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We consider prediction with expert advice when data are generated from
distributions varying arbitrarily within an unknown constraint set. This semi-
adversarial setting includes (at the extremes) the classical i.i.d. setting, when
the unknown constraint set is restricted to be a singleton, and the uncon-
strained adversarial setting, when the constraint set is the set of all distribu-
tions. The Hedge algorithm—long known to be minimax (rate) optimal in
the adversarial regime—was recently shown to be simultaneously minimax
optimal for i.i.d. data. In this work, we propose to relax the i.i.d. assumption
by seeking adaptivity at all levels of a natural ordering on constraint sets. We
provide matching upper and lower bounds on the minimax regret at all levels,
show that Hedge with deterministic learning rates is suboptimal outside of
the extremes and prove that one can adaptively obtain minimax regret at all
levels. We achieve this optimal adaptivity using the follow-the-regularized-
leader (FTRL) framework, with a novel adaptive regularization scheme that
implicitly scales as the square root of the entropy of the current predictive
distribution, rather than the entropy of the initial predictive distribution. Fi-
nally, we provide novel technical tools to study the statistical performance of
FTRL along the semi-adversarial spectrum.

1. Introduction. In this work, we are concerned with obtaining guarantees for methods
that make decisions in light of data. Often, such guarantees are obtained via assumptions
on the distribution of data. One important example of such an assumption is that data are
independent and identically distributed (i.i.d.). While this type of assumption—on the joint
dependence structure of data—may be pragmatic, and can motivate methods that seem to
perform well in practice, it is impossible to be sure that apparent structure observed in past
data will continue. This impossibility highlights the inherent limitations of such assumptions:
any guarantees about performance may fail in practice if the assumed dependency does not
hold, and statistical methods that are optimal under a specific family of dependence structures
may be far from optimal under another. It is of practical interest to determine when the per-
formance of statistical methods is robust to the dependence structures that they are designed
for, and to quantify how performance guarantees degrade as assumptions on the dependence
structure are relaxed. Contrary to guarantees holding only under a specific dependence mod-
elling assumption, meaningful guarantees should ideally hold regardless of the true nature of
the data.

In order to study guarantees when even our most basic assumptions on data may not hold,
we work in the setting of sequential decision making. In particular, we study the problem
of prediction with expert advice [39, 57], where the statistician (decision maker) faces a se-
quence of prediction problems, on each round being offered the predictions of a finite set of
“experts.” On any round, the statistician’s regret is defined to be the excess cumulative loss of
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the statistician’s predictions, relative to the cumulative loss of the single best performing ex-
pert. Rather than minimize expected loss (a notion that may not be meaningful in this setting),
the goal of the statistician is to minimize regret. In doing so, the statistician’s performance is
guaranteed to be, in aggregate, never much worse (and possibly better) than that of the single
best expert in hindsight.

Prediction with expert advice is a classical problem, studied in statistics, information the-
ory, theoretical computer science, game theory, finance and many other fields. A wide set of
researchers has contributed to its development, beginning with the seminal work of Hannan
[27], which introduces the concept of regret for sequential two player games, and of Cover
[20], which studies the special case of two experts. Cesa-Bianchi and Lugosi [15] provide a
detailed history of this problem in their book. In statistics, prediction with expert advice has
close connections to empirical process theory [14] and statistical aggregation [3, 47, 53, 54].
Past work has studied prediction with expert advice under a wide range of assumptions on
the data-generating mechanism, including when the prediction tasks (and expert advice) are
assumed to be i.i.d. across rounds as well as when they are allowed to depend in an arbitrary
way on past decisions.

Remarkably, there are meaningful minimax rates (of regret) for both the i.i.d. setting and
the latter, so-called “adversarial,” setting. By adopting a sequential prediction algorithm that
is minimax in the adversarial setting, can we in a sense avoid making assumptions on the joint
dependence structure of the sequence of prediction problems? On the one hand, adversarially
minimax strategies come with nontrivial regret guarantees that hold without assumptions.
On the other hand, these strategies can be very conservative and suffer much more regret
than necessary when the data is (typical of) an i.i.d. realization. Somehow, we would like to
provably exploit i.i.d. structure when it is present, without suffering too much regret when it
is not.

One way to frame such guarantees is through the lens of adaptation theory, which has
had a huge impact on statistics (see, e.g., [13]). In the sequential decision-making literature,
so-called “best of both worlds” results demonstrate the existence of sequential prediction al-
gorithms that simultaneously achieve minimax rates under both i.i.d. and adversarial settings.
These results are not entirely satisfying, however, because they say nothing of performance
when data are far from adversarial but not i.i.d. For example, at each round, our data may
come from one of several distinct distributions, but we may not be confident to model the
way that the distribution at each round depends on earlier rounds. If the populations are very
similar, we would like our methods to perform almost as well as if the data were i.i.d.

In this work, we look closely at the performance of the HEDGE family of algorithms for
prediction with expert advice, and study how performance degrades as we move away from
i.i.d. environments. HEDGE algorithms maintain a generalized Bayesian posterior over the set
of experts. Recent results [44] show that the DECREASING HEDGE variant can adapt in the
i.i.d. setting to the (“stochastic”) gap � between the expected loss of the “effective” (i.e.,
best) expert and other experts. We show that this and a broad class of variants of HEDGE

cannot adapt to the presence of more than one effective expert, a natural generalization. (We
call this the “semi-adversarial spectrum.”) After identifying minimax rates in this new setting,
we provide a novel algorithm, based on a new type of regularization, that adaptively achieves
minimax rates at all deviations from i.i.d. along the semi-adversarial spectrum.

Our work contributes to a growing body of work that studies benign data-generating mech-
anisms without relying on the i.i.d. assumption (for a detailed survey, see Section 10.2). In
particular, there is a large literature focused on developing decision procedures that satisfy
data-dependent (random) regret bounds, and thus, adapt to quantities that could be seen to
capture specific notions of regularity or easiness of the data. Examples of these quantities
include the �∞ norm or empirical variance of the incurred losses. If one has a prior belief
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that these quantities will be small (e.g., the losses are expected to be highly correlated from
round to round, likely leading to low empirical variance), one might opt to follow one of
these decision procedures. The interpretation of data-dependent regret bounds is not always
straightforward. Bounds based on the norm or variance of the losses do not necessarily of-
fer strong guarantees for i.i.d. data with stochastic gaps: bounds that adapt to the empirical
variance of the losses can be large when the observed losses vary significantly, yet this may
occur even when the data is i.i.d., a setting for which smaller error bounds are possible.

In this work, we aim to adapt to data-generating mechanisms along a spectrum be-
tween i.i.d. and adversarial settings. In order to achieve this feat, we develop a novel data-
dependent regret bound. By studying its expected value under various statistical assumptions,
we demonstrate that our method achieves the desired minimax rates. In contrast with the al-
ternative (and equally valid) adaptive regret bounds discussed above, i.i.d. settings (with a
single best expert) are the “easiest” cases, and performance degrades smoothly as we relax
the i.i.d. assumption toward the adversarial worst case. The semi-adversarial spectrum is one
of many incomparable ways to quantify the relative easiness of decision making between
i.i.d. and adversarial settings. While one should adopt a notion of easiness one expects to be
relevant in one’s domain, the semi-adversarial spectrum will be seen to have several desirable
properties and applications.

Contributions and outline. In Section 2, we formally introduce prediction with expert ad-
vice in terms of a general, possibly adversarial, data-generating mechanism. Then, in Sec-
tion 3, we define our relaxation of the i.i.d. assumption as an adversary constrained to a
convex set of distributions, and introduce the quantities to which we will aim to adapt (the
semi-adversarial spectrum). In Section 4, we formalize the relevant notion of adaptive min-
imax optimality and then summarize our main result: the existence of an adaptively mini-
max optimal prediction algorithm. In order to obtain upper bounds on regret, we derive a
novel concentration-of-measure inequality for the semi-adversarial spectrum. This concen-
tration inequality is presented in Section 5 and is likely of independent interest. In order
to establish adaptive minimax optimality, we first identify the target minimax rates along
the semi-adversarial spectrum. We do so, in Section 6, by deriving algorithm-agnostic lower
bounds that match algorithm-specific upper bounds presented later for all scenarios along
the semi-adversarial spectrum. In Section 7, we show DECREASING HEDGE and its variants
are nonadaptive by constructing algorithm-specific lower bounds. The nonadaptive nature of
these algorithms is connected to their nonadaptive learning rate tuning, as among D.HEDGE

variants with nonadaptive tunings, only oracle-based tunings can yield minimax rates. In Sec-
tions 8 and 9, we introduce a novel algorithm, META-CARE, which implicitly and adaptively
adjusts the learning rate of HEDGE without the need for oracle-based tuning, and prove that it
is adaptively minimax optimal along the entire semi-adversarial spectrum. META-CARE op-
erates by boosting our novel instance of the follow-the-regularized-leader (FTRL) algorithm,
dubbed FTRL-CARE, with D.HEDGE using a second application of D.HEDGE, and hence a
major component of our analysis is devoted to a general study of FTRL algorithms along the
semi-adversarial spectrum, which comprises Section 8. We introduce and establish the adap-
tivity of META-CARE in Section 9. Finally, in Section 10, we conclude with a detailed review
of related work. Technical details for the proofs of our results, and a brief simulation study,
are available in the Appendices, which are available as the Supplementary Material [11].

2. Notation and problem setup. Prediction with expert advice is characterized by the
manner in which experts and the player make their predictions and the mechanism by which a
response observation is generated. At every time t ∈N, each of the N ∈ N experts (arbitrarily
indexed by [N ] = {1, . . . ,N}) formulate their predictions for the t th round, jointly denoted
by x(t) ∈ ŶN , the player makes a prediction for the t th round, ŷ(t) ∈ Ŷ , and the environment
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generates a response observation for the t th round, y(t) ∈ Y . The history of the game up to
time t is summarized by h(t) = (x(s), ŷ(s), y(s))s∈[t] ∈ Ht , where H = ŶN × Ŷ × Y , with
the convention that h(0) is the empty tuple. For each time t ∈ N, the prediction ŷ(t) and
response observation y(t) are conditionally independent given the history h(t − 1) and the
recent expert predictions, x(t). This conditional independence reflects the fact that the player
does not have access to the response until after making their prediction, and that the player
has some private source of stochasticity with which to randomize their predictions.

