Open Access
November, 1980 Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines
Girdhar G. Agarwal, W. J. Studden
Ann. Statist. 8(6): 1307-1325 (November, 1980). DOI: 10.1214/aos/1176345203

Abstract

Let $S^d_k$ be the set of $d$th order splines on $\lbrack 0, 1 \rbrack$ having $k$ knots $\xi_1 < \xi_2 \cdots < \xi_k$. We consider the estimation of a sufficiently smooth response function $g$, using $n$ uncorrelated observations, by an element $s$ of $S^d_k$. For large $n$ and $k$ we have discussed the asymptotic behavior of the integrated mean square error (IMSE) for two types of estimators: (i) the least squares estimator and (ii) a bias minimizing estimator. The asymptotic expression for IMSE is minimized with respect to three variables. (i) the allocation of observation (ii) the displacement of knots $\xi_1 < \cdots < \xi_k$ and (iii) number of knots.

Citation

Download Citation

Girdhar G. Agarwal. W. J. Studden. "Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines." Ann. Statist. 8 (6) 1307 - 1325, November, 1980. https://doi.org/10.1214/aos/1176345203

Information

Published: November, 1980
First available in Project Euclid: 12 April 2007

zbMATH: 0522.62032
MathSciNet: MR594647
Digital Object Identifier: 10.1214/aos/1176345203

Subjects:
Primary: 62K05
Secondary: 41A50 , 41A60 , 62F10 , 62J05

Keywords: $B$-splines , $L_2$-projection operator , approximation , Bernoulli polynomial , bias minimizing estimator , least square estimator , optimal design

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 6 • November, 1980
Back to Top