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MEAN INTEGRATED SQUARE ERROR PROPERTIES
OF DENSITY ESTIMATES

By KATHRYN BuLLock DAvis
University of Washington

The rate at which the mean integrated square error decreases as sample
size increases is evaluated for general L! kernel estimates and for the
Fourier integral estimate for a probability density. The rates are compared
to that of the minimum M.I.S.E.; the Fourier integral estimate is found
to be asymptotically optimal.

1. Introduction. Define the estimate f*™ of a densi"cy f by
1
[im(x) = . L Ky (x — X))

where X, ..., X, are independent identically distributed random variables with
probability density f and the kernel K, is square integrable as is f. Then the
mean integrated square error (M.LS.E.) given by J(f*™) = E(§ (f*™(x) —
f(x))* dx) is well defined. (Integrals where no limits are written are taken to be
over the entire real line.) Watson and Leadbetter (1963) showed that the mini-
mum M.LS.E. within this class of estimates is
7= L 120P0 — 120 4
2z ° 1+ (n — 1)@ (1)

where @, is the characteristic function of f. The Fourier transform of the
kernel which gives this M.I.S.E. was also derived; however, the kernel depends
on the unknown density f and is often difficult to evaluate.

A large subclass of such estimates often considered (e.g., Parzen, 1962) is the
class in which K, is a kernel satisfying K,(x) = 1K(2x) and { K(y) dy = 1, where
A(n), the scaling parameter, is a nonnegative increasing function such that
A(n)[n — 0 as n — oo and A(n) — R as n — oo where R = inf {r: ®(r) = 0 a.e.
for t > r > 0}. This is the class of estimates considered in this paper. The rate
of decrease of the M.I.S.E. for estimates of three large classes of densities, those
whose characteristic functions decrease algebraically, exponentially, or have
compact support, is given and compared with the rate of decrease of J,*. For
L' kernels, the rate of decrease of the M.I.S.E. is shown to be generally less
than the rate of J,*. For the kernel (zx)~!sin x, however, the rate of decrease
of the M.L.S.E. is shown to be of the same order as J, *.

2. Order of consistency. An estimator /™ is said to be integratedly con-
sistent of order H(n), where H(n) is a nonnegative increasing function such that
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H(n) — oo as n — oo, if H(n)J(f*™) tends to a limit which is finite and nonzero
asn—oo. Anestimate f4™ is asymptotically optimal if J,*/J(f*®)—1 as n— oo.
Watson and Leadbetter (1963) showed that the order of consistency H,* of J *
is always less than or equal to » and, for densities whose characteristic function
has compact support, is equal to n. In fact, this is the only case for which H,* is
equal to n. To show this, suppose H,*/n — A and H,*J,* — L as n — co where
A and L are finite and nonzero. By Fatou’s lemma,

L (i, (F2AOA = OA0) 4 it = L < .
/)

1L+ (n — D@()* i
But the limit on the left is

§ (1 — [DADPAr)
(where y(f) = 0 if |[®(r)] = 0 and y(r) = 1 if |®(¢)] > 0) and this integral
exists if and only if ®, has compact support.
The order of consistency H(n)and the scaling parameter A(n) are related. The
M.I.S.E. for the estimate ™ may be written

2.1) 20I(f1™) = n=A(n) § [ QD1 — | @ (A1) di
+ 4(n) § |@ A1 — Oy(o)*dr .

If H(n) is the order of consistency of f*™, then, from the first integral on the
right, H(n)A(n)/n — L as n — oco where L is positive and finite. This is consistent
with the properties of A(n) given in Section 1.

The remainder of this section will show the order of consistency for the esti-
mate using the kernel (7x)~'sin x. The resulting estimate is called the Fourier
integral estimate (F.I.E.) since it is derived by evaluating the Fourier integral
over (-—A(n), 2(n)) with the sample characteristic function substituted for @,.
The M.I.S.E. for the F.I.E. is given by

(2:2) J(fY) = Qo) @lls* + (wn)™(2 — (n + D7 |R D) dr) -

By differentiating this expression, it may be shown the M.L.S.E. is minimized
when |®,(A(n))]> = (n + 1)~*. 2(n) is uniquely defined by this expression and
satisfies the requirements for the scaling parameter given in Section 1 when
|@/(7)| is monotone decreasing as |¢] increases. This is the case with all common
densities except the uniform. The expression also suggests a sample based
method of estimating the optimal A(n). An unbiased estimate for | ()|* may
be easily constructed using the sample characteristic function and substituted
into the formula; the expression is then solved for the smallest such A(n). The
following theorem shows the F.I.E. (with optimal A(n)) has the same order of
consistency as J,*.

