity of order two , positively associated random variables , Rectangular coordinates , stochastically increasing , Testing for independence , Unbiasedness of invariant multivariate tests

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 6 • November, 1980
Back to Top