Open Access
January, 1980 A Characterization of the Exponential and Related Distributions by Linear Regression
Y. H. Wang, R. C. Srivastava
Ann. Statist. 8(1): 217-220 (January, 1980). DOI: 10.1214/aos/1176344905

Abstract

Let $X_1, \cdots, X_n (n \geqslant 2)$ be a random sample on a rv $X$, and $Y_1 < \cdots < Y_n$ be the corresponding order statistics. Define $Z_k = \frac{1}{n-k}\Sigma^n_{i=k+1}(Y_i - Y_k), 1 \leqslant k \leqslant n - 1, W_k = \frac{1}{k-1}\Sigma^{k-1}_{i=1}(Y_k - Y_i),$ $2 \leqslant k \leqslant n$. Using the properties $E(Z_k\mid Y_k = y) = \alpha y + \beta$ and $E(W_k\mid Y_k = y) = \alpha y + \beta$, a.e. $(dF)$, where $\alpha$ and $\beta$ are constants, we obtain characterizations of several distributions which include the exponential, the Pearson (type I) and the Pareto (of the second kind) distributions.

Citation

Download Citation

Y. H. Wang. R. C. Srivastava. "A Characterization of the Exponential and Related Distributions by Linear Regression." Ann. Statist. 8 (1) 217 - 220, January, 1980. https://doi.org/10.1214/aos/1176344905

Information

Published: January, 1980
First available in Project Euclid: 12 April 2007

zbMATH: 0422.62010
MathSciNet: MR557568
Digital Object Identifier: 10.1214/aos/1176344905

Subjects:
Primary: 62E10

Keywords: characterization , exponential distribution , Linear regression , order statistics , Pareto distribution of second kind , Pearson type I distribution

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 1 • January, 1980
Back to Top