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A NONLINEAR RENEWAL THEORY WITH APPLICATIONS
TO SEQUENTIAL ANALYSIS I

By T. L. LAr* AND D. SIEGMUND?
Columbia University and Stanford University

Renewal theory is developed for processes of the form Z, = Sy + &q,
where S, is the nth partial sum of a sequence Xi, X», ... of independent
identically distributed random variables with finite positive mean p and
&n is independent of Xpi1, Xuye2, ... and has sample paths which are slowly
changing in an appropriate sense. Applications to sequential analysis are
given.

1. Introduction. Let X, X,, - - be independent identically distributed random
variables with positive mean x and finite variance ¢°, and let §, = X, + --- +
X, (n=1,2,...). This paper and its companion are concerned with renewal
theory and its applications to sequential analysis for processes of the form Z, =
S, + &,, where &, is independent of X, ,,, X,,,, - -+ and has sample paths which
are slowly changing in a sense to be made precise in what follows. For &6 > 0
define

and
(2) r:rb:inf{n:Sn>b}.

Our first result concerns the limiting distribution of Z, — b as b — oo, which
is shown to be the same as the well-known limiting distribution of S, — b (cf.
Feller, 1966, page 354).

THEOREM 1. Let 3.< a £ 1, and assume
3) b=*(T, — p~'b) -5 0 b— o

and that for each n > O there exists a p > 0 and an integer n’ such that for all
nz=zn

(4) P{max%§j§n+p%“ |€j - Enl 2 77} < n.
If X, does not have a lattice distribution, then forall x =0
) lim,_,, P{Z; — b < x} = (ES.)™ Yo, P{S;, > y}dy -
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Theorem 1 is proved in Section 2. In Sections 3 and 4 it is applied to give
improved approximations to the error probability of certain statistical tests. In
Section 4 we compare these approximations with some Monte Carlo results.
Sections 3 and 4 may be read before Section 2.

In our companion paper, we shall give a Blackwell-type renewal theorem for
quantities of the form

LT Pb< Z, < b+ h}
and asymptotic expansions up to terms which vanish as b — oo for E(T,). Addi-
tional applications will be included.

The decomposition Z, = S, + &, with &, slowly changing was implicitly used
by Pollak and Siegmund (1975) in the context of open-ended statistical tests.
Before proceeding, we shall indicate informally by a simpler example the kinds
of processes which motivate this decomposition.

Let x;, x,, - - - be independent identically distributed random variables with
mean g, = E(x,) and finite variance ¢, = E(x, — p,)*. Let 5, = > 7 x,. For a
function g which is positive at g, and twice continuously differentiable in a
neighborhood U of , let
(6) Z, = ng(s/n) -

Expanding (6) by Taylor’s theorem we obtain for s,/ne U

Z, = ng(tg) + (52 — np)9 (o) + (52 — np)’9”" (8,)/21
where |{, — p| = |s./n — p|. Let X = g(¢e) + (X, — )9’ (1) and §, = Z, —
S,. Then for s,/ne U we have &, = (s, — np,)’g”(£,)/2n and it is not difficult
using the central limit theorem, strong law of large numbers, and Kolmogorov’s
inequality to show that this sequence &, satisfies (4). The details are omitted
here but are given in greater generality in the companion to this paper.

Special cases of (6) have appeared elsewhere. For example, Woodroofe
(1976a) studies the stopping rule 7,* = inf {n: 5, > cn’}(0 < y < 1), which with
g(x) = (x*)¥4-1 and b = V" becomes T,* = inf{n: Z, > b}, where Z, is
given by (6). Similarly the stopping rule 7 = inf{n: (|s,| 4+ n/2)*/2n = c} con-
sidered by ‘Chernoff (1972, page 80) as well as those of some sequential tests ob-
tained by Wald’s method of weight functions may be rewritten in the form con-
sidered in this paper with Z, defined by (6). A more complicated application
arises in studying invariant sequential tests, where the log likelihood ratio may
frequently be expressed asymptotically in a form similar to (6) (cf. Wijsman,
1971), although in these cases s, may be a vector-valued random walk.

2. Proof of Theorem 1. Let a, » and p be as in the conditions of the theorem.
Let ny = p~'b, n, = [ny, — pny*/4], n, = [n, + pn,~/4], so that for all large b
™ n, + on® > n,.
Let A, = {max, <, (S, + &,) < b — 6*7}. It follows from (3) that
(8) P(Q — 4,) + P{T > n}—0
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as b—oo. Let F, = Z((X,, &), 1 £k <n)and for —oco < B < oo define
t=1(p) =inf{n: S, + &, > b4 p}. By the renewal theorem (cf. Feller
(1966), page 354), for all b sufficiently large and all x > 0

) 1P{Siip 4 &ay — (0 + B) S x[F,} —G(x)| <7 on 4,
where G(x) denotes the right-hand side of (5).