The conditional distribution of the experts’ predictions and the data observed at round t

given h(t − 1) is uniquely described by a probability kernel πt ∈ K(Ht−1, ŶN × Y), where
K(A,B) denotes the set of probability kernels (e.g., regular conditional distributions) from
A to B. Intuitively, πt is the function describing how the data distribution on round t depends
on the realized history up to that point. Letting PN = ∏

t∈NK(Ht−1, ŶN × Y), a data-
generating mechanism is any sequence π = (πt )t∈N ∈ PN , which describes how the data
distributions change over time in response to the observed history. Similarly, the conditional
distribution of the player’s prediction at time t given h(t − 1) and x(t) is uniquely described
by a probability kernel π̂t ∈ K(Ht−1 × ŶN, Ŷ). Letting P̂N = ∏

t∈NK(Ht−1 × ŶN, Ŷ), a
prediction policy is any sequence π̂ = (π̂t )t∈N ∈ P̂N , which describes how the player will
behave over time in response to the observed history. Finally, since the π̂ may be differ-
ent depending on the number of experts (for example, the player may use a different learn-
ing rate), we provide a further level of generality describing how the player selects π̂ as a
function of the number of experts. More formally, a prediction algorithm is any sequence
a = (π̂(N))N∈N with π̂(N) ∈ P̂N for each N .

In a sequential prediction task, prior to any data being generated or predictions being made,
the player selects a prediction algorithm and the environment determines a data-generating
mechanism. Without loss of generality, the player knows the number of experts N , and so
they predict according to the prediction policy π̂ = a(N) based on their prediction algorithm.
Due to the conditional independence assumption for ŷ(t) and y(t) given h(t − 1) and x(t),
the joint distribution of (x(t), ŷ(t), y(t))t∈N is fully determined by the data-generating mech-
anism and the prediction policy selected by each party. For a data-generating mechanism π

and a prediction policy π̂ , expectation under this joint law is denoted by Eπ,π̂ . When the
prediction policy is determined by the prediction algorithm a, for any number of experts N

and data-generating mechanism π ∈ PN we use Eπ,a to denote Eπ,π̂ , where π̂ = a(N).
The accuracy of the player and experts is measured on each round using a loss function

� : Ŷ × Y → [0,1], and the player’s performance at the end of T ∈ N rounds of the game is
measured by regret, defined as the σ(h(T ))-measurable random variable

R(T ) =
T∑

t=1

�
(
ŷ(t), y(t)

) − min
i∈[N]

T∑
t=1

�
(
xi(t), y(t)

)
.

In this work, we focus on bounding the expected regret Eπ,π̂R(T ) for three specific prediction
algorithms, so we use Eπ,H, Eπ,C and Eπ,M to denote Eπ,a under the D.HEDGE, FTRL-CARE
and META-CARE algorithms, respectively (see Sections 7 to 9 for the respective definitions
of these prediction algorithms).

Since R(T ) only depends on h(T ) through the loss function, expected regret bounds are of-
ten characterized using quantities that push the data-generating distributions forward through
the loss function. Specifically, we define the losses �i(t) = �(xi(t), y(t)) and cumulative
losses Li(t) = ∑t

s=1 �i(s) for each expert i ∈ [N ] and t ∈ N. Similarly, we define the loss
vector �(t) = (�i(t))i∈[N] and cumulative loss vector L(t) = ∑t

s=1 �(s).
Let M(A) denote the set of all probability distributions on A. For a distribution μ ∈

M(A) and measurable function f : A → R, we define μf = ∫
A f (a)μ(da). We will fre-

quently use this notation for measures in M(ŶN ×Y). In particular, for each expert i ∈ [N ],
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the expert’s loss �i : (x, y) �→ �(xi, y) is a function on ŶN × Y , and μ�i is the expectation
of expert i’s loss when the expert predictions and response observation are jointly distributed
as μ.

3. Semi-adversarial spectrum. We now introduce the semi-adversarial setting, in
which we model how (non)adversarial a data-generating mechanism is via distributional con-
straints. At each round, conditional on the history, the expert’s predictions x(t) and the re-
sponse observation y(t) are sampled from a distribution lying in some set D. When D is
the entire probability simplex, the experts are unconstrained. Informally, as D “shrinks,” the
experts are more constrained and so competing with them becomes easier, from the player’s
perspective.

Formally, consider a fixed number of experts N . A time-homogeneous convex constraint
is a convex subset D ⊆ M(ŶN × Y). Let P(D) denote the collection of data-generating
mechanisms π = (πt )t∈N such that for all t ∈N and h ∈ Ht−1, πt(h, ·) ∈ D. That is, P(D) is
the set of data-generating mechanisms under which the conditional distribution of the expert
predictions and response data given the history is constrained to D but otherwise can vary
arbitrarily within D depending on the history.

In Figure 1, we visualize possible trajectories of data-generating mechanisms for an i.i.d.
environment, an adversarial environment and an environment whose constraint set is inter-
mediate between these two extremes. In the i.i.d. case, the conditional distribution of the
next instance given the history is fixed, and hence the constraint set corresponds to a single
distribution on instances. In the adversarial case, the conditional distribution of the next in-
stance given the history can vary arbitrarily in the space of all probability distributions on
instances; in particular, it can be a point-mass at an adversarial instance for the player’s strat-
egy, depicted here as the extreme points of the space of distributions. Since the i.i.d. case
corresponds to a singleton set of distributions on instances, and the adversarial case corre-
sponds to the whole space of distributions on instances, a natural concept of “in between”
these extremes is a proper subset of the set of distributions on instances. Our relaxation cap-
tures this by allowing the conditional distribution of the next instance given the history to
vary within some convex constraint set that is not known by the player in advance (visualized
here as an ellipse), and measuring performance relative to the properties of that unknown
constraint set.

FIG. 1. Visualizing the difference between i.i.d. data, adversarial data and a constraint set in between these
two extremes. In each part of the figure, the triangles depict the set of conditional distributions for the tuple of
expert predictions and response (an “instance”) given the history at each time. The grey regions depict the space
of conditional distributions for the next instance given the history that are possible for a given constraint set.
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In the context of prediction with expert advice, it is natural to assume that the time-
homogeneous convex constraint D is unknown to the player. To what extent can we adapt
to D? In this work, we consider the problem of adapting to two characterizing quantities of
D: the effective stochastic gap and the number of effective experts. Formally, for each expert
i ∈ [N ], let

�i(D) = inf
μ∈D max

i′∈[N]
μ[�i − �i′ ],

and define the effective stochastic gap to be

�0(D) = min
{
�i(D) | i ∈ [N ],�i(D) > 0

}
,

with the convention min∅= ∞. Second, define the set of effective experts

I0(D) = {
i ∈ [N ] | �i(D) = 0

}
,

and let N0(D) = |I0(D)| denote the number of effective experts. The set I0(D) contains the
experts that could be the best (in conditional expectation given the history) on any particular
round. Note that this set is always nonempty, since D contains at least one distribution and
there is at least one expert who is optimal under this distribution.

The effective stochastic gap, �0(D), is the minimal excess expected loss of an ineffective
expert over the best effective expert on any round. If �i(D) > 0, then the mean loss of expert
i is always strictly larger than the mean loss of the best expert. Thus, �0(D) corresponds
to the smallest that this difference can be over all such experts and distributions. When D is
clear, we simplify notation to I0, N0 and �0.

For a fixed N , N0 and �0, the collection of convex constraint sets that have these charac-
terizing quantities is

V(N,N0,�0) = {
D ⊆ M

(
ŶN ×Y

) | D convex,N0(D) = N0,�0(D) ≥ �0
}
,

and the corresponding set of data-generating mechanisms is

PN,(N0,�0) = ⋃
D∈V(N,N0,�0)

P(D).

Let P = {PN,(N0,�0) | N0 ≤ N ∈ N,�0 > 0} denote the collection of all such sets. Together,
N0 and �0 induce a ranking of constraint sets, and the semi-adversarial spectrum is the
collection of equivalence classes this ranking induces.

3.1. Motivation for characterizing quantities. Mourtada and Gaïffas [44] formalize the
“best-of-both-worlds” adaptivity of D.HEDGE as simultaneously satisfying the adversarial
minimax rate �(

√
T logN) and the minimax rates of the so-called “stochastic-with-a-gap”

environments. Together, these environments are characterized by a known number of ex-
perts, N , and a single, unknown stochastic gap, denoted �. The stochastic-with-a-gap set-
tings can be exactly captured by the characterizing quantities introduced above for the
semi-adversarial spectrum: The adversarial setting corresponds to D = M(ŶN × Y) be-
ing the set of all distributions. Then N0(D) = N and �0(D) = ∞, and the minimax rate
is �(

√
T logN). In contrast, consider an i.i.d. setting, where D = {μ0} is a singleton, for

some μ0 ∈ M(ŶN × Y); that is, for all t ∈ N and h ∈ Ht−1, the data-generating mecha-
nism satisfies πt(h, ·) = μ0. It is straightforward to show that I0({μ0}) = arg mini∈[N] μ0�i

is the set of experts that are optimal (w.r.t. �) in expectation under μ0, each expert i ∈ [N ]
has stochastic gap �i({μ0}) = μ0�i − mini0∈[N] μ0�i0 and the effective stochastic gap is
�0({μ0}) = mini∈[N]\I0(μ0) �i(μ0). The stochastic-with-a-gap setting, with stochastic gap
� > 0, is the set of all i.i.d. environments D = {μ0} with positive gap �0({μ0}) = � > 0 and
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one effective expert, that is, N0 = |I0(μ0)| = 1. The minimax optimal expected regret (cf.
[44]) is

ER(T ) ∈ �

(
logN

�

)
.