THEOREM 2.1. Let fe L* and suppose |®(t)| is monotone decreasing as |t| in-
creases. Let f*™ be the F.1.E. where |® (4(n))|™* = n + 1; then

t < lim,_ inf J*J(f*™) < lim,_,, sup J,*[J(f*™) < 1.



532 KATHRYN BULLOCK DAVIS

Proor. Let
_ X1 —=x) 0 1
g(x)_l—l—(n—l)x’ <X< )
and
h(x) = }x if 0<x<(n+ 1)1,
= (2n)(1 — x) if m+D'<x<1.
It is easily verified that
h(x) < 9(x) < 2h(x), 0<x<l.

Using this relation with the monotonicity of |®,(r)| and (2.2),
(™) = @r)7 {150, 2n)7 (1 — [@UO) dt + 27)7 S5 200 3O dt
< (zn)—l S Iq)f(t)|2(1 _ |(Df(t)|22) dt = J ¥
1+ (n = 1))
< 2a)7 § 250 m7 (1 — |@UOP) dr + (27) 7 S am [@(1)[ dit
= J(fim).
Thus J,* < J(f*™) < 2J,*, and the theorem follows.

3. Characteristic functions which decrease algebraically. A characteristic
function @, is said to decrease algebraically of degree p > 0 if
lim,_, |¢|7|®(f)| = Bt, 0<B< .
This class includes the gamma, chi-square (2p = degrees of freedom), exponen-
tial (p = 1), and double exponential (p = 1) probability densities. Since it is
assumed fe L' n L*, then @, € L? and necessarily p > 1. Watson and Leadbetter
(1963) showed that
1

lim, . #=VRg % = 2 B (1 o)t dr
T

Since estimates which are of the same order of consistency as J,* are the esti-
mates of interest, in this section A(n) will be defined to be (Bn)** (so that
H,*A(n)/n = B). Watson and Leadbetter (1963) showed that kernel estimates
with this A(n) for which {5 (1 — @,(r))*1~** dt exists satisfy
B.1)  lim,  wV(FA) = 2 BE(Se @A(n) d 4 (7 (1 — D)yt i) .
For what kernels does {5 (1 — @(7))*t~* dt exist? For K € L', @,(¢) is continu-
ous and bounded so {7 (1 — @())’r~*" dt exists for p > L. Suppose there exists
an integer r such that { x"K(x)dx =0,m = 1,2, ...,r — land § x"K(x) dx + 0.
Then, for Ke L},
(1 — @p(t) = § (1 — €)1k (x) dx
= —(r)7t" § x"K(x) dx
_ IR () (itx)') .,
{ <e 1= it — O L) o) ax

— —(r!)7t" § x"K(x) dx as t—0.
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(The value r is called the characteristic exponent of the transform ®,.) Com-
paring the integrand with 27-», {1 (1 — @,())*t~* dt converges for r = p and
diverges for r < p. Thus for L' kernels the convergence of {3 (1 — @ (1))*t~* dt
and hence the rate of convergence of the M.I.S.E. depend on the characteristic
exponent r. The most important group of these kernels are the weighting func-
tions considered by Parzen (1962). These kernels are even and positive, and
thus have characteristic exponent < 2. Therefore these kernels have a M.I.S.E.
which decreases at the same rate as J,* only when the density being estimated
has p < 2. Examples of such densities are the exponential, double exponential,
and chi-square with 1 degree of freedom. Densities which have more than two
derivatives are too smooth for these kernels. .

The kernel for the F.I.E. is not L! and does not have these limitations. From

(3.1),
lim, ., =2J(f1) = B 2p(2p — 1)

so the F.L.E. has the same order of consistency as J,* and
lim,_, J*[J(f*™) = (1 — (2p)™) {¢ (1 + £7)~"dr.
Since
fe (1 +7)tdt >T(1 4+ (2p) ) =1 for p> 4,

it follows that

max (3, 1 — (2p)™") < lim,_,, inf J,*/J(f*™) < lim,_, sup J,*/J(f*™) < 1
and

lim,_, lim,_, J,*[J(f*®) = 1.

