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THE PERFORMANCE OF THE LIKELIHOOD RATIO TEST
WHEN THE MODEL IS INCORRECT

By RoBERT V. FouTz AND R. C. SRIVASTAVA
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Ohio State University

Let the random variable X havea distribution depending on a parameter
0 € 0. Consider the problem of testing the hypothesis H: @ < © based on
a sequence of observations on X. The likelihood ratio test for H is con-
structed by selecting a model for the unknown distribution of X. In this
paper the asymptotic performance of the likelihood ratio test is studied
when the model is incorrect, that is, when the probability distribution of X
is not a member of the model from which the likelihood ratio test is con-
structed. Exact and approximate measures of the asymptotic efficiency of

the likelihood ratio test when the model is incorrect are proposed.

1. Introduction. Let X be a random variable having a distribution depending
on a parameter in the open subset © of Euclidean k-space, E*. Let ©, be a sub-
space of ©, and consider the problem of testing the hypothesis H: ©, based on a
seqgence X;, X,, - - - of independent observations of X. The likelihood ratio test
for H is constructed by selecting a model for the unknown distribution of X.
The model takes the form of a family, {P,, O}, of probability distributions domi-
nated by a o-finite measure, v. Denote f(x, ) = dP,/dv, then the likelihood ratio
statistic for H is defined as

(1) 4, = max {[[2, f(X,, 0); 0 € ©,)/max {T[2, /(X 0); 6 ¢ ) .

Standard results on the performance of 2, for testing H depend on the assump-
tion that the model is correct; that is, that the probability distribution of X is
a member of the family, {P,, ©}, from which 4, is constructed.

In this paper, the asymptotic performance of the likelihood ratio test is stu-
died when the probability distribution of X is not a member of the class of
probability distributions from which 4, is constructed. The following example
illustrates the nature of the problem and motivates the problem’s formulation
in Section 2.

In this example, consider a random variable X having variance ¢ and mean
p. For a specified o, it is desired to test the composite hypothesis H: ¢* = g,
For constructing a likelihood ratio test for H, let P, , be the normal distribution
with variance ¢*and mean p. Let S,?denote the sample variance of n independent
observations on X, then the likelihood ratio statistic for H constructed from the
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1184 ROBERT V. FOUTZ AND R. C. SRIVASTAVA

normal model is
(1.2) 2,880’} exp {n(1 — S,%/a.)[2} .

Now, consider a case where this model is incorrect. Suppose the distribution
of X is a contaminated normal distribution of the form

Q.,,(B) = 9P, (B) + .1P022’#(B) ,

for measurable sets B. The variance and mean of the distribution Q,, , are
0 = .90,* 4 .10;® and p respectively, and the parameter y = 0,%/0,? is assumed
known. Note that y measures the departure of the above distribution from the
normal distribution. Fory =1,Qp4,, = P,,. Fory, >r,=1lory, <7, <1,

Q,2,,,,, gives heavier tail probabilities than Q.2,,,,- The “correct” model for the
distribution of X, then, is
(1.3) {qu'ﬂ,r; 6> 0, —oo < p < o0}.

The problem is to examine the performance of the test based on (1.2) for
testing H. The performance is to be examined, however, when the distribution
of X is in the model (1.3). This example is studied further in Section 5.

The main purpose of this paper is to propose exact and approximate measures
of the asymptotic efficiency of the likelihood ratio test when the model is in-
correct. Following Bahadur (1960) and (1967), we propose measures that are
based on the exact slope and on the approximate slope of the test statistic.
After some preliminaries in Section 2, the approximate slope of the likelihood
ratio when the model is incorrect is obtained in Section 3. Measures of asymp-
totic efficiency are proposed in Section 4 and are illustrated with an example in
Section 5.

2. Preliminaries. The problem of examining the performance of the like-
lihood ratio test when then model is incorrect may be formulated as in the ex-
ample of Section 1. Let a random variable X have a distribution depending on
an unknown parameter in the open subset ® of E*. Let an assumed model
for the distribution of X be {P,, 8}, and take {f(x, §), ©} to be a corresponding
family of probability density functions. Let ®, c ©, and let 2, of (1.1) be the
likelihood ratio statistic constructed from this model for testing H: ©,.