The semi-adversarial spectrum thus generalizes the stochastic-with-a-gap setting beyond one
effective expert and generalizes the notion of stochastic gap to the notion of an effective
stochastic gap. We will see that the dependence on N0 and �0 in the minimax rates along the
semi-adversarial spectrum closely resembles the dependence on N and � in minimax rates
in the adversarial and stochastic-with-a-gap settings.

In this work, we do not consider the possibility of adapting to a more refined spectrum than
that induced by N0 and �0. As we will see, D.HEDGE cannot even adapt to this spectrum, and
so there is no hope of it adapting to a further refinement. We will also see that the problem of
adapting to N0 and �0 already leads us to a novel regularization scheme. We leave the study
of alternative characterizing quantities and the more general problem of adapting to the finest
possible spectrum to future work.

3.2. Practical relevance of characterizing quantities. A standard application of predic-
tion with expert advice is to the setting of statistical aggregation (cf. [3, 32, 61]). Suppose the
statistician has N models that map from a covariate space X to a response space Y . Further,
suppose that the t’th observation (Xt , Yt ) is sampled from one of K unknown “source” dis-
tributions on X × Y , where K itself is also unknown. Rather than attempt to model how the
choice of the source distribution for each observation depends on past observations, predic-
tions, etc., we can treat the choices as adversarial (e.g., by using HEDGE), yielding guarantees
without any such modeling assumptions. However, the (possibly randomized) selection of
the source distribution by the data-generating mechanism gives rise to a time-homogeneous
convex constraint D, corresponding to the convex hull of the K unknown source distribu-
tions. If the source distributions and models are reasonably distinct, this will likely result in
N0(D) ≤ K effective experts, which may be much smaller than N . META-CARE would au-
tomatically adapt in this situation, and scale with N0, not N . Of course, were the statistician
to, instead, impose misspecified modeling assumptions (e.g., derive predictions assuming the
observations were i.i.d., when they were not), they might suffer linear regret.

More generally, for arbitrary (possibly nonconvex) constraint sets, taking the convex hull
corresponds to allowing the data-generating mechanism access to biased coins with which to
select between “basic” elements of the constraint set. Further, the regret against a nonconvex
constraint set is no larger than the regret against the the convex hull of that constraint set, and
hence our upper bounds still apply to nonconvex constraint sets. However, it is possible that
the true lower bound for the nonconvex constraint set may no longer match our upper bounds.
We leave a tight analysis of nonconvex lower bounds to future work.

3.3. Examples of convex constraints. The following examples illustrate the flexibility of
time-homogeneous convex constraints and the semi-adversarial spectrum.

EXAMPLE 1 (I.I.D.-μ0, Stochastic-with-a-gap). When the constraint set is the singleton
Dμ0 = {μ0}, then there is only one possible data-generating mechanism, and under that data-
generating mechanism the data and expert predictions are i.i.d. according to μ0. Furthermore,
if there exists i0 ∈ [N ] and � > 0 such that

inf
i∈[N]\{i0}

μ[�i − �i0] = �

(i.e., there is a best expert in expectation under μ0 and there is a gap of � from the best to
the second best expert in expectation) then I0(Dμ0) = {i0}, N0(Dμ0) = 1 and �0(Dμ0) = �.
This is called the stochastic-with-a-gap setting. Since any singleton is convex, Dμ0 is convex.
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EXAMPLE 2 (Adversarial). When the constraint set is the space of all probability mea-
sures Dadv = M(ŶN × Y), then the constrained setting reduces to the fully adversarial set-
ting, since D contains all point-mass distributions. In this case, I0(Dadv) = [N ], N0(Dadv) =
N and �0(Dadv) = +∞ (by convention, as it is the inf over an empty set). Since the set of
all probability measures is convex, Dadv is convex.

EXAMPLE 3 (Adversarial-with-an-instantaneous-gap). For any i0 ∈ [N ] and � ≥ 0,

D(a.s.)
i0,�

=
{
μ ∈ M

(
ŶN ×Y

) ∣∣ μ
(
�i0 + � ≤ min

i∈[N]\{i0}
�i

)
= 1

}

is convex (since min is concave), and satisfies I0(D(a.s.)
i0,�

) = {i0}, N0(D(a.s.)
i0,�

) = 1 and
�0(D(a.s.)

i0,�
) = �. This contains all mixtures of point-mass distributions with common best

expert i0 that satisfy the gap constraint almost surely.

EXAMPLE 4 (Adversarial-with-an-E-gap, Mourtada and Gaïffas [44]). For any i0 ∈ [N ]
and � ≥ 0,

Di0,� =
{
μ ∈ M

(
ŶN ×Y

) ∣∣ μ�i0 + � ≤ min
i∈[N]\{i0}

μ�i

}
is convex (since min is concave), and satisfies I0(Di0,�) = {i0}, N0(Di0,�) = 1 and
�0(Di0,�) = �. This relaxes the adversarial-with-an-instantaneous-gap setting, since

D(a.s.)
i0,�

⊆ Di0,�. This constraint set is equivalent to the formulation used in Corollary 6 of
Mourtada and Gaïffas [44]; it is also the same setting as Section 4.2 of Wei and Luo [59],
although they consider bandit feedback.

EXAMPLE 5 (Ball-around-I.I.D.). For any pseudometric d , radius r > 0 and probability
measure μ0,

Dμ0,d,r = Bd(μ0, r) = {
μ ∈ M

(
ŶN ×Y

) | d(μ,μ0) ≤ r
}

is convex. The exact values of I0(Dμ0,d,r ), N0(Dμ0,d,r ) and �0(Dμ0,d,r ) will depend on
μ0, r and d . In general, I0 and N0 are increasing with r (w.r.t. ⊆ and ≤, respectively),
while �0 will decrease as r increases between the jumps in N0, but increase sharply at the
jumps. Thus, the lexicographical ordering on (N0,�

−1
0 ) coincides with increasing the radius,

r . Since for nested constraint sets it should be more difficult to compete with the larger of the
two constraints, it is intuitive that the lexicographical order on (N0,�

−1
0 ) is an assessment of

the difficulty of competing with a given constraint set.

EXAMPLE 6 (Convex hull of basic distributions). As motivated in Section 3.2, a natural
setting is where D is the convex hull of some basic underlying distributions. Suppose N = 3,
and there exist μ,ν ∈ M(ŶN × Y) satisfying μ� = (0,1,0.5 + ε) and ν� = (1,0,0.5 + ε),
where ε > 0 is arbitrary. Set D = {αμ + (1 − α)ν | α ∈ [0,1]}, which gives I0(D) = {1,2}
and �0(D) = ε.

However, on any given round it is possible for the data to be sampled from either μ or ν,
in which case one of the effective experts is as separated (in expectation) as possible from
the best expert and separated by an arbitrarily large multiplicative factor of �0 from the
ineffective expert. That is, this example demonstrates effective experts need not be better or
even close to ineffective experts on any given round.

Note that Example 3 is related to the setting of Seldin and Slivkins [50] and Example 5
is related to the setting of Lykouris, Mirrokni and Paes Leme [41] (both focusing on bandit
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feedback), with the distinction that the existing literature considers constraints on the cumula-
tive losses. In contrast, our constraints apply to the distributions allowed on any instantaneous
round, and are not restricted in how they accumulate. This distinction is subtle, yet crucial to
the type of adaptivity we propose in this work. While existing “easy data” results are about
adapting to post-hoc summary statistics of the data, we provide adaptivity to the unknown,
underlying dependence structure and propose that statistical methods should be designed to
adapt to this as well (beyond adaptivity to model regularity assumptions).

4. Adaptive optimality for the semi-adversarial spectrum. In this section, we will
state our main results that characterize the minimax regret over time-homogeneous convex
constraints. We begin by precisely defining what it means for a prediction algorithm to be
adaptively minimax optimal.

4.1. Adaptively minimax optimal prediction algorithms. Informally, an adaptively min-
imax optimal prediction algorithm achieves the minimax optimal regret (asymptotically
in T ) for the characterizing quantities constraining the allowable data-generating mech-
anism without a priori information on what values these characterizing quantities take.
For collections of sequences a = {(aN,(N0,�0)(T ))T ∈N | N ∈ N, (N0,�0) ∈ [N ] × R+} and
b = {(bN,(N0,�0)(T ))T ∈N | N ∈ N, (N0,�0) ∈ [N ] ×R+}, we write

aN,(N0,�0)(T ) � bN,(N0,�0)(T ) (abbreviated a � b)

when

(1)
∃C > 0 ∀N ∈ N, (N0,�0) ∈ [N ] ×R+ ∃T0 ∈ N ∀T > T0,

aN,(N0,�0)(T ) ≤ CbN,(N0,�0)(T ).

If a � b and b � a, we write aN,(N0,�0)(T ) 
 bN,(N0,�0)(T ) (abbreviated a 
 b).
For a prediction algorithm a= (a(N))N∈N, we refer to equivalences class under 
 of

N, (N0,�0), T �→ sup
π∈PN,(N0,�0)

Eπ,aR(T )

as the rate of regret or simply the rate of a, and the equivalence class under 
 of

N, (N0,�0), T �→ inf
π̂∈P̂N

sup
π∈PN,(N0,�0)

Eπ,π̂R(T )

as the minimax optimal rate of regret. Then we say a prediction algorithm a is adaptively
minimax optimal if

(2) sup
π∈PN,(N0,�0)

Eπ,aR(T ) 
 inf
π̂∈P̂N

sup
π∈PN,(N0,�0)

Eπ,π̂R(T ).