Thus the F.I.E. is closer to the asymptotic optimality property as p increases;
that is, as the smoothness of the underlying density increases.

4. Characteristic functions which decrease exponentially. A characteristic
function @, is said to decrease exponentially with degree r and coefficient p if

(i) |@(¢) < Ae~*" for some constants 4 >0, >0, 0<r=2
and
(4.1) (i) lim,_. §3(1 + exp(2ot")| @ (X)) dx = 0.
This class includes the normal probability density (4 = 1, p = 0%, r = 2) and
the Cauchy density (4 = 1, p = 1,7 = 1). Watson and Leadbetter (1963) showed

lim,_,, n(log n)=""J,* = 7=}(20)~"" .
Accordingly, A(n) such that
lim, .., A(r)(log 1)~/ = (2p)"
will be used in this section.
THEOREM 4.1. Let fe L* and @ () decrease exponentially with coefficient p and
degree r. Suppose

4.2) lim, _,,, A(r)(log n)="" = (2p)~"".



534 KATHRYN BULLOCK DAVIS

Then
lim sup, ., n(log n)=""J(f3™) < oo
if and only if ®,(t) = lae., 0 <t < 1.
Proor. Rewriting the expression (2.1) for J(f*™),
2an(log my " I(f1™) = An)(log 1) §=. [@e()(1 — @ ArA(W)F) dt
ni(n)(log n)=7 {2, | @ (A(n)1)[*|1 — Dy(r)|* dt .
Since @, e L?, by Riemann-Lebesgue the first integral on the right has limit

(20)7""||D]||; as n — co. The second integral may be broken into two parts.
First,

na(n)(log m)™ §5 | @ (Am)[1 — Dy()] e

< A'n(2p log n) ™" §% ey €~ dt — 0 as n—oo.
(The limit follows from (4.2) and the fact lim,_, 2~%e*" {§e-*"dt = 0,r > 0.)
For the other part of the integral, note from (4.1) that

lim,_,, e |®@ (A(n)1)|* = oo for 0<t<1.
Using this and (4.2),
lim, ... (n)(log n)™" 3 n|®@(A(m)) |1 — R(t)| dr
is finite (and equal to zero) if and only if @ () =1, a.e.,, 0 < ¢ < 1, and the
theorem is proved.
Since @,(r) = 1, 0 < r < 1, is the Fourier transform for the kernel of the

F.LE., for this special kernel estimate the limit may be evaluated:

lim, _, n(log n)=~J(f*») = x=Y(20)" ,
and it follows that

lim,_, J,*[J(f*™) = 1

if and only if f2™(x) is the F.I.E. (a.e.).
Watson and Leadbetter derive an entirely different type of kernel estimate
based on kernels with
(I)K)(t) =@ (2, a>0

which also have the asymptotic optimum property with A(n) = cn=® where a =
2pb. No examples of such kernels are given.

5. Characteristic functions with compact support. For densities in this class,
H,* = n so A(n) is chosen to satisfy 4(n) — R as n — co. From (2.1),

2enl(f1™) = An) § |@x(O)(1 — [P (Am)D)[") dr
+ nd(n) §2, | DAL — Dp(1)[* it .

The limit of the first integral is R { |@.(¢)[*(1 — |®(Rr)|*) dt. The limit of the
second expression, however, exists (and is zero) if and only if @,(r) = 1 a.e. for
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|f] < 1. Thus again the F.LE. is the only estimate with the same order of con-
sistency as J,*. The F.LE. is also easily shown to be asymptotically optimal.

6. Summary. The rate at which the mean integrated square error decreases
as the sample size increases for the kernel estimates considered here depends on
the smoothness of the probability density being estimated. For densities with
only two derivatives, estimates using nonnegative L' kernels have mean inte-
grated square errors which decrease at the same rate as the minimum mean
integrated square error J,*. For densities with higher order derivatives, how-
ever, L! kernels do not perform as well; in general J, */J(f*™) — 0 as n — oo.
In contrast, for the Fourier integral estimate the rate of decrease of the mean
integrated square error improves with the smoothness of the density under con-
sideration. Under minimal conditions § < J,*/J(f*») < 1, so the rate of de-
crease is of the same order as J,*. These results agree with the earlier conclu-
sions (Davis, 1975) for the mean square error. The Fourier integral estimate
has good asymptotic error properties for a wider class of densities than does an
estimate formed using an L' kernel.
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