Abstract
Let $X_1, \cdots, X_n (n \geqslant 2)$ be a random sample on a rv $X$, and $Y_1 < \cdots < Y_n$ be the corresponding order statistics. Define $Z_k = \frac{1}{n-k}\Sigma^n_{i=k+1}(Y_i - Y_k), 1 \leqslant k \leqslant n - 1, W_k = \frac{1}{k-1}\Sigma^{k-1}_{i=1}(Y_k - Y_i),$ $2 \leqslant k \leqslant n$. Using the properties $E(Z_k\mid Y_k = y) = \alpha y + \beta$ and $E(W_k\mid Y_k = y) = \alpha y + \beta$, a.e. $(dF)$, where $\alpha$ and $\beta$ are constants, we obtain characterizations of several distributions which include the exponential, the Pearson (type I) and the Pareto (of the second kind) distributions.
Citation
Y. H. Wang. R. C. Srivastava. "A Characterization of the Exponential and Related Distributions by Linear Regression." Ann. Statist. 8 (1) 217 - 220, January, 1980. https://doi.org/10.1214/aos/1176344905
Information