Further, we say that a is adaptive if supπ∈PN
Eπ,aR(T ) is always sublinear in T and, for

some (N0,�0), its rate of regret is strictly better than the rate of infπ̂∈P̂N
supπ∈PN

Eπ,π̂R(T );
otherwise, we say a is nonadaptive. This definition formalizes the notion that an adaptive
prediction algorithm must realize potential benefits from at least some instance of “easier”
characterizing quantities and simultaneously have average regret at least converge to zero in
all cases. Similar approaches to rule out trivial algorithms that achieve zero regret for one
setting and linear regret in all other settings have been used for full-information [36] and
bandits [38], Section 16.

Importantly, we do not demand that the prediction algorithm perform as well as if they had
a priori knowledge of the true data-generating mechanism, since with this information the
minimax regret can be quite small (zero or even negative). Instead, the prediction algorithm
is only adapting to the problem hardness, as measured by the characterizing quantities, and
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consequently, there is still freedom in the minimax definition for the player to face its worst-
case data-generating mechanism subject to these characterizing quantities. Mathematically,
this is ensured by placing infπ̂∈P̂N

after the choice of characterizing quantities, but before
the choice of the data-generating mechanism (i.e., supπ∈PN,(N0,�0)

).
More abstractly, our definition of adaptively minimax optimal can be interpreted under a

generic adaptive decision problem, with a generic problem size given by N and a generic
problem hardness replacing characterizing quantities. For example, in the case of density
estimation, the problem size may correspond to the dimension of the data space, which the
statistician knows, and the problem hardness may correspond to the Hölder continuity pa-
rameter of the true data-generating density, which the statistician does not know. For a further
discussion of our definition of adaptively minimax optimal, see Section 4.3.

4.2. Minimax rates. We are now able to state our main result, establishing the minimax
optimal rate of regret and that it is achieved by our novel algorithm META-CARE, which
follows from the conjunction of Theorems 3 and 7 and Proposition 2.

THEOREM 1 (Main result).

sup
π∈PN,(N0,�0)

Eπ,MR(T ) 
 inf
π̂∈P̂N

sup
π∈PN,(N0,�0)

Eπ,π̂R(T ) 

√

T logN0 + logN

�0
.

There is a natural interpretation of both terms in Theorem 1:
√

T logN0 is the minimax
optimal rate of regret for adversarial losses with N0 experts, while (logN)/�0 is the minimax
optimal rate of regret for stochastic losses with N experts and a stochastic gap of size �0.
Below, we elaborate on how we exploit intermediate results to obtain this optimal rate without
knowledge of N0 or �0.

First, in Section 7 we investigate the behavior of HEDGE-like algorithms. In Theorem 4, we
show that D.HEDGE using any parametrization that simultaneously achieves the minimax op-
timal rate of regret in both the stochastic-with-a-gap and adversarial settings is nonadaptive.
That is, for N0 ≥ 2,

sup
π∈PN,(N0,�0)

Eπ,HR(T ) �
√

T logN.

In fact, from Theorems 4 and 5, we find that without an oracle parametrization of D.HEDGE

(one where N0 is available to the player), it is only possible to achieve

log(N0)
√

T + (logN)

�0
� sup

π∈PN,(N0,�0)

Eπ,HR(T ) � log(N0)
√

T + (logN)2

�0

or

sup
π∈PN,(N0,�0)

Eπ,HR(T ) 
 I[N0≥2]
√

T logN + logN

�0
,

but not both.
Then, in Section 8, we introduce another novel algorithm: FTRL-CARE. As an intermedi-

ary step that is critical for the proof of Theorem 1, we show in Theorem 6 that FTRL-CARE
adapts with a better rate, satisfying

sup
π∈PN,(N0,�0)

Eπ,CR(T ) �
√

T logN0 + (logN)3/2

�0
.

This bound achieves the minimax optimal rate for N0 ≥ 2, but not for N0 = 1. To also guar-
antee the minimax optimal rate for N0 = 1 (and consequently be adaptively minimax opti-
mal), we introduce META-CARE in Theorem 7, which corresponds to another application of
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D.HEDGE to the “meta-experts” corresponding to FTRL-CARE and D.HEDGE on all N ex-
perts; this proof relies heavily on our intermediate result for FTRL-CARE. We do not know
whether the suboptimality of the bound for FTRL-CARE in the N0 = 1 is a consequence of
our analysis or is a true limitation of the method. Regardless, by invoking our meta-learning
algorithm, META-CARE, we are able to guarantee adaptive minimax optimality in all cases.

Our quantitative upper bounds also explicitly demonstrate how large T must be for algo-
rithms to have adaptive rates (i.e., expected regret that depends on N0 and �0), as opposed to
the pessimistic adversarial rate (i.e.,

√
T logN ). In particular, for both D.HEDGE and FTRL-

CARE, roughly �−2
0 rounds of adversarial regret are incurred before the level of adaptation

is sufficient to reduce the rate of regret accumulation. This demonstrates that as �0 tends to
0, the player does not incur infinite regret from the �−1

0 terms, but rather incurs adversarial
regret for a longer amount of time. We emphasize that the player does not need to know when
they will stop incurring adversarial regret ahead of time to parametrize either algorithm, so
knowledge of N0 or �0 is not required.

Our theoretical results are further supported by a simulation study that appears in Ap-
pendix H in the Supplementary Material [11]. The simulation study is based on the data-
generating mechanisms that achieve the lower bound in the stochastic-with-a-gap setting and
the algorithm specific lower bound for D.HEDGE with two effective experts. The results of
the simulations agree with our theoretical results.

4.3. Discussion on adaptive minimax optimality. One might ask whether it is possible to
strengthen the notion of adaptivity to be uniform-in-T , where the rate has to be achieved up
to a constant at all T , rather than only for sufficiently large T depending on (N0,�0). This
corresponds to replacing the relation a � b with the one defined by

∃C > 0 ∀T , N ∈ N, (N0,�0) ∈ [N ] ×R+, aN,(N0,�0)(T ) ≤ CbN,(N0,�0)(T ).

In the context of minimax regret, uniform adaptivity would require understanding the en-
tire path of the regret (over T ) rather than simply its eventual upper bound. This is not un-
derstood even in the stochastic setting; regret bounds of the form 1/� in both the bandit and
full-information settings (e.g., [6, 23, 44]) are all eventual upper bounds that are only known
to be tight (i.e., have matching lower bounds) for sufficiently large T . Since identifying the
minimax optimal regret uniformly in T remains open even for this basic setting, we do not
attempt to solve this in our more general setting.

Beyond prediction with expert advice, the lack of uniform adaptivity also persists. For
example, the leading constant of the minimax rates for smoothness-adaptation in statistics
often depends on the smoothness parameter, which violates uniformity. For general questions
of adaptive minimax optimality in sequential prediction, it is not clear how to demonstrate
that either form of adaptivity is possible other than by constructing adaptive algorithms, as
we have done in the present work.

Finally, one could consider adapting to a different collection of characterizing quantities
than (N0,�0). For our setting, a natural extension is to consider the individual expectation
gaps of each expert, rather than only the smallest gap. While our upper bounds can be ex-
tended to handle multiple gaps without much difficulty, tight lower bounds that depend on
all the gaps simultaneously are again unknown even in the i.i.d. setting for full-information
feedback. Since our work is about identifying minimax optimality, which would require such
lower bounds, we do not consider this refinement. Beyond the extension to multiple gaps, it
is an interesting avenue for future work to identify other characterizing quantities that could
provide a finer characterization of the data-generating mechanism.
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5. Concentration of measure for the semi-adversarial spectrum. In this section, we
state and prove a concentration of measure result for data-generating mechanisms permitted
by time-homogeneous convex constraints, which we use repeatedly to establish upper bounds
on expected regret for D.HEDGE, FTRL-CARE and META-CARE. The result demonstrates
that, even though the best expert may vary from round to round, the gap between the best
effective expert along the observed data path and any ineffective expert grows like a sum of
uniformly sub-Gaussian random variables with mean below −�0.

THEOREM 2. For all N ≥ 2, prediction policies π̂ ∈ P̂N , convex sets D ⊆ M(ŶN ×Y),
λ > 0, T0 < T1 and i ∈ [N ] \ I0,

sup
π∈P(D)

Eπ,π̂ min
i0∈I0

exp

{
λ

T1∑
t=T0+1

[
�i0(t) − �i(t)

]} ≤ exp
{
(T1 − T0)

[
λ2/2 − λ�0

]}
.

Note that we require the constraint set D to be convex. If D is not natively convex, our
results clearly apply to its convex hull. There is, however, a natural reason to consider convex
constraint sets: given a set D of joint distributions available for the data-generating mecha-
nisms, requiring the set to be convex is equivalent to also allowing mixtures of the original
available distributions. That is, the environment and experts together can randomly select a
distribution from D to generate data from at each round.

One may wonder whether this result follows from an application of the Azuma–Hoeffding
inequality. However, as demonstrated in Example 6, there exist simple constraint sets such
that on any round, any effective expert (including the best overall) may have an arbitrar-
ily larger expected loss than any ineffective expert. That is, Li(t) − Li0(t) need not be a
(sub)martingale, and consequently, Azuma–Hoeffding does not directly apply. Instead, the
proof of this result uses a variant of Sion’s minimax theorem—which is the technical reason
why we require the constraint set D to be convex—before applying Hoeffding’s inequality to
the instantaneous rounds. We restate the minimax theorem we require for completeness here,
which can be found in Sion [51], Corollary 3.3, and has a simple proof in Komiya [33].

PROPOSITION 1. Let X and Y be convex subsets of linear topological spaces, and sup-
pose that X is compact. Let f : X ×Y →R be such that:

(i) for all y ∈ Y , f (·, y) : X →R is convex and upper semicontinuous; and
(ii) for all x ∈ X , f (x, ·) : Y →R is concave and lower semicontinuous.

Then infx∈X supy∈Y f (x, y) = supy∈Y infx∈X f (x, y).

PROOF OF THEOREM 2. Let R+ = [0,∞), simp(I0) = {v ∈ R
I0+ : ∑

i0∈I0
vi0 = 1}.