The problem is to examine the performance of 1, for testing H: ©, when the
distribution of X is a member of another family of distributions, {Qy,,» B} for
some y ¢ I'. As in the example of Section 1, the additional known parameter y
measures “in some sense’’ the departure of the correct model {Q‘,,r, 0} from the
assumed model {P,, O}.

The study of the above problem will require the asymptotic distribution of
—2log 4, when X has distribution in {QM, ©}. Under the assumption of a cor-
rect model Wilks (1938) and Roy (1957) derive the limiting chi-square distri-
bution of —2 log 2, using the consistency and asymptotic normality of maximum
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likelihood estimates. These arguments may be extended to find the limiting
distribution of —2log 4, when the model is incorrect as well—provided the
consistency and limiting distribution of the maximum likelihood estimate have
been established.

Maximum likelihood estimates have, in fact, been shown to be consistent and
asymptotically normal when the model is incorrect under various assumptions:
in particular, Huber (1965) obtains the results without assuming second order
derivatives of the log likelihood. Additional related references are Pfanzagl
(1969), Perlman (1971), Berk (1972), and Foutz and Srivastava (1974).

In A2 below we assume these previously established properties of maximum
likelihood estimates. The remaining Al, A3 and A4 permit the limiting distri-
bution of —2log 2, to be established.

For fixed 6* € ©, y e ', the model {P,, ©} is defined to be regular with respect
to the distribution Q,. . if the following conditions are satisfied. (All expectations
are taken under the distribution Q,. .. The notation g(x, ¢) is used for log f{(x, 6).
Subscript notation is used for partial derivatives: g,(x, ) = dg(x, 6)/d0,,
E, 9(X, 0) = d*§ g(t, 0) dQ,. (1)/d0, db,, etc.)

Al. For 0 + 0%, Eg(X, 0) < Eg(X, 6%).

A2. Let #, be the maximum likelihood estimate of 6 constructed from the
model {P,, ©}; that is, @, is defined to maximize I, f(X,, 6) over ©. Assume
the k X k dimensional matrix A = A(6*) with pgth element E_ g (X, 6*) exists
and is nonsingular at 6 = 6*, and let C = C(6*) be the covariance matrix of
(9:(X, 0%), - -+, g (X, 6%)). Assume 9n converges almost surely to 6*, and as-
sume n#(f, — 6*) is asymptotically normal with mean 0 and covariance matrix
A-'C(A’)~* (where A’ is the transpose of A).

A3. Assume Eg,(X,0*)=0,p=1,2, ..., kand E g,(X, 6*) = Eg,,(X, 6%)
P’q: 1a29 "’9k-
A4. Assume
1
Uy |- Ties Gyl(Xor 6) = By (X, 0)l -0,
1
SUPj e o " 71 9(X;, 0) — Eg(X, 0)‘ -0

almost surely, for some open neighborhood ©* about 6*.
The model {P;, O} is now said to be regular with respect to {Q,, ,, O} if the
model is regular with respect to each Q. . in {Q, ., 6}.

REMARK 2.1. Note that when the model is correct Al holds if P, is the pro-
bability distribution of X and the distributions in the model {P,, ©} are distinct.
(See, for example, Wald 1949, Lemma 1.) When the model is incorrect, Al
imposes the notational convention that each distribution Q(,)'T in the family
{Q,.,» +} be labeled by the assumed unique * maximizing Eg(X, ¢) over O when
the expectation is taken under Q(_W. This convention is adopted for convenience.
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Let ©, be a subspace of © of the form
@0:{(01, ""01’0r+1’ ""0k)l: 0j:00j,j: 1, ...’r}’

where 6,; (j = 1,- - -, r) are specified parameter values, and let 1, be the likelihood
ratio statistic for H: @, constructed from the model {P,, ®}. The asymptotic dis-
tribution of 2, is given in

THEOREM 2.1. Let X,, X,, - -. be independent with common probability distribu-
tion Q. , and assume the model {P,, O} to be regular with respect to Q,... Denote
by M = M(0*) the upper r X r dimensional diagonal block of the matrix A=*C(A’)~!
of condition A2. Partition A in a form having upper r x r dimensional diagonal

block A;:
A= (B A,
A2 A3

and write W = W(0*) = — A, + ASA;7'A,. Then
(1) If 6* € ©, then —2log 2, is asymptotically distributed as a linear combination
of independent chi-square random variables, i.e.,

_2 log '271, e cl(a*)x12 + c2(0*)x22 + e + cr(a*)sz

where y.%, ., « - -, %, are independent chi-square random variables with one degree
of freedom and c,(0*) = ¢,(6*) = - - = ¢ (0*) = Oarethe eigenvalues of the matrix
M(O*)W(6*).