The remainder of the proof consists of showing that under the condition (4)
for suitable 8 the conditional probability in (9) is essentially equal to the un-
conditional probability in (5). Let x > 27. On the event 4,* = 4,n{T < n,,
max%1§k§%2 IEk - E'nll < 77}

(10) Sy + & —=b>xpc{in) =T, Sy + &, — 0+ 20) > x — 27}

and

A ASuep F & —C =) >x+ 2 c{(—n) =T, + & — b > x}.
For example, if n, < k < nyand T' =k, S, + §, — b > x, then on 4,* we have
S+ &, —(0+17) >x—29>0, so 1(p) < k. But if for some n, < j <k,
f(n) =j then S; + &, > b+ »; and hence on 4,* we have S; 4 &; > b, so
T < j in contradiction to the hypothesis T = k. This proves (10) and a similar
argument proves (11). Hence by (11)

P{Sr + & — b > xp =2 P(AMS,—y + &ay — (b — 1) > x + 27))
= sAb P{St(—w + E'nl — (b= >x+ 277|L97,‘1}dP
— P{T = n,} — P{max, iz, |§x — &) = 7} -
Letting first b — oo, then 7 — 0 we obtain from (4), (8) and (9)

liminf,_ P{S; + & — b >x} =1~ G(x) x>0.
A similar argliment using (10) shows the reverse inequality, which completes
the proof.

A similar argument gives the joint asymptotic behavior of T and z, — b.

THEOREM 2. In addition to conditions (3) and (4) of Theorem 1, assume that n—}
§,—p0. Letny= p='b + top~tbt. If X, does not have a lattice distribution, then
forall —oco <t < ocoandx=0asb—

P{T < ny, Z, — b < x} — O()G(x) ,

where @ is the standard normal distribution function and G denotes the right-hand
side of (5). If, in fact, P{n=,— 0} = 1, then (3) is a consequence and need not
be assumed.

In the case £, = 0, s0 Z, = S,, Theorem 2 is a special case of (for example)
Theorem 1 of Siegmund (1975). A proof of Theorem 2 may be obtained by
combining the argument of Siegmund (1975) with the preceding proof of Theo-
rem 1 and hence is omitted. In some special cases Theorem 2 is equivalent to
Theorem 4.3 of Woodroofe (1976a).
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3. Application to the “optional stopping” problem. Suppose that under P,
the random variables x;, x,, - - - are independent and normally distributed with
mean # and variance 1. Lets, = x; + - -- + x,, and for a, r > 0 define

(12) T = inf{n: s,| = (2a(r + n))}}.

Interest in evaluating P{T < m} has been expressed by Robbins (1952), Armit-
age (1967), and others. Asan application of Theorem 1 we shall prove that as

a — oo

(13) PAT < a1} ~ 2afx)ie* {1 {5(x) exp(—ra?/2)/x) d,
where '
(14) v(x) = 2exp(—2 L7 ®(—xn/2)[n)/x*

and

(15) o(x) = (2m)~texp(—x'/2),  D(x) = {2, o(u)du.

The function v in (14) and the integral on the right-hand side of (13) may be
evaluated numerically.

Motivated by a different application than those authors cited above, Woodroofe
(1976b) obtained a result which is equivalent to (13) by a different method.
Although the applications in the next section give new results, the approxima-
tion (13) involves essentially the same ideas with fewer technical details and
hence is given first.

To prove (13) define a probability Q by

(16) Q(A) = =, Py(A)rip(rif) db .

If Q™ (Py™) denotes the restriction of Q(P,) to the space of x;, - - -, x,, then it
is easy to verify that

(17) dQ™ = L, dP,™ ,
where
(18) L, = (Z. exp(ys, — ny?*2)rte(rly) dy = (r/(r + n))} exp(s,’/2(r + n)) .
Then for eachm =1,2, ...
(19)  PT < m} = 52, §ipew (@Py[dO™) dQ = §ppy(1/Ly) 4 .
From (16) and (18) we obtain

P{T < m} = §%u [$iram (r + TV exp(—s7/2(r + T)) dP,]p(r0) do ,
which for m = at becomes

(20)  PfT = ar} = ate™® S"-io [Sirsen ((r + T)/a)* exp{—(s7*/2(r +- T) — @)} dPy]
X @(rt0) do .
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Denote the inner integral in (20) by J,(6). By Lemma 1 below for each 6 = 0
(21) Py{lim,_,, a™'T = 2/6°} = 1
and ¢~'T is uniformly integrable. Hence for each ¢ 0 with r < 2/6?,
(22) lim, . J,(6) = 0.