First, since at least one optimal solution to a linear program on a compact convex polytope
must be at a vertex,

min
i0∈I0

T1∑
t=T0+1

[
�i0(t) − �i(t)

] = inf
v∈simp(I0)

T1∑
t=T0+1

[〈
v, �I0(t)

〉 − �i(t)
]
.

Further, since exp is a monotone function, this identity implies

min
i0∈I0

e
λ

∑T1
t=T0+1[�i0 (t)−�i(t)] = inf

v∈simp(I0)
e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)].
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Then, applying Jensen’s and the max-min inequality give

sup
π∈P(D)

Eπ,π̂ inf
v∈simp(I0)

e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)]

≤ inf
v∈simp(I0)

sup
π∈P(D)

Eπ,π̂ e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)].

By the tower rule for conditional expectation and the definition of the kernel πT1 ,

Eπ,π̂ e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)]

≤ (
Eπ,π̂

[
e
λ

∑T1−1
t=T0+1[〈v,�I0

(t)〉−�i(t)]])(sup
μ∈D

μ
(
e
λ[〈v,�I0

〉−�i ])).
Iterating this argument T1 −T0 −1 more times, and using monotonicity of power functions,

give

inf
v∈simp(I0)

sup
π∈P(D)

Eπ,π̂ e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)]

≤
[

inf
v∈simp(I0)

sup
μ∈D

μ
(
e
λ[〈v,�I0

〉−�i ])]T1−T0
.

We now verify the conditions of Proposition 1. First, both simp(I0) and D are convex sub-
sets of linear topological spaces, and simp(I0) is trivially compact (in fact, both are com-
pact). Second, the objective function f (v,μ) = μ(e

λ[〈v,�I0
〉−�i ]) is continuous and convex

in v. Third, f is linear (and hence concave) in μ. Moreover, since each � is bounded, for ev-
ery v the objective f corresponds to integration of a bounded continuous function against a
finite measure; hence, f is continuous with respect to μ in the topology of weak convergence.
Thus, Proposition 1 gives

inf
v∈simp(I0)

sup
μ∈D

f (v,μ) = sup
μ∈D

inf
v∈simp(I0)

f (v,μ).

Thus,

sup
π∈P(D)

Eπ,π̂ inf
v∈simp(I0)

e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)]

≤
[

sup
μ∈D

inf
v∈simp(I0)

μ
(
e
λ[〈v,�I0

〉−�i ])]T1−T0
.

Consider any μ ∈D, and let i∗(μ) ∈ arg mini∈[N] μ�i . By the definition of �0, μ(�i∗(μ) −
�i) ≤ −�0 for every i ∈ [N ] \ I0. Finally, since � ∈ [0,1]N μ-a.s., by Hoeffding’s lemma,

inf
v∈simp(I0)

μ
(
e
λ[〈v,�I0

〉−�i ]) ≤ μ
(
eλ[�i∗(μ)−�i ]) ≤ eλ2/2−λ�0 .

Since this holds for all μ ∈D,

sup
π∈P(D)

Eπ,π̂ inf
v∈simp(I0)

e
λ

∑T1
t=T0+1[〈v,�I0

(t)〉−�i(t)] ≤ [
eλ2/2−λ�0

]T1−T0 = e(T1−T0)[λ2/2−λ�0].
�
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6. Minimax lower bounds. In this section, we characterize the best possible perfor-
mance under relaxations of the i.i.d. assumption. In particular, we quantify the best any pre-
diction policy can do with oracle knowledge of the number of effective experts. The proof
of this result is found in Appendix F.1 in the Supplementary Material [11]. While we do not
expect a player to know the nature of the constraint set, we use this oracle lower bound to
conclude that since our novel algorithm META-CARE achieves the same performance without
using oracle knowledge, it is adaptively minimax optimal.

THEOREM 3. There exist Ŷ , Y and � such that, for all N0 ∈ N, there exists t0 ∈ N such
that for all N ∈ N with N ≥ N0 and T ≥ t0,

sup
D∈V(N,N0,1/2)

sup
π∈P(D)

inf
π̂∈P̂N

Eπ,π̂R(T ) ≥
√

T logN0

10
.

Theorem 3 allows us to characterize the minimax optimal dependence on T and N0 of
a prediction policy. However, for the case of N0 = 1, the leading term instead depends on
�0. Consequently, to determine the minimax optimal rate of regret at all relaxations of the
i.i.d. assumption, we must also use the following result by Mourtada and Gaïffas [44], which
establishes a lower bound for when there is only one effective expert.

PROPOSITION 2 (Mourtada and Gaïffas [44], Proposition 4). For all N ∈ N, there exist
Ŷ , Y and � such that for all � ∈ (0,1/4) and T ≥ logN

16�2 ,

inf
π̂∈P̂N

sup
D∈V(N,1,�)

sup
π∈P(D)

Eπ,π̂R(T ) ≥ logN

256�
.

These two lower bounds set the bar for what one should hope to achieve. In order to
adapt to an unknown number of effective experts N0 ≤ N and identity of the effective ex-
perts, the player can be forced to incur max(

√
T logN0,�

−1
0 logN) rate of regret. Because

max{√T logN0,�
−1
0 logN} 
 √

T logN0 +�−1
0 logN , a prediction algorithm with a rate of

regret � √
T logN0 + �−1

0 logN is adaptively minimax optimal.

7. Performance of D.HEDGE. In this section, we show that without oracle knowledge
of the characterizing quantities, D.HEDGE can be parametrized to either (a) be minimax op-
timal for the special case when N0 ∈ {1,N}, but incur adversarial regret in between, or (b)
adapt suboptimally to every value of the characterizing quantities. Following this section, we
introduce FTRL-CARE and prove it adapts minimax optimally when there are multiple ef-
fective experts. We then boost these two algorithms together in META-CARE, and prove this
is adaptively minimax optimal.

All of these prediction algorithms produce proper prediction policies, which means that
rather than picking ŷ from the entirety of Ŷ , at each round the player chooses one of the
experts i ∈ [N ] to emulate and predicts ŷ(t) = xi(t). To choose the expert to emulate, the
history is used to choose a distribution on [N ], and then i is sampled from this distribution.

Formally, for x ∈ ŶN and w ∈ simp([N ]), let x�w = ∑
i∈[N] wiδxi

∈M(Ŷ) be the push-
forward of w ∈ simp([N ]) through x, viewing the vector x as a function x : [N ] → Ŷ and
identifying simp([N ]) with M([N ]). A proper prediction policy π̂ 
 = (π̂


t )t∈N is any pre-
diction policy such that, for all t ∈N, there exists a measurable map w


t : Ht−1 → simp([N ])
satisfying, for all h ∈ Ht−1 and x ∈ ŶN , π̂ 


t ((h, x), ·) = x�[w

t (h)]. The σ(h(t − 1))-

measurable random variable w(t) = w

t (h(t − 1)) is called the weight vector, or simply the

weights. For each i ∈ [N ], wi(t) corresponds to the probability that the player will emulate
the ith expert’s prediction at time t .
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The prediction algorithm HEDGE is parametrized by a sequence of measurable functions
(η̃t )t∈N ∈ ∏

t∈N{Ht−1 →R+}. The σ(h(t −1))-measurable random variable η(t) = η̃t (h(t −
1)) is called the learning rate, and the weights are defined by

wH
i (t) = exp{−η(t)Li(t − 1)}∑

i′∈[N] exp{−η(t)Li′(t − 1)} , i ∈ [N ].

The prediction algorithm DECREASING HEDGE (D.HEDGE) is parametrized by a function g :
N → R+, and corresponds to HEDGE with the deterministic learning rate η(t) = g(N)/

√
t

for all t ∈N.
It is well known (see, e.g., Theorem 2.3 of [15]) that D.HEDGE with g(N) ∝ √

logN is
minimax optimal in the adversarial setting, which corresponds to D = M(ŶN × Y). Re-
cently, Mourtada and Gaïffas [44] showed that D.HEDGE with this parametrization is also
minimax optimal in the i.i.d. setting, which corresponds to |D| = 1. One might hope that this
stochastic-and-adversarially minimax optimal parametrization would also perform well for
all convex D in between these two cases. However, part (i) of Theorem 4 shows that, in fact,
this parametrization fails to adapt to the number of effective experts when N0 /∈ {1,N}. Fur-
ther, we show that a different parametrization can adapt in some ways, but does not achieve
the minimax optimal dependence on T .

7.1. Algorithm-specific lower bounds for D.HEDGE. First, we observe that D.HEDGE with
g(N) ∝ √

logN , which is minimax optimal for both the stochastic and adversarial cases, does
not adapt to an intermediate number of effective experts. Additionally, D.HEDGE with con-
stant g can do better than the stochastic-and-adversarially minimax optimal parametrization,
but cannot do as well as the oracle knowledge dependence on T from Theorem 3. We prove
this in Appendix F.2 in the Supplementary Material [11].

Intuitively, to establish these lower bounds we use the same distribution as the adversarial
lower bound, but restricted to a set of effective experts. This ensures that the expected regret of
D.HEDGE is at least max{g(N),H(Unif(I0))/g(N)} · √T , where H is the Shannon entropy.
It follows that D.HEDGE cannot adapt because the parameter g(N) would need to be set using
information about the constraint set that is unavailable; namely, H(Unif(I0)) = logN0.

THEOREM 4. (i) For all c > 0,

N ≥ exp
{(

72 log 2

c2 + 9
)
ec2/4

}
and 2 ≤ N0≤ e−c2/8Nc2 exp(c2/4)/72 − 1,

there exist Ŷ , Y and � such that for all T ≥ 16c−2logN , D.HEDGE with g(N) = c
√

logN

satisfies

sup
D∈V(N,N0,1/2)

sup
π∈P(D)

Eπ,HR(T ) ≥ c
√

T logN

72 exp{c2/4} − 1

3c2 − logN

3
.

(ii) Suppose the player is allowed oracle knowledge of N0 in addition to N , and conse-
quently can parametrize D.HEDGE by any g : N2 → R+. For all 81 < N0 ≤ N , there exist
Ŷ , Y and � such that D.HEDGE with g(N,N0) ≤ 2

√
logN0 − 4 log 3 satisfies that for all

T ≥ 32[g(N,N0)]−2 logN ,

sup
D∈V(N,N0,1/2)

sup
π∈P(D)

Eπ,HR(T ) ≥ log(N0)
√

T

4g(N,N0)
− 3 logN0

[g(N,N0)]2 .
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The proof of Theorem 4 can be used to argue that many existing “adaptive” variants of
HEDGE will also fail to be adaptively minimax optimal along the semi-adversarial spectrum.
We highlight this argument using well-known HEDGE variants from the literature. This is
not meant to disparage these works, as they should not be expected to design algorithms
for a notion of optimality defined years later, but to exemplify that adapting along the semi-
adversarial spectrum is nontrivial and that the objectives of earlier works are insufficient to
capture the notion of optimality we introduce.

The algorithm PROD of Cesa-Bianchi, Mansour and Stoltz [16] is essentially D.HEDGE with
an adaptive learning rate shared by all experts. This adaptive learning rate is comprised of the
reciprocal square-root of the cumulative squared losses, which will be (essentially) a constant
multiple of t under the data-generating mechanism described in the proof of Theorem 4. Thus,
the learning rate will behave the same as the data-independent learning rate of D.HEDGE, and
consequently, a similar lower bound on performance applies. A similar argument would also
hold for ADAHEDGE [21].

The refined algorithm ADAPT-ML-PROD of Gaillard, Stoltz and van Erven [23] is more sub-
tle, since it has a different learning rate for each expert. However, the recommended learning
rate (Corollary 4 of their paper) would not adapt optimally, because it uses logN for all ex-
perts, as opposed to an adaptive quantity as in FTRL-CARE. Consequently, for large enough
N0 and t , the data-generating mechanism of Theorem 4 will make the average loss with re-
spect to the ADAPT-ML-PROD weights roughly 1/2, and thus, ADAPT-ML-PROD inherits the
same order of lower bound as D.HEDGE.

7.2. Upper bounds for D.HEDGE. Now, we show that the lower bound of Theorem 4 is
tight. For a prediction policy π̂ ′ that may be distinct from the actual prediction policy π̂ the
player is using, we define the quasi-regret (with respect to π̂ ′) at time T by

R̂π̂ ′(T ) =
T∑

t=1

∫
�
(
ŷ(t), y(t)

)
π̂ ′

t

((
h(t − 1), x(t)

)
,dŷ(t)

) − min
i∈[N]

T∑
t=1

�
(
xi(t), y(t)

)
.

Quasi-regret replaces the actual loss at each round t with the conditional expectation of the
player’s loss had that player played according to π̂ ′

t on round t ; the histories correspond,
however, to the actual predictions made by π̂ . This allows us to quantify the performance of
π̂ ′ even when the entire sequence of predictions is governed by π̂ .

Clearly, Eπ,π̂ R̂π̂ (T ) = Eπ,π̂R(T ). However, we can prove almost sure results about
R̂π̂ ′(T ) for some prediction policy π̂ ′, and then state expectation results of the form
Eπ,π̂ R̂π̂ ′(T ), where the expectation is with respect to a possibly different prediction policy π̂ .
Results of this nature are crucial in the proof of Theorem 7, where we use them to control
the regret accumulated by D.HEDGE and FTRL-CARE when the actual prediction policy is
META-CARE.

THEOREM 5. For all g : N → R+ used to parametrize D.HEDGE, all N ≥ 2, prediction
policies π̂ ∈ P̂N , convex D ⊆ M(ŶN ×Y) and T ∈ N,

sup
π∈P(D)

Eπ,π̂ R̂H(T ) ≤ √
T + 1

(
logN

g(N)
+ g(N)

)
.

Moreover, when T > �8(logN+[g(N)]2/4+g(N))2

[g(N)]2�2
0

� the following two cases hold:

If N0 > 1, then

sup
π∈P(D)

Eπ,π̂ R̂H(T ) ≤ 17

16

√
T

(
logN0

g(N)
+ g(N)

)
+ 32

�0

(
logN

g(N)

)(
logN

g(N)
+ g(N)

)

+ √
2
(

logN

g(N)
+ g(N)

)
,
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and if N0 = 1, then

sup
π∈P(D)

Eπ,π̂ R̂H(T ) ≤ 5

�0

[(
logN

g(N)

)(
logN

g(N)
+ g(N)

)
+ 4

(
1

g(N)2 + g(N)2
)]

+ √
2
(

logN

g(N)
+ g(N)

)
.

In order to more easily interpret this result, we also state the expected regret of D.HEDGE

for various natural choices of g.

REMARK 1. Taking π̂ to be determined by D.HEDGE:

(i) if g(N) is constant, supπ∈PN,(N0,�0)
Eπ,HR(T ) � log(N0)

√
T + (logN)2

�0
;

(ii) if g(N) ∝ √
logN , supπ∈PN,(N0,�0)

Eπ,HR(T ) � I[N0≥2]
√

T logN + logN
�0

;

(iii) in the oracle setting for N0 ≥ 2, if g(N,N0) ∝ √
logN0,

sup
π∈PN,(N0,�0)

Eπ,HR(T ) �
√

T logN0 + (logN)2

�0 logN0
.

REMARK 2. If g(N) ∝ √
logN , then Theorem 4(i) combined with Remark 1(ii) shows

that the dependence on T is tight in Theorem 5. If oracle knowledge of N0 is used to choose
g(N,N0) ∝ √

logN0, then Theorem 4(ii) simply matches the oracle lower bound of Theo-
rem 3, confirming the dependence on T is tight in Theorem 5 (see Remark 1(iii)). Finally, if
g is constant, then Theorem 4(ii) combined with Remark 1(i) shows that the dependence on
T is tight in Theorem 5.

Together with the minimax lower bounds of Section 6, we find that, for the stochastic and
adversarial settings, our expected regret bound for D.HEDGE with g(N) = √

logN is tight up
to constants and that the algorithm achieves the minimax optimal rates, as noted by Mourtada
and Gaïffas [44]. Furthermore, we have improved upon Corollary 6 of Mourtada and Gaïffas
[44] in the “adversarial-with-an-E-gap” setting (see Example 4), having removed the extra
�−1

0 log(�−1
0 ) dependence that separated the upper and lower bounds in their work.

8. Beating D.HEDGE without oracle knowledge. In Section 7, we completed the story
of D.HEDGE by showing that it does not adapt minimax optimally to all possible constraint
sets without oracle knowledge of the number of effective experts. It is natural to ask whether
we can design an algorithm that adapts to the number of effective experts and has a rate of
regret no larger than

√
T logN0.

In this section, we present a modified algorithm that does exactly this. Taking inspiration
from the fact that D.HEDGE can be viewed as follow-the-regularized-leader (FTRL) using
entropic regularization (see, e.g., Section 3.6 of [42]), we introduce the constraint-adaptive
root-entropic (CARE) regularizer. We are able to prove upper bounds for the performance
of FTRL for a large class of regularizers, and then use these upper bounds to prove both the
upper bound results of Section 7 and the upper bounds for our improved algorithm, by view-
ing D.HEDGE and FTRL-CARE as FTRL with specifically chosen regularizers. Our bound
shows that FTRL-CARE achieves the oracle rate

√
T logN0 without requiring knowledge of

the characterizing quantities for the constraint set D.
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8.1. FTRL algorithms. FTRL is a generic method for online optimization. In the setting
of sequential prediction with expert advice, FTRL is parametrized by a sequence of regu-
larizers {rt : simp([N ]) →R}t∈Z+ . Each such sequence, subject to regularity conditions on
the regularizers (see Appendix C in the Supplementary Material [11]), determines a unique
proper prediction policy. For each time t + 1, a player using the FTRL({rt }t∈Z+) algorithm
has a proper prediction policy defined uniquely by the weight vectors given by

(3) u(t + 1) = arg min
u∈simp([N])

(〈
L(t), u

〉 + r0:t (u)
)
,

where r0:t (u) = ∑t
s=0 rs(u), and the existence and uniqueness of the arg min is ensured by

the regularity properties of the regularizer. This class of algorithms is well studied in online
optimization; for specific results relevant to this work, see Appendix C in the Supplementary
Material [11].

8.2. The constraint-adaptive root-entropic regularizer. First, we note that FTRL directly
generalizes D.HEDGE. In particular, letting H(u) = −∑

i∈[N] ui log(ui) denote the entropy
function, it is well known that, for r0:t (u) = −√

t + 1H(u)/g(N), the weights played by
FTRL({rt }t∈Z+) are equal to the weights played by D.HEDGE. We modify the entropic reg-
ularizer to achieve improved performance for data-generating mechanisms strictly between
stochastic and adversarial.

In order to motivate this new algorithm, we provide the following motivating intuition.
First, from Remark 1, playing D.HEDGE with g(N,N0) ∝ √

logN0 achieves the oracle rate.
Second, the minimax optimal data-generating mechanism subject to the time-homogeneous
convex constraint forces the minimax optimal prediction policy to “concentrate” to Unif(I0).
Finally, for u = Unif(I0), H(u) = logN0. These three observations together suggest that,
heuristically, playing HEDGE with the “adaptive” learning rate η(t) = √

H(u(t))/t may lead
to an oracle rate of regret. However, u(t) is defined in terms of η(t), so this is an implicit
system of equations to be solved at each time t . In order to define our modification of FTRL,
we choose a regularizer such that the solution to the FTRL optimization problem gives rise
to a similar system of equations. In particular, for some parameters c1, c2 > 0, the sequence
of regularizers is given by

(4) r0:t (u) = −
√

t + 1

c1

√
H(u) + c2.

