
The Annals of Statistics
2021, Vol. 49, No. 6, 3482–3509
https://doi.org/10.1214/21-AOS2093
© Institute of Mathematical Statistics, 2021

UNCERTAINTY QUANTIFICATION FOR BAYESIAN CART

BY ISMAËL CASTILLO1 AND VERONIKA ROČKOVÁ2
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This work affords new insights into Bayesian CART in the context of
structured wavelet shrinkage. The main thrust is to develop a formal infer-
ential framework for Bayesian tree-based regression. We reframe Bayesian
CART as a g-type prior which departs from the typical wavelet product pri-
ors by harnessing correlation induced by the tree topology. The practically
used Bayesian CART priors are shown to attain adaptive near rate-minimax
posterior concentration in the supremum norm in regression models. For the
fundamental goal of uncertainty quantification, we construct adaptive con-
fidence bands for the regression function with uniform coverage under self-
similarity. In addition, we show that tree-posteriors enable optimal inference
in the form of efficient confidence sets for smooth functionals of the regres-
sion function.

1. Introduction. The widespread popularity of Bayesian tree-based regression has
raised considerable interest in theoretical understanding of their empirical success. However,
theoretical literature on methods such as Bayesian CART and BART is still in its infancy. In
particular, statistical inferential theory for regression trees and forests (both frequentist and
Bayesian) has been severely under-developed.

This work sheds light on Bayesian CART [20, 25] which is a popular learning tool based
on ideas of recursive partitioning and which forms an integral constituent of BART [22].
Bayesian Additive Regression Trees (also known as BART) have emerged as one of today’s
most effective general approaches to predictive modeling under minimal assumptions. Their
empirical success has been amply illustrated in the context of nonparametric regression [22],
classification [45], variable selection [8, 41, 43], shape constrained inference [21], causal in-
ference [37, 38], to name a few. The BART model deploys an additive aggregate of individual
trees using Bayesian CART as its building block. While theory for random forests, the fre-
quentist counterpart, has seen numerous recent developments [6, 44, 52, 57, 58], theory for
Bayesian CART and BART has not kept pace with its application. With the first theoretical
results (Hellinger convergence rates) emerging very recently [42, 50, 51], many fundamental
questions pertaining to, see, for example, convergence in stronger losses such as the supre-
mum norm, as well as uncertainty quantification (UQ), have remained to be addressed. This
work takes a leap forward in this important direction by developing a formal frequentist sta-
tistical framework for uncertainty quantification with confidence bands for Bayesian CART.

We first show that Bayesian CART reaches a (near-)optimal posterior convergence rate
under the supremum-norm loss, a natural loss for UQ of regression functions. Many methods
that are adaptive for the L2-loss actually fail to be adaptive in an L∞-sense, as we illustrate
below. We are actually not aware of any sharp supremum-norm convergence rate result for
related machine learning methods in the literature, including CART, random forests and deep
learning. Regarding inference, we provide a construction of an adaptive credible band for
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the unknown regression function with (nearly, up a to logarithmic term) optimal uniform
coverage under self-similarity. In addition, we provide efficient confidence sets and bands for
a family of smooth functionals. Uncertainty quantification for related random forests or deep
learning has been an open problem, with distributional results available only for point-wise
prediction using bootstrap techniques [44]. Our results make a needed contribution to the
literature on the widely sought-after UQ for (tree-based) machine learning methods.

Regarding supremum-norm (and its associated discrete �∞ version) posterior contraction
rates, their derivation is typically more delicate compared to the more familiar testing dis-
tances (e.g., L2 or Hellinger) for which general theory has been available since the seminal
work [32]. Despite the lack of unifying theory, however, advances have been made in the last
few years [14, 34, 39] including specific models [47, 48, 54, 63]. However, Bayesian adap-
tation for the supremum loss has been obtained, to the best of our knowledge, only through
spike-and-slab priors (the work [62] uses Gaussian process priors, but adaptation is obtained
via Lepski’s method). In particular, [39] show that spike-and-slab priors on wavelet coeffi-
cients yield the exact adaptive minimax rate in the white noise model and [61] considers the
anisotropic case in a regression framework. For density estimation, [15, 16] derive optimal
‖ · ‖∞-rates for Pólya tree priors, while [46] considers adaptation for log-density spike and
slab priors. In this work, we consider Gaussian white noise and nonparametric regression
with Bayesian CART which is widely used in practice.

Bayesian CART is a method of function estimation based on ideas of recursive partition-
ing of the predictor space. The work [26] highlighted the link between dyadic CART and best
ortho-basis selection using Haar wavelets in two dimensions; [30] furthered this connection
by considering unbalanced Haar wavelets of [36]. CART methods have been also studied in
the machine learning literature; see, for example, [7, 53, 59] and references therein. Unlike
plain wavelet shrinkage methods and standard spike-and-slab priors, general Bayesian CART
priors have extra flexibility by allowing for (some) basis selection. First results in this direc-
tion are derived in Section 4. This aspect is particularly useful in higher-dimensional data,
where CART methods have been regarded as an attractive alternative to other methods [27].

By taking the Bayesian point of view, we relate Bayesian CART to structured wavelet
shrinkage using libraries of weakly balanced Haar bases. Each tree provides an underlying
skeleton or a ‘sparsity structure’ which supervises the sparsity pattern (see, e.g., [2]). We show
that Bayesian CART borrows strength between coefficients in the tree ancestry by giving
rise to a variant of the g-prior [64]. Similarly as independent product priors, we show that
these dependent priors also lead to adaptive supremum norm concentration rates (up to a
logarithmic factor). To illustrate that local (internal) sparsity is a key driver of adaptivity, we
show that dense trees are incapable of adaptation.

To convey the main ideas, the mathematical development will be performed through the
lense of a Gaussian white noise model. Our techniques, however, also apply in nonparametric
regression. Results in this setting are briefly presented in Section 3.5 with details postponed
until the Supplementary Material (Section S-1.1). The white noise model is defined through
the following stochastic differential equation, for an integer n ≥ 1,

(1) dX(t) = f0(t) dt + 1√
n

dW(t), t ∈ [0,1],
where X(t) is an observation process, W(t) is the standard Wiener process on [0,1] and
f0 is unknown and belongs to L2[0,1], set of squared-integrable functions on [0,1]. The
model (1) is observationally equivalent to a Gaussian sequence space model after projecting
the observation process onto a wavelet basis {ψlk : l ≥ 0,0 ≤ k ≤ 2l − 1} of L2[0,1]. This
sequence model writes as

(2) Xlk = β0
lk + εlk√

n
, εlk

iid∼ N (0,1),
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where the wavelet coefficients β0
lk = 〈f0,ψlk〉 = ∫ 1

0 f0(t)ψlk(t) dt of f0 are indexed by a
scale index l ≥ −1 and a location index k ∈ {0, . . . , (2l − 1)+}. A paradigmatic example is
the standard Haar wavelet basis

(3) ψ−10(x) = I[0,1](x) and ψlk(x) = 2l/2ψ
(
2lx − k

)
(l ≥ 0),

obtained with orthonormal dilation-translations of ψ = I(0,1/2] − I(1/2,1], where IA denotes
the indicator of a set A. Later in the text, we also consider weakly balanced Haar wavelet
relaxations (Section 4), as well as smooth wavelet bases (Section S-4.2).

One of the key motivations behind the Bayesian approach is the mere fact that the posterior
is an actual distribution, whose limiting shape can be analyzed towards obtaining uncertainty
quantification and inference. Our results in this direction can be grouped in two subsets.
First, for uncertainty quantification for f0 itself, we construct adaptive and honest confidence
bands under self-similarity (with coverage converging to one). Exact asymptotic coverage
is achieved through intersections with a multiscale credible band (along the lines of [49]).
Confidence bands construction for regression surfaces is a fundamental task in nonparamet-
ric regression and can indicate whether there is empirical evidence to support conjectured
features such as multi-modality or exceedance of a level. Results of this type are, to date,
unavailable for classical CART, random forests and/or deep learning. Second, we consider
inference for smooth functionals of f0, including linear ones and the primitive functional∫ ·

0 f0, for which exact optimal confidence sets are derived from posterior quantiles. While
these results for functionals are stated in the main paper (Theorem 4 below), their derivation
is most naturally obtained through a general limiting shape result, stated and proved in the
Supplementary Material (Theorem S-3). Such an adaptive Bernstein-von Mises theorem for
Bayesian CART is obtained following the approach of [17, 18]; it is only the second result of
this kind (providing adaptation) after the recent result of Ray [49].

The paper is structured as follows. Section 2 introduces regression tree-priors, as well as
the notion of tree-shaped sparsity and the g-prior for trees. In Section 3, we state supremum-
norm inference properties of Bayesian dyadic CART (estimation and confidence bands).
Section 4 considers flexible partitionings allowing for basis choice. A brief discussion can
be found in Section 5. The proof of our master Theorem 1 can be found in Section 6. The
Supplementary Material [19] gathers the proofs of the remaining results. The sections and
equations of this supplement are referred to with an additional symbol “S-” in the number-
ing.

Notation. Let C([0,1]) denote the set of continuous functions on [0,1] and let φσ denote
the normal density with zero mean and variance σ 2. Let N = {0,1,2, . . .} be the set of natural
integers and N∗ = N \ {0}. We denote by IK the K × K identity matrix, Also, Bc denotes
the complement of a set B . For an interval I = (a, b] ⊂ (0,1], let |I | = b − a be its diameter
and a ∨ b = max(a, b). The notation x � y means x ≤ Cy for C a large enough universal
constant, and := (or =:) means “the left-hand side is defined as.”

2. Trees and wavelets. In this section, we discuss multiscale prior assignments on func-
tions f ∈ L2[0,1] (i.e., priors on the sequence of wavelet coefficients βlk = 〈f,ψlk〉) inspired
by (and including) Bayesian CART. Such methods recursively subdivide the predictor space
into cells where f can be estimated locally. The partitioning process can be captured with
a tree object (a hierarchical collection of nodes) and a set of splitting rules attached to each
node. Section 2.1 discusses priors on the tree object. The splitting rules are ultimately tied
to a chosen basis, where the traditional Haar wavelet basis yields deterministic dyadic splits
(as we explain in Section 2.1.2). Later in Section 4, we extend our framework to random
unbalanced Haar bases which allow for more flexible splits. Beyond random partitioning, an
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integral component of CART methods are histogram heights assigned to each partitioning
cell. We flesh out connections between Bayesian histograms and wavelets in Section 2.2.
Finally, we discuss Bayesian CART priors over histogram heights in Section 2.3.

2.1. Priors on trees �T(·). First, we need to make precise our definition of a tree object
which will form a skeleton of our prior on (βlk) for each given basis {ψlk}. Throughout this
paper, we will largely work with the Haar basis.

DEFINITION 1 (Tree terminology). We define a binary tree T as a collection of nodes
(l, k), where l ∈ N, k ∈ {0, . . . ,2l − 1}, that satisfies

(l, k) ∈ T , l ≥ 1 ⇒ (
l − 1, �k/2�) ∈ T .

In the last display, the node (l, k) is a child of its parent node (l − 1, �k/2�). A full binary
tree consists of nodes with exactly 0 or 2 children. For a node (l, k), we refer to l as the layer
index (or also depth) and k as the position in the lth layer (from left to right). The cardinality
|T | of a tree T is its total number of nodes and the depth is defined as d(T ) = max(l,k)∈T l.

A node (l, k) ∈ T belongs to the set Text of external nodes (also called leaves) of T if it has
no children and to the set Tint of internal nodes, otherwise. By definition |T | = |Tint| + |Text|,
where, for full binary trees, we have |T | = 2|Tint| + 1. An example of a full binary tree
is depicted in Figure 1(a). In the sequel, T denotes the set of full binary trees of depth no
larger than L = Lmax = �log2 n�, a typical cut-off in wavelet analysis. Indeed, trees can be
associated with certain wavelet decompositions, as will be seen in Section 2.2.2.

Before defining tree-structured priors over the entire functions f ’s, we first discuss various
ways of assigning a prior distribution over T, that is over trees themselves. We focus on the
Bayesian CART prior [20], which became an integral component of many Bayesian tree
regression methods including BART [22].

2.1.1. Bayesian CART priors. The Bayesian CART construction of [20] assigns a prior
over T via the heterogeneous Galton-Watson (GW) process. The prior description utilizes
the following top-down left-to-right exploration metaphor (see also [50]). Denote with Q a
queue of nodes waiting to be explored. Each node (l, k) is assigned a random binary indicator
γlk ∈ {0,1} for whether or not it is split. Starting with T = ∅, one initializes the exploration
process by putting the root node (0,0) tentatively in the queue, that is, Q = {(0,0)}. One then
repeats the following three steps until Q =∅:

(a) Pick a node (l, k) ∈ Q with the highest priority (i.e., the smallest index 2l + k) and if
l < Lmax, split it with probability

(4) plk = P(γlk = 1).

If l = Lmax, set γlk = 0.
(b) If γlk = 0, remove (l, k) from Q.
(c) If γlk = 1, then:

(i) add (l, k) to the tree, that is, Tint ← Tint ∪ {(l, k)},
(ii) remove (l, k) from Q and if l < Lmax add its children to Q, that is,

Q ← Q \ {
(l, k)

} ∪ {
(l + 1,2k), (l + 1,2k + 1)

}
.

The tree skeleton is probabilistically underpinned by the cut probabilities (plk) which are
typically assumed to decay with the depth l as a way to penalise too complex trees. While
[20] suggest plk = α/(1 + l)γ for some α ∈ (0,1) and γ > 0, [50] point out that this decay
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FIG. 1. (Left) A full binary tree T = Tint ∪ Text. Red nodes are external nodes Text and blue nodes are internal
nodes Tint. (Right) A binary tree of cut probabilities plk in (4).

may not be fast enough and suggest instead plk = �−l for some 2 < � < n, which leads to a
(near) optimal empirical L2-convergence rate. We use a similar assumption in our analysis,
and also assume that the split probability depends only on l, and simply denote pl = plk .

Independently of [20, 25] proposed another variant of Bayesian CART, which first draws
the number of leaves (i.e., external nodes) K = |Text| at random from a certain prior on
integers, for example, a Poisson distribution (say, conditioned to be nonzero). Then, a tree
T is sampled uniformly at random from all full binary trees with K leaves. Noting that
there are CK−1 such trees, with CK the K th Catalan number (see Lemma S-3), this leads
to �(T ) = (λK/[K!(eλ − 1)]) · C−1

K−1. As we restrict to trees in T, that is, with depth at
most L = Lmax, we slightly update the previous prior choice by setting, for some λ > 0, with
K = |Text|,

(5) �T(T ) ∝ λK

(eλ − 1)K!
1

CK−1
IT ∈T,

where ∝ means ‘proportional to.’ We call the resulting prior �T the ‘conditionally uniform
prior’ with a parameter λ.

2.1.2. Trees and random partitions. Trees provide a structured framework for generating
random partitions of the predictor space (here we choose (0,1] for simplicity of exposition).
In CART methodology, each node (l, k) ∈ T is associated with a partitioning interval Ilk ⊆
(0,1]. Starting from the trivial partition I00 = (0,1], the simplest way to obtain a partition is
by successively dividing each Ilk into Ilk = Il+12k ∪ Il+12k+1. One central example is dyadic
intervals Ilk which correspond to the domain of the balanced Haar wavelets ψlk in (3), that
is,

(6) I00 = (0,1], Ilk = (
k2−l , (k + 1)2−l] for l ≥ 0 and 0 ≤ k < 2l .

For any fixed depth l ∈N, the intervals
⋃

0≤k<2l Ilk form a deterministic regular (equispaced)
partition of (0,1]. Trees, however, generate more flexible partitions

⋃
(l,k)∈Text

Ilk by keeping
only those intervals Ilk attached to the leaves of the tree. Since T is treated as random with a
prior �T (as defined in Section 2.1), the resulting partition will also be random.

EXAMPLE 1. Figure 1(a) shows a full binary tree T = Tint ∪ Text, where Tint =
{(0,0), (1,1), (2,2)} and Text = {(1,0), (2,3), (3,4), (3,5)}, resulting in the partition of
(0,1] given by

(7) (Ilk)(l,k)∈Text = {
(0,1/2], (1/2,5/8], (5/8,3/4], (3/4,1]}.
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The set of possible split points obtained with (6) is confined to dyadic rationals. One can
interpret the resulting partition as the result of recursive splitting where, at each level l, inter-
vals Ilk for each internal node (l, k) ∈ Tint are cut in half and intervals Ilk for each external
node (l, k) ∈ Text are left alone. We will refer to such a recursive splitting process as dyadic
CART. There are several ways to generalize this construction, for instance by considering
arbitrary splitting rules that iteratively dissect the intervals at values other than the midpoint.
We explore such extensions in Section 4.

2.2. Tree-shaped priors on f . This section outlines two strategies for assigning a tree-
shaped prior distribution on f underpinned by a tree skeleton T ∈ T. Each tree T = Tint ∪