a—oo

By algebra
5.2 [2(r + n) = 0(s, — nb/2) + (s, — n0)*/2(r + n) — ré(s, — n6/2)/(r + n) .
If we set S, = 0(s, — nf/2)and &, = (s, — n0)*/2(r + n) — ré(s, — nd/2)/(r + n),
then from (21), Lemma 2 below, and the strong law of large numbers, it follows
that conditions (3) and (4) hold with « = 1. Henct by Theorem 1, (21), and
the uniform integrability of a—'T, for each ¢ with ¢ > 2/6*
lim, _,, 274|0J,(0) = (E,S.)~" {¢ e *Py{S,, > x}dx
= (Eyr,E,X)7(1 — E, eXp(—S,O)) .
This last quantity may be evaluated according to results of Spitzer (cf. Feller,
1966, Chapter 18 or Chung, 1968, Chapter 8) to give
(23) o limg o Ji(6) = 28(0])/16],  16] > (2/0)*,
where v is defined in (14). Moreover, J,(f) < (r/a + ) for all §. Hence (13)
follows from (20), (22), (23), and the dominated convergence theorem.

LemMA 1. For T defined by (12), for each 6 + 0 (21) holds and E,(T) ~ 2a/6*
as a — oo. Hence {a='T, a = 1} is uniformly integrable.

Proor. The proof involves standard arguments. For more general results
along these lines cf. Siegmund (1967).

LEMMA 2. For arbitrary 5 > 0 there exists p > 0 such that

(24) Pﬂ{maxnskSnﬂm |(sk - kﬂ)z/(r + k) - (S,, - no)z/(r + n)l > ”} < 7 -

Proor. It suffices to consider the case § = 0. By simple algebra for n < k <
n -4 pn
(25) 18 4 k) = s7[(r + m)| < ps/n + (s — 5. fn + 2lsu(s — s,)|/n
Let ¢, 2 > Oand define 4 = {|s,|/n? < 2}, B = {mMaX, 4z, ,n |5 — .| < ent}. On
A n B the right-hand side of (25) is majorized by p2* + &* + 22¢, which for any
fixed 2 can be made less than 7 by taking p and ¢ sufficiently small. Then by
Kolmogorov’s and Chebyshev’s inequalities

Po{maxngk§n+pn |Sk2/(r + k) — 5.} /(r + n)| > 7}
< Py(A%) + P(BY) < 47 4 pe.

Thus the lemma follows, if we first fix 2 so large that -2 < 5/2 and then choose
p and ¢ so small that pA* 4 & 4 24¢ < 7 and pe~? < /2.
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4. Application of Theorem 1 to open-ended tests and confidence sequences.

Let x;, x, - - - be independent and identically distributed random variables with
probability distribution of the form
(26) Py{x, € dx} = exp(6x — W(0))H(dx)

for some 6 € J, J an open interval containing 0. Assume also that Hisa nonlattice
probability distribution which gives positive measure to both (— oo, 0) and
(0, o), and without loss of generality that

(27) T(0) = ¥(0)=0.
It is easily verified that W'(0) = E,(x,) and ¥""(§) = Var, (x,) > 0, so that by (27)
(28) sgn E,(x;) = sgn @ .

For a probability distribution G on J, in analogy with the preceding section
define a probability Q by
(29) O(4) = §, Py(A)G(db) -
With Q™ and P,™ also analogously defined as the restrictions of Q and P, to
the space of x,, - - -, x,, it follows from (26), (27), and (29) that (17) holds but

now with

(30) L, = §,exp(ys, — n¥(y))G(dy) -

For any stopping rule T and m = 1, 2, --- we have (19), which as m — o
becomes

(31) PT < 00} = {ir<e) (1/L7) dQ .

For the particular choice

(32) T =inf{n: L, > ¢}

we obtain at once from (31)
(33) P{L, > c forsome n>1} < c*.

This inequality forms the basis of the theory of open-ended tests and confidence
sequences as given, for example, by Robbins (1970). For these purpose it is
desirable to have a more accurate approximation to the left-hand side of (33).
To study the effect of truncation on these tests it would be useful to have an
approximation to P{T < mj} for finite values of m. Interest in such approxima-
tions has also been expressed by Armitage (1967).

By (29) we may rewrite (19) as

(34) PAT < m} = e §; (§ir<m eXp[—(log Ly — a)] dP,)G(d0) ,
where we have set ¢ = e*. Equation (34) also holds for m = co. If we set

Z, =logL, = 0s, — n¥(0) + log §, exp[(y — 0)s, — n(¥(y) — ¥(0))1G(dy)
and make the identifications S, = 6s, — n¥(0), §, = Z, — S,, then with the
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assumption that G’ exists in a neighborhood of ¢ = 0 and is positive and con-
tinuous at ¢, it may be shown that Theorem 1 applies under P, to the stopping
rule T defined by (33). The technical aspects of this proof have been deve-
loped by Pollak and Siegmund (1975) in a related context and will not be re-
peated here. If G’ exists and is positive and continuous on an open set of G-
measure 1, then by arguing as in the preceding section we obtain for each 0 <
t< oo ' ‘

(35) P{T < at} ~ €7 § g 0w 0y -wioy>10 V¥(0)G(d0)
where
(36) V4 (8) = (O(0) — W(O)~ exp[— X5 n(P,{S, = 0}

+ S(Sn>0) exp(—Sn) dPo)] .

For the important special case of normal random variables, ¥(f) = 6*/2 and v*
is just the function v defined in (14).

A systematic numerical comparison of a number of sequential tests using the
results of this paper will be presented elsewhere. As a brief indication of the
accuracy of our approximations we consider the special case of normal random
variables, for which ¥(0) = 6*/2, and take G(dy) = ¢(y)dy, so that T defined by
(33) becomes

T =inf{n: |s,| = [(n + 1)(log (n + 1) + 2a)]}}.

Table 1 compares the right hand of (35) with Monte Carlo estimates of Py{T <
at} obtained by averaging 400 Q-realizations of I\;,,(1/L;). By (19) this is an
unbiased estimator of P{T < at}. It is easy to see by the preceding methods
that it has variance of order e=* as a — co and hence is much more accurate
than direct simulation, which yields a variance of order e~*. Moreover, on the
average it requires fewer random variables x,, x;, - - - to obtain a single Q-reali-
zation of I, (1/Ly) than a single Py -realization of I;_,,. A more systematic
discussion of the use of such “importance sampling” in sequential analysis is
given by Siegmund (1976).

The + value appearing in the Monte Carlo column of Table 1 is one standard
error. The values of a correspond to values of ¢ = e* of 10, 20, and 100. In
all cases the theoretical approximation appears to be slightly too large, but the
largest discrepancy obtained is only 549, of the Monte Carlo value.

TABLE 1
Asyrrf}ggltiég})leory Monte Carlo
a=2.3,t=25 .0461 .0454 + .0017
t=50 .0517 .0500 + .0017
a=3, t=25 .0229 .0217 + .0009
t=50 .0257 .0246 + .0008
a=4.6,t=25 .00462 .00450 + .00018

t =50 .00518 .00512 4 .00018
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For t = co the integral on the right-hand side of (35) is .67. However, effec-
tive estimation of P{T < oo} by Monte Carlo methods is rather difficult. Ob-
viously direct simulation is impossible. Generating Q-realizations of ;..,(1/Ly)
requires very large sample sizes, for it may be shown that E,(T) ~ 2P(T =
o) log 6-1/6* as & — 0 (e.g., Robbins and Siegmund, 1973) and hence | T dQ =

2w Ey(T)G(df) = oo. A different Monte Carlo estimator proposed by Darling
and Robbins has been shown to have no moments of order greater than 1 (cf.
Berk, 1969).

An alternative essentially Monte Carlo approximation to P{T < oo} may be
obtained as follows. In (34) with m = oo, e*P{T < oo} is expressed as an integral
of

(37) Eyfexp[—(log Ly — a)]} = Ey(c/Ly)

with respect to a distribution on 6. Except for § = 0 the expectation (37) may
be estimated by Monte Carlo methods. The first column of Table 2 contains
such Monte Carlo estimates based on 400 repetition experiments for a = 3 and
various values of §. For comparison the limiting value as a — oo of the expecta-
tion (37), namely v(f), is given in the second column of Table 2. The agreement
between asymptotic theory and Monte Carlo is sufficiently close that one ex-
pects the asymptotic approximation to P{T < oo} to be quite good. It may also
be shown that

lim,_, E)(¢/Ly) = §ir<a) (¢/Lr) APy + PT = oo},

which is about .97 for a = 3. Inclusion of any value between .95 and 1 as the
¢ = 0 entry for the first column of Table 2 and integration of this column by
Simpson’s rule yields the estimate .65 for e*Py{T < oo}, in good agreement with
the asymptotic theory.

TABLE 2
Ey(e/Lr)
0 Monte Carlo Asymptotic value
for a = 3 (¢ = 20) a— oo
0 — 1
.2 .86 .89
.4 .76 .79
.6 .69 il
.8 .61 .63
1.0 .57 .56
1.2 .51 .50
1.4 .46 .45
1.6 .45 .40
1.8 .40 .36
2.0 .37 .32
2.2 .34 .29
2.4 .33 .26
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