We call −r0 defined by equation (4) a root-entropy function, and regularization with
{rt }t∈Z+ constraint-adaptive root-entropic (CARE) regularization. We refer to the algo-
rithm FTRL({rt }t∈Z+) with rt induced by equation (4) as follow-the-regularized-leader with
constraint-adaptive root-entropic regularization (or FTRL-CARE).

Throughout the remainder of the paper, we will use u for the weights output by the
FTRL({rt }t∈Z+) algorithm with a generic regularizer, wH for weights output via entropic
regularization (HEDGE) and wC for weights output via root-entropic regularization (FTRL-
CARE). The pseudocode for an efficient implementation of FTRL-CARE may be found in
Appendix G in the Supplementary Material [11].

8.3. Performance of FTRL-CARE.

THEOREM 6. For all c1, c2 > 0 used to parametrize FTRL-CARE, there exist C1, . . . ,C4

such that for all N ≥ 2, prediction policies π̂ ∈ P̂N , convex D ⊆ M(ŶN ×Y) and T ∈ N,

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ C1

√
(T + 1)[logN + c2].
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Moreover, when T ≥ �2[logN+C4]2

c2
1c2�

2
0

�, the following two cases hold: if N0 > 1, then

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ 33C1

32

√
(T + 1)[logN0 + c2] + C2

[logN + C4]3/2

�0
+ C3

�0
,

and if N0 = 1, then

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ C2
[logN + C4]3/2

�0
+ C3 + 6

�0
.

The constants C1, . . . ,C4 appearing above are given by

C1 =
(

1

c1
+ 3c1

2

)
, C2 = √

2C1

(
1

c1
√

c2
+ 1

c2

)
,

C3 = √
2

8 + 12c2
1

3c2
1
√

c2
and C4 = max

{
c2,3c1

√
c2 + 5c2

1c2

4

}
.

With c1 = c2 = 1, this simplifies to: for all T ∈ N,

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ 3
√

(T + 1)[logN + 1],

and when T ≥ �2[logN+5]2

�2
0

�, if N0 > 1, then

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ 3
√

(T + 1)[logN0 + 1] + 8
[logN + 5]3/2

�0
+ 10

�0
,

and if N0 = 1, then

sup
π∈P(D)

Eπ,π̂ R̂C(T ) ≤ 8
[logN + 5]3/2

�0
+ 16

�0
.

REMARK 3. Taking π̂ to be determined by FTRL-CARE,

sup
π∈PN,(N0,�0)

Eπ,CR(T ) �
√

T logN0 + (logN)3/2

�0
.

REMARK 4. Note that in the case N0 = 1, this is worse than D.HEDGE with learning
rate g(N) ∝ √

logN , which has �−1
0 logN rate of regret. We resolve this in Section 9 by

introducing a new algorithm, META-CARE, that combines the optimality of D.HEDGE in the
stochastic case and FTRL-CARE elsewhere.

9. CARE if you can, HEDGE if you must or META-CARE for all. Since we have seen
in Theorem 5 that D.HEDGE with g(N) = √

logN achieves the minimax optimal order of
logN when N0 = 1, and Theorem 6 shows that FTRL-CARE is minimax optimal in all other
cases, it is natural to try to combine these two algorithms in order to have minimax optimal
rate of regret for all values of N0 and �0. To achieve this, we introduce the META-CARE
algorithm.

Intuitively, META-CARE plays both D.HEDGE and FTRL-CARE, treating them as two
meta-experts. META-CARE outputs the weighted average of the predictions made by the two
meta-experts, where the weighting output by D.HEDGE based on their respective losses. Con-
sequently, META-CARE has four parameters: cH, cC,1, cC,2, cM > 0. Formally, for each t ∈ N,
let wH(t) denote the weight vector produced by D.HEDGE with g(N) = cH

√
logN at time



RELAXING THE I.I.D. ASSUMPTION 1869

t and let wC(t) denote the weight produced by FTRL-CARE with parameters cC,1, cC,2 at
time t . Consider the meta-losses defined by

�H(t) = 〈
�(t),wH(t)

〉
, �C(t) = 〈

�(t),wC(t)
〉
,

LH(t) =
t∑

s=1

�H(t), LC(t) =
t∑

s=1

�C(t).

Then, for each t ∈N, META-CARE produces the weight vector

wM(t + 1) = exp{−ηM(t)LH(t)}wH(t + 1) + exp{−ηM(t)LC(t)}wC(t + 1)

exp{−ηM(t)LH(t)} + exp{−ηM(t)LC(t)} ,

where ηM(t) = cM/
√

t . Observe that wM(t + 1) will be an element of simp([N ]) since it is a
convex combination of wH(t + 1) and wC(t + 1), both of which are elements of simp([N ]).

THEOREM 7. META-CARE parametrized by cH = √
logN and cC,1 = cC,2 = cM = 1 in-

curs

sup
π∈PN,(N0,�0)

Eπ,MR(T ) �
√

T logN0 + logN

�0
.

We do not state a detailed quantitative form of Theorem 7, since our proof can be eas-
ily extended for any arbitrary π̂ to a bound on Eπ,π̂ R̂M(T ) with exact constants using the
statements and proofs of Theorems 5 and 6.

PROOF OF THEOREM 7. For N0 ≥ 2, we decompose the quasi-regret of META-CARE
into components coming from the quasi-regret due to meta-learning and the quasi-regret of
the better of the two meta-experts. In particular, for any sequence of losses (�(t))t∈N, we can
write

R̂M(T ) =
T∑

t=1

〈
�(t),wM(t)

〉 − min
i∈[N]

T∑
t=1

�i(t)

=
[

T∑
t=1

〈
�(t),wM(t)

〉 − min

(
T∑

t=1

〈
�(t),wH(t)

〉
,

T∑
t=1

〈
�(t),wC(t)

〉)]

+ min
(
R̂H(T ), R̂C(T )

)
.

Therefore, for any N0 ≤ N and �0,

sup
π∈PN,(N0,�0)

Eπ,MR(T )

≤ sup
π∈PN,(N0,�0)

Eπ,M

[
T∑

t=1

〈
�(t),wM(t)

〉 − min

(
T∑

t=1

〈
�(t),wH(t)

〉
,

T∑
t=1

〈
�(t),wC(t)

〉)]

+ sup
π∈PN,(N0,�0)

Eπ,M min
(
R̂H(T ), R̂C(T )

)
.

First, we consider the case when N0 ≥ 2. Since META-CARE is D.HEDGE with two experts
given by the predictions of D.HEDGE and FTRL-CARE, Theorem 5 implies that

(5)

sup
π∈PN,(N0,�0)

Eπ,M

[
T∑

t=1

〈
�(t),wM(t)

〉 − min

(
T∑

t=1

〈
�(t),wH(t)

〉
,

T∑
t=1

〈
�(t),wC(t)

〉)]

≤ √
T + 1

(
log(2)

cM

+ 3cM

4

)
.
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Then, since (logN)3/2�−1
0 is lower order according to our � notation when N0 ≥ 2, from

Theorem 6 we obtain

(6) sup
π∈PN,(N0,�0)

Eπ,M min
(
R̂H(T ), R̂C(T )

) ≤ sup
π∈PN,(N0,�0)

Eπ,MR̂C(T ) �
√

T logN0.

Combining equations (5) and (6) imply that, when N0 ≥ 2, supπ∈PN,(N0,�0)
Eπ,MR(T ) �√

T logN0. Now consider the case where N0 = 1, and let I0 = {i0}. Using a similar de-
composition to the previous case, we have

R̂M(T ) =
T∑

t=1

〈
�(t),wM(t)

〉 − min
i∈[N]

T∑
t=1

�i(t)

=
[

T∑
t=1

〈
�(t),wM(t)

〉 − T∑
t=1

〈
�(t),wH(t)

〉] + R̂H(T ).

Let t0 be as in Theorem 6 (with (c1, c2) = (cC,1, cC,2)), so that t0 � (logN)2

�2
0

. Expanding the

quasi-regret of META-CARE and using the boundedness of the losses give

R̂M(T ) =
[

t0∑
t=1

〈
�(t),wM(t)

〉 − t0∑
t=1

〈
�(t),wH(t)

〉]

+
[

T∑
t=t0+1

〈
�(t),wM(t)

〉 − T∑
t=t0+1

〈
�(t),wH(t)

〉] + R̂H(T )

≤
[

t0∑
t=1

〈
�(t),wM(t)

〉 − min

(
t0∑

t=1

〈
�(t),wH(t)

〉
,

t0∑
t=1

〈
�(t),wC(t)

〉)]

+
T∑

t=t0+1

1

2

∥∥wC(t) − wH(t)
∥∥
L1 + R̂H(T ).

Therefore,

sup
π∈PN,(1,�0)

Eπ,MR(T )

≤ sup
π∈PN,(1,�0)

Eπ,M

[
t0∑

t=1

〈
�(t),wM(t)

〉 − min

(
t0∑

t=1

〈
�(t),wH(t)

〉
,

t0∑
t=1

〈
�(t),wC(t)

〉)]

+ sup
π∈PN,(1,�0)

Eπ,M

∞∑
t=t0

1

2

∥∥wC(t) − wH(t)
∥∥
L1 + sup

π∈PN,(1,�0)

Eπ,MR̂H(T ).

Again using the fact that META-CARE is D.HEDGE with two experts given by the predic-
tions of D.HEDGE and FTRL-CARE, by Theorem 5 we have

(7)

sup
π∈PN,(1,�0)

Eπ,M

[
t0∑

t=1

〈
�(t),wM(t)

〉 − min

(
t0∑

t=1

〈
�(t),wH(t)

〉
,

t0∑
t=1

〈
�(t),wC(t)

〉)]

�
√

t0 � logN

�0
.

Next, using the triangle inequality, the fact that 1 − wH
i0
(t) = ∑

i∈[N]\I0
wH

i (t) along with the
same fact for wC, and Lemmas A.2 and E.3 (see also the proofs of Theorems 5 and 6 for more
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details),

(8)

sup
π∈PN,(1,�0)

Eπ,M

∞∑
t=t0

1

2

∥∥wC(t) − wH(t)
∥∥
L1

≤ sup
π∈PN,(1,�0)

Eπ,M

∞∑
t=t0

1

2

(∥∥wC(t) − δi0

∥∥
L1 + ∥∥wH(t) − δi0

∥∥
L1

)

= sup
π∈PN,(1,�0)

Eπ,M

T∑
t=t0

∑
i∈[N]\I0

(
wH

i (t) + wC
i (t)

)
� 1

�0
,

where δi0 is the point-mass on i0 (equivalently, the weight vector with weight 1 on expert i0
and 0 on the others).

Finally, from Theorem 5, supπ∈PN,(1,�0)
Eπ,MR̂H(T ) � logN

�0
. Combining this with equa-

tions (7) and (8) shows that, in the case of N0 = 1,

sup
π∈PN,(1,�0)

Eπ,MR(T ) � logN

�0
. �

10. Related work. The existing literature on statistical decision making with sequential
data is vast, spanning decades and at least two major fields of study: sequential decision
theory began as a subfield of statistics, and the historical literature is rather exclusive to
statistics, while the more recent literature on decision procedures without i.i.d. assumptions
has largely been developed within machine learning and computer science. In this section,
we highlight the most relevant notions of adaptivity, and how their statistical interpretations
differ from each other as well as the present work.

10.1. Distributional assumptions. First, note that while we use the language of predic-
tion to describe our setting, our prediction space Ŷ is distinct from the observation space Y ,
so we achieve the same level of generality as allowing for arbitrary decisions. Classically,
the statistical literature on sequential hypothesis testing [10, 18, 37, 49, 58] and sequential
parameter estimation [2, 24, 48, 60] rely on assumptions on the joint dependence structure of
data to obtain performance guarantees. From a minimax perspective, removing the assump-
tions on the dependence structure reduces the problem to adversarially chosen data. Instead,
by characterizing these arbitrary distributions in some way such that performance depends on
the characterization, we can design methods for which the performance adapts to the charac-
terization.

Hanneke [28] provides an overview of when classical estimation procedures designed for
i.i.d. data will be consistent under various nonstationarity conditions. Additionally, he consid-
ers the asymptotic performance of a broader class of algorithms, although there is no notion
of adaptivity since performance is binary: either a dependence structure admits a consistent
online learning algorithm or it does not. In contrast, since the present work deals with fi-
nite expert classes, there is always a consistent algorithm, and so we focus on the specific
performance of algorithms beyond their convergence properties.

Rakhlin, Sridharan and Tewari [46] consider general constraints on the data-generating
mechanism for sequential prediction. We also use constraints on the data-generating mecha-
nism to define relaxations of the i.i.d. assumption, but the specific constraints that we define
and study are not ones studied by Rakhlin, Sridharan and Tewari. Additionally, we focus on
developing methods that are minimax optimal under the constraint even when the nature of
the constraint is unknown. For each of the constraints analyzed by Rakhlin, Sridharan and
Tewari, the authors bound the minimax regret nonconstructively, and consequently, cannot
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guarantee the existence of an algorithm that is adaptively minimax optimal. In contrast, we
provide an explicit, efficient algorithm that is adaptively minimax optimal for our constraint
framework.

10.2. Notions of easy data. Beyond quantifying the minimax performance of decision
rules under distributional assumptions, significant progress has been made over the last
decade toward regret bounds that depend on key summary statistics of the observed data
sequence. While the terminology for these types of bounds varies in the literature, we will
follow the nomenclature of Cesa-Bianchi, Mansour and Stoltz [16], who differentiate be-
tween zero-order, first-order and second-order regret bounds. We use stochastic constraints
to link zero- and second-order bounds in a general framework, and hence can compare with
results derived in a wide range of settings.

Zero-order bounds refer to those that depend only on the time horizon, the size of the expert
class and an absolute bound on the size of the predictions (alternatively, the losses). Results
of this nature have existed for many years, beginning with Littlestone and Warmuth [39] and
Vovk [57], and are concisely summarized by Cesa-Bianchi and Lugosi [15]. These bounds
are often dubbed worst case or adversarial, since they hold for any sequence of observations
subject to the aforementioned global constraints.

In contrast, first-order bounds control regret in terms of a data-dependent quantity; namely,
the sum of the actual observed losses (potentially over all experts, or just the best expert for
tighter results). Hence, they may lead to much tighter bounds than zero-order guarantees
if the observed losses end up being in a much tighter range than is guaranteed by some
absolute bound on the size of the losses. The first bound of this form was by Freund and
Schapire [22] for the HEDGE algorithm, which was later upgraded to a multiplicative rather
than additive dependence on the cumulative best loss [15], Corollary 2.4. Similar bounds
have been developed for the bandit setting [5, 7], algorithms with adaptive parametrization
[31, 55] and the combination of adaptive parametrization with partial information [45].

However, a limitation of first-order bounds is that they are not translation-invariant in the
losses. In particular, they suggest that every expert incurring loss of 1 on each round is much
harder to compete against than every expert incurring loss of zero on each round, which is not
the case. One solution is to obtain regret bounds that are similar to first order, but rather than
depending on the sum of the losses, they depend on a single first-order translation-invariant
parameter that characterizes the observed loss sequence. In the bandit setting, examples of
such a parameter include the effective loss range [17, 52] and the amount of corruption al-
lowed on the mean of the losses [26, 41]. A similar analysis of corruption of experts’ predic-
tions in the full-information setting has recently appeared by Amir et al. [1].

Beyond these first-order quantities, another line of work has focused on second-order
bounds, which depend on some form of variation of the observed losses. The first results
of this form were derived by Cesa-Bianchi, Mansour and Stoltz [16], who obtain a bound in
terms of the sum of the squared losses via tuning the learning rate for D.HEDGE. This was
extended by both McMahan and Streeter [43] and Hazan and Kale [29] to depend on the sam-
ple second moment and variance, respectively, of the losses (empirically along the trajectory
of observations), and again by Hazan and Kale [30] to obtain the same in the bandit setting.
Both Erven et al. [55] and de Rooij et al. [21] obtain similar variation bounds, which are
smaller for a different notion of “easy” data (defined by the mixability of the loss). Finally,
another type of second-order bound was developed by Gaillard, Stoltz and van Erven [23],
where they utilize the squared difference of algorithm losses with expert losses.

A different perspective on easy data is taken by Chaudhuri, Freund and Hsu [19] and
Luo and Schapire [40], who develop methods not only to have regret relative to the best
expert of size O(

√
T logN), but to also have regret relative to the εN -quantile expert of



RELAXING THE I.I.D. ASSUMPTION 1873

size O(
√

T log(1/ε)) for all ε ∈ (1/N,1). The algorithms they propose are more optimistic
than D.HEDGE in the sense that they trust the past data more, which leads to suboptimal
performance in settings between stochastic and adversarial, exaggerating the shortcomings
of the standard parametrization of D.HEDGE in this case.

Several other methods exist that tune the learning rate of HEDGE adaptively based on the
past interaction with the environment. Generally, these are motivated by improved second-
order bounds. Examples include Koolen and van Erven [35] and van Erven and Koolen [56],
who use a prior on the learning rate and meta-experts for a discrete collection of possible
learning rates, respectively.

We also derive second-order (in particular, variance) bounds for the observed data se-
quence (see the intermediary result Theorem A.1). However, we are also able to extend this
notion due to the stochastic nature of our constraints. In particular, once we take the ex-
pectation (with respect to the data-generating mechanism and the player’s actions) of our
second-order bounds, we obtain bounds directly comparable to (and tighter than) existing
zero-order bounds. This provides greater insight than existing second-order bounds, which
often leave a direct dependence on the variability of the chosen learning algorithm that is not
a priori clear, and do not explicitly characterize what an “easy” data sequence actually looks
like.

In the full-information setting, another line of investigation describes “easy” stochastic
data by that which satisfies a Bernstein condition; that is, the conditional second moment of
the losses are controlled by a concave function of the conditional first moment. This con-
dition was shown to be crucial for achieving fast rates in the batch setting by Bartlett and
Mendelson [9], then in the online convex optimization setting (infinite expert class) by van
Erven and Koolen [56] and finally for simultaneously the finite expert and infinite expert on-
line setting by Koolen, Grünwald and van Erven [34]. Recent work by Grünwald and Mehta
[25] provided sufficient conditions to extend these results to unbounded losses.

10.3. Stochastic and adversarially optimal algorithms. In addition to developing bounds
for “easy” data, the line of work most relevant to the present paper has focused on develop-
ing algorithms that are simultaneously optimal in two key settings: worst-case adversarial
observations and i.i.d. (stochastic) observations. These bounds are characterized by matching
the adversarial bounds mentioned above and the optimal stochastic bounds for either bandits
[6], Theorem 1, or full information [23], Theorem 11. Beginning with Audibert and Bubeck
[4] and Bubeck and Slivkins [12], the bandit literature is rich in this area; contributions in-
clude removing prior knowledge of the time horizon [50], matching lower bounds [8] and a
simultaneously optimal algorithm with respect to a slightly weaker notion of regret [62].

In our discussion of the previous bounds, we have not specifically distinguished between
the types of algorithms used to achieve them. However, there is an aesthetic (and computa-
tional) desire to find algorithms that achieve regret bounds that are optimal both for worst-
case data and some notion of “easy” data, and yet are as simple as the algorithms which
perform well in either just the adversarial or just the i.i.d. setting. A recent breakthrough on
this front was achieved by Mourtada and Gaïffas [44], who showed the standard parametriza-
tion of the D.HEDGE algorithm is optimal for both the adversarial and the stochastic settings.
For the bandit setting, the 1

2 -TSALLIS-INF algorithm of Zimmert and Seldin [62] has a sim-
ilarly simple aesthetic; namely, it is also an analytic solution to an FTRL problem with an
appropriate regularizer. One of the more surprising contributions of our work is that we show
every prespecified parametrization of D.HEDGE is not adaptively minimax optimal.
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