(2) Assume existence of a 6,* € O, uniquely maximizing Eg(X, 6) over ©,, and
assume {P,, ©,} to be regular with respect to Q,. . (By the convention of Remark
2.1, Qy,, should be relabeled Q, . . when referring to the regular model {P,, ©,}.) If
0% =+ 0,*, i.e. if 0* ¢ O, then

(2.1) —log 4,/n — Eg(X, 6*) — Eg(X, 6,%)
almost surely as n — oo.

The proof is given in Foutz and Srivastava (1974). A sketch of the proof
follows:

Let ém represent the first » components of 6,, and let 6,* be the first r com-
ponents of §*. It may be argued step, by step as in Roy (1957) that

(2.2) —2log2, = Z!(W + £)Z,

where Z = n*(ém — 6,%), and the r X r dimensional matrix & converges in pro-
bability to 0 when Q,. . is the underlying distribution.

From (2.2) and A2 it follows that —2log 4, is asymptotically distributed as
Y'WY where Y is an r variate normal random vector with mean 0 and covariance
matrix M. Part (1) of the theorem is now a consequence of a result on the
distribution of quadratic forms in normal random vectors found in Johnson and
Kotz (1970, page 150).

To prove part (2), let #, , be the maximum likelihood estimate of § constructed
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from the regular model {P,, 6,}, and write
1 4 1 5
_log A,/n = ”n‘ 2t 9(X, 9,) — " 2t 9(X, 00,'») .

Use the almost sure convergence of 6, to 6* and of 9M to #,* along with property
A4 of regular models with respect to Q,.  to conclude (2.1).

We now introduce the concepts needed in Section 4 to propose measures of
the efficiency of the likelihood ratio test when the model is incorrect. The
following definitions of a standard sequence, the level attained by a standard
sequence, and the approximate slope of a standard sequence are modified ver-
sions of the concepts of Bahadur (1960):

DEFINITION 2.1. A sequence {T,} = {T,(x,, X,, - - -, x,)} of measurable func-
tions is called a standard sequence for testing H: ©, in the model {Q, , O}, 7
fixed, if the following conditions are satisfied:

(i) Let {Q} ,, O} be the family of joint distributions of X,, X,, ..., X, cor-
responding to the family {Q, ,, ®} of distributions for X. For every 6 € ©,, there
is a continuous distribution function, G, (f) such that

(2.3) lim, ., Q7 [(xy =« X,): To(xys -+ 5 x,) S 1] = Gy, (2)
for every ¢.

(ii) For every 6 € 0,, there is a constant, a(d, 7), 0 < a < oo, such that
2.4) log {1 — G, ()} = —at{l + o, (1)}/2

where, as t — o0, 0, (1) — 0 uniformly for 6 e 0,.

(iii) There exists a function (¢, y) on ® — O, with 0 < b < oo such that for
each ¢ ® — ©,, T,/n— b0, y) almost surely when the common probability
distribution of the X,’s is Q, ..

DErINITION 2.2. Let {T,} be a standard sequence for testing H: ©, in the
model {Q, ,, 0}, and let G, (7) be defined by (2.3). For any given data x,

X, -+, x, the approximate level attained by {T,} for testing H in the model
{Qy,,, O} is defined by
(2.5) L, (% Xgy -+, x,) = sup{l — G, (T, (xy5 X5 -+, X,)); 0 € O} .

Write L, , = L, (X}, X, - -+, X,).
A measure of the rate at which L , — 0 when the underlying distribution
is Qf ., 0* € ©® — O, is given by

THEOREM 2.2. Let L, , be the approximate level attained by the standard sequence
{T,} for testing H: O, in the model {Q, ., ©}. Define

(2.6) S(6%, 1) = inf {a(8, 7); 0 € O}b(6*, 7) .

When the underlying distribution is QF = with 6* ¢ ® — ©,, —21log L. [n converges
almost surely to S(6*, y) as n — oo.
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Proor. For every ¢, let f, () be the o, (1) term on the right of (2.4).
By (2.5),
(—21log L, )/n =[—2logsup{l — G, (T,); 6 € Op}]/n
= inf[—2log{l — G, (T,)}; 6 €O]/n.

Use (2.4) to write the above as

2.7 (=2log L, )/n = inf[a(, )T {1 + f5 (T,)}; 0 €O/n.

Let 0’ be any fixed point in ©,, then expression (2.7) implies the inequalities
(2‘8) (_2 log Lr,n)/n é a(ol’ T){l + fﬁ',r(Tn)}Tn/n
and

(2.9) inf{a(0, 1); 0 € O)T,/n + inf{a(8, v); 0 € Oy}inf {f, (T,); 6 € O}T,/n
< (—2logL,)n.

From (iii) of Definition 2.1 we know that T,/n — b(6*, y) > 0 almost surely
as n— oco. Thus, T, — oo and f;,.(T,) — 0 almost surely as n — oco. It can now
be seen that the right of (2.8) converges almost surely to a(¢’, r)b(6*, r) asn — oo,
and since ¢’ was chosen arbitrarily in 6,, we may conclude

lim, ., —21log L, ,/n < inf{a(, 7); 6 € O}b(6*, 1)
almost surely. In addition, since f, (x) — 0 uniformly for 6 € ©, as x — oo, it
follows that inf {f, (T,); 6 € ©,} — 0 almost surely as T, converges almost surely
to co. The left of (2.9) is now seen to converge almost surely to inf{a(d, r);
0 € ©,}6(6*7), giving

lim,_, —21log L, ,/n = inf{a(, 1); 6 € O}b6(6*, 1)
almost surely. This proves Theorem 2.3.

The function S(0, 7) in (2.6) is defined to be the approximate slope of {7} in
the model {Q, ., ©}.

3. Approximate slope of the likelihood ratio. As in Theorem 2.1, let 2, be
the likelihood ratio statistics constructed from the incorrect model {P,, O} for
testing H: ©,. Conditions for the sequence of test statistics { —2log 4,} to be a
standard sequence for testing H: ©, in the correct model {Q, O} are given in

THEOREM 3.1. Assume {P,, ©} and {P,, ©,} to be regular with respect to {Q, , ©}.
For each 6* ¢ ©, let M(0*)W(0)* be the matrix specified by Theorem 2.1, and let
c(0%, 1) be the largest eigenvalue of M(0*)W(6*). If

3.1) 0 < inf{cy(l,7); 0 €0} < sup{ci(f,7);0€By} < o0,
then {—21log 4,} is a standard sequence for testing H: O, in the model {Q, ., ©}.
In order to prove the theorem, the following preliminary results will be needed:

LemMMA 3.1. Let O(t) be the standard normal distribution. Then

log (1 — ®(1)} = {1 + o(1)}/2,
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where
=2 log t + log (27)} < o(1) < t~*flog (27) — 2 log (t~* + %)}
for every t > 1.

The proof is given in Bahadur (1960).
The proof of the following lemma is given incorrectly in Bahadur (1960):

LEMMA 3.2. Let Fy(1) be the chi-square distribution function with k degrees of
freedom. Then
log {1 — Fy()) = —f{1 + o,(1)}/2,
where
—2k log (#/2)[x < o,(1) < {log (27) — 2 log (t=% — t=#)}/z.

ProOF. Let m be a positive integer such that k + 1 > 2m > k. For any fixed
t > 0, let Z be a Poisson random variable with mean t/2. Tt follows that

(3.2) 0l —o(thH} =1 -F(O <1 -F@0<1—-F,()=P[Z<m-—1].
Also,
(3.3) Pl[Z<m— 1] = e 3™ (t/2)*/2! .
Expressions (3.2) and (3.3) give
1 — @) < 1 — F (1) < e=t2(t]2) .
Take logarithms above and use Lemma 3.1 to obtain
—[1 + 2{log (27) — log (- — r-H)}/r]j2 < log {1 — F,(n)}

< —H{1 — 2k log (#/2)/1}/2 .
This proves Lemma 3.2.

LEMMA 3.3. LetG(t;cp5¢y - +5¢,) = Pleyy? + Gy + - +e,p,2 < tlwhere
az¢ = 26,20 and gy’ -, 3, are independent chi-square random
variables with 1 degree of freedom. Then

log{l — G(t; ¢, ¢5 -+ -5 ¢)} = —1 + o(1)}/(2¢y)
where

(34 —2¢rlog (1/2¢))t < o(1) < ¢j[log (27) — 2 log {(c,/1)t — (c,/O)})]/1
fort > c,.

Proor. Let F(f) be the chi-square distribution function with k degrees of
freedom, then

I — Ftle)=1—Plagi<]<1 — G(t;cpy€p 20050, ,
and
1 — G(t; €15 Cay * v 0 c,) = 1 — P[Zir=1 Clxi2 = t] =1- Fr(t/cl) ‘
Take logarithms in these inequalities to obtain

(3:5)  log{l — Fy(tfe)} < log {1 — G(f; ey ¢y -+ c,)} < log {1 — F(tfc,)} .
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Lemma 3.2 can be applied to log {1 — F\(t/c,)} and log{l — F,(t/c,)} in (3.5) to
obtain

—H{1 + ¢[log (27) — log {(cy/t)} — (c,/1)}}]/1}/(2¢y)
Slog{l — G(t;¢cp5 €5 -+ -5 0,)} < — {1 — 2rc, log (t/2¢,)/t}/(2¢,) .
This proves Lemma 3.3.

Proor oF THEOREM 3.1. The proof involves verifying conditions (i), (ii), and
(iii) of Definition 2.1.
By Theorem 2.1, (i) is satisfied with

(3-6) Gy (x) = P[Zio el 1)1 < ]

where ¢,(0,7) = ¢(0,7) = - -+ = ¢,(0,7) = 0and %% x?% ---, x* are independ-
ent chi-square random variables with 1 degree of freedom.

From Lemma 3.3, the distribution function in (3.6) satisfies (ii) with a(, y) =
1/e,(0, 7) and o, (1) satisfying expression (3.4) for ¢ > ¢,(4, r). It follows from
(3.1) and (3.4) that o, (1) — O uniformly for § € 0, as t — co.

The validity of (iii) is a direct consequence of part 2 of Theorem 2.1.

Having established that {—2log 4,} is a standard sequence for testing H: 6,
in {Q, ., ©}, we may now apply Theorem 2.2 to obtain an expression for the
approximate slope of {—2 log 4,} in

THEOREM 3.2. Under the conditions of Theorem 3.1, the approximate slope of
{—21log 4,} for testing H: O, in {Q, , O} is given by

(3.7) S(0*, 7) = inf {1/c,(6, 7); 0 € OJb(6*, 7)

for 6* € ® — ©,. The constants {c,(0, r), 6 € O} are specified in Theorem 3.1, and
b(0*, 1) is the almost sure limit of —2 10g A,/n when the distribution of X is Q. . for
0*c® — 0,

Note that by part (2) of Theorem 2.1, the limit 5(6*, y) in (3.7) is 2Eg(X, 6*) —
2Eg(X, 6,*) where the expectations are taken under Q,.  and 6,* maximizes
Eg(X, 6) over O,.

Proor. By Theorem 3.1{—21log 4,}isa standard sequence for testing H in the
model {Q, , ©}. In the proof of Theorem 3.1 it is shown that for {—2log 4,},
the constants a(6, y) and b(6, y) of Definition 2.1 are given by a(f, y) = 1/c(0, r),
for 6 € ©,, and b5(0, r) equal to the almost sure limit of (—2log 2,)/n under the
distribution Q, ., # € ® — ©,. The application of Theorem 2.2 to the standard
sequence { —2 log 4,} now shows its approximate slope to be

S0, r) = inf {a(8, r); 0 € B}b(0, y) = inf {c,(0, 7)~*; 0 € O,}b(0, 7)
for # ¢ ® — 0©,. This proves Theorem 3.2.

4. Measures of efficiency. The concept of Bahadur efficiency is applied in
this section to obtain measures of the efficiency of the likelihood ratio test when
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the model is incorrect. Bahadur’s measure of efficiency is based on the follow-
ing concepts of the exact level and the exact slope of a test:

Let {T,} be a sequence of test statistics for testing H: ©, in the model {Qy,» B},
7 fixed. Let {Qj", O} be the family of joint distributions of X, X,, ..., X, cor-
responding to the family {Q, , ©} of distributions for X. For any 6 € ©,and for

any ¢, the distribution function of T, is
Gi(n) = Q},’f;[(xl, Xgy veey X )0 Ty, Xyy o0y x,) < 1.

Given the data x,, x,, - - -, x,, the exact level of the test for H based on {T,} is
defined to be

L *(xys Xgy - o0y x,) = sup{l — Gy )T (xy, X,y -+, X,)): €O} .

Write L,* = L *(X,, X, - - -, X,). Suppose that there is a function §*(6) defined
on © — ©,such that 0 < $*(f) < oo and such that —2 log L,*/n — $*() almost
surely under the distribution Qy,,, for 6O — ©,. The limit, S*(6), is defined
to be the exact slope of the sequence {T,} for testing H.

The ratio of the exact slopes of two sequences of test statistics provides a
measure of the relative efficiencies of the corresponding tests for H: Let {T,}}
and {T,%} be two sequences for testing H: O, in the single model {Qy,,, O} Let
S$,%(0) and S,*(0) be their respective exact slopes. Bahadur’s efficiency of {T,'}
relative to {T,’} for testing H in the model is defined to be A*(6) = S,%()/S,*(6).
For interpretations of A*(0) as a measure of relative efﬁciency, see Bahadur
(1960), (1965), and (1967).

In contrast the study of this paper concerns only one sequence of test statistics,
{—21log 4,}, where 2, is the likelihood ratio for testing H: O, constructed from
the assumed model {P,, ©}. The interest is in examining the efficiency of
{—21log1,} for testing H when the underlying distribution of X is in a family
{Qy.,, O}, for some yeT'.

Let {Q, ., ©} be a second family of distributions of interest, and consider the
problem of measuring the efficiency of { —2 log 4,} for testing H when the under-
lying distribution of X isin {Q, , @} relative to its efficiency when the underlying
distribution of X is in {Q, ., ©}. (The choice {Qs,,» ©} = {P,, B}, for example,
may provide a meaningful reference for examining the relative efficiency of
{—21log 4,} when the underlying distribution of X is in {Qs,,» ©}.) For this prob-
lem let $*(0, ) and S*(6, ¢’) be the exact slopes of { —2log 4,} for testing H in
{Qy,,» ©} and {Q, .., B} respectively. The analog of Bahadur’s efficiency, 4*(6),
is now defined to be B*(0, 7, 1) = S$*(6, 1)/S*(8, 7).

To interpret B* as a measure of relative efficiency, take {a,} to be a sequence
of possible levels attained with a, — 0 as n — co. Then B*(0, 1, 1) equals the
limiting ratio as a, — 0 of

(i) the sample size necessary to attain the exact level @, when the underlying
distribution of X is Q,,» in the model {Qy,,» 0}
to
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(ii) the sample size necessary at attain the exact level a, when the underlying
distribution of X is Q, , in the model {Q, , 0}

(See Bahadur (1967), Proposition 8.) Thus, values of B*(6, y, ") > 1 indicate
that { —2 log 4,} is more efficient for testing H in {Q, , O} than in {Q, ., 6}.

The general problem of determining whether a sequence of test statistics has
an exact slope and of evaluating it is a nontrivial one. (See Bahadur (1967), page
309; (1960), page 282.) The difficulty results because the exact level of a test
depends on the fixed sample null distribution of the test statistic.

In light of this difficulty, Bahadur (1960) and (1967) suggests an approximation
to A* based on approximate slopes.

The corresponding approximation to the efficiency, B*(4, r, 7’), of {—2 log 4,}
in the model {Q, , O} relative to the model {Q, .., 0} can be formulated in terms
of the approximate slopes S(f, y) and S(0, ) of {—2log4,} in the respective
models. Denote this approximation by B(6, 7, ') = S(6, r)/S(0, 1').

Some aspects of the difficulties in approximating $* by S are discussed in
Bahadur (1967). In general, S(6, r) need not be close to S*(¢, 7) for a particular
6e® — 0, An important exception occurs for the likelihood ratio statistic
when the model is correct. In this case, under general conditions, the exact
and approximate slopes of the likelihood ratio statistic have been shown to be
the same in Bahadur (1965).

When (0, y) does not equal S*(6,y) for f¢ O — 6,, the approximation
S(8, r) = S*(6, ) may be very good for nonnull # in a neighborhood of 4, € ,.
To be precise, let 6, ¢ ©,, and let {,} be a sequence in ©® — O, such that §, — 0.
In many cases S(4,, 7)/S*(6,, y) — 1 as 6, — 6, in any direction. (See Bahadur
(1960), (1967).) This result now leads to a natural local measure of asymptotic
relative efficiency: for 6, € ©,, define the local asymptotic efficiency of { —2 log 4,}
in the model {Q, ., O} relative to the model {Q, ., O} as the limit of (¢, 7)/S(0, 1)
as § — 6, In cases where S(0, 7)/S*(6, y) — 1 as 6 — 6,, this local asymptotic
efficiency precisely equals the corresponding local efficiency defined in terms of
exact slopes, i.e.,

vos, $6.1) _ tim,_, S*O:1)
S, 1) °S$40,7")
or
lim,_, B(0,7,7") =lim,_, B*(0,7,7") -
An application of this measure of local asymptotic relative efficiency is illustrated
next.

5. Example. Recall the example of Section 1. The test statistic 4, of (1.2)
is the likelihood ratio constructed from the normal model for testing H: (¢?, p) =
(0% 1), for a fixed o,* and an unspecified x. The problem is to examine the
performance of 2, for testing H when the distribution of X is in the family of
contaminated normal distributions (1.3).

When the distribution of X is anzy o the asymptotic distribution of —2 log 4,
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may be evaluated by Theorem 2.1. The matrix A-'C(A’)-? of the theorem is
calculated to be

AsC() = (T O )7 (LA 1) oy ° )

0 —1/g 1/4o¢
—1/264 0 \
(707 i)
_ (3004[_1 + (9 4 1)/(.9 + .17)7] 0>'
0 1

4

With r = 1, its upper r x r dimensional diagonal block is
M =30/ [—1 4+ (.9 + .199/(.9 + .17)].

The element W of the theorem is W = 1/20,, and the largest eigenvalue of the
“matrix” MW is

e(r) = 15{(.9 + 170« (.9 + .12} — 5.

It follows from Theorem 2.1 that —2log 4, is asymptotically distributed as
c(7)x:’s where y,* is a chi-square random variable with one dégree of freedom.

Write G, (1) = P[e,(r)x," < 1]. The approximate level attained by {—2 log 2,}
for testing H in the contaminated normal model is L.,=1—-G/(—2logi,).

The approximate slope of { —2 log 2,} for testing H in the contaminated normal
model may be evaluated by Theorem 3.2 to be S(a?, ¢, 7) = S(o?, 7) = {(d%0s?) —
1Y/e,(7).

A measure of the efficiency of {—2log 2,} for testing H: ¢* = ¢, in {Qu.,
0> 0, —oo < ¢ < oo} relative to the second model {Qo,p,y» >0, —00 <
p < oo} is B(a?, 1, 1) = S(a* 1)/S(e% 7’'). Note that in this example B(d? 7, 7)
is independent of the alternative o? &= ¢, thus

B(o%, 1,1") = lima_o0 S(0% 7)/S(0% 7') = lim,a_,0 S*(0% 7)/S*(0% 1') -
This limit is the local measure of relative efficiency discussed in Section 4. The
table gives values of B(d% 7, 7') = B(y, ') for y = .5, 1,2, 3, 5, and 10; and for
r" = 1. These values of B(y, ;') give the efficiency of {—2 log 4,} for testing H

in models of heavy tailed, contaminated normal distributions (r=.5,2,3,5,10)
relative to the normal model (;/ = 1).

TABLE 1

Local asymptotic relative efficiencies

7 Bir,r=1)
.5 .96
1 1.00
2 .90
3 .72
5 .48
10 .25
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From Table 1, it may be concluded that the likelihood ratio test for H: ¢* = ¢?
constructed from the normal model becomes progressively less efficient as the
true family of distributions for X becomes progressively heavier tailed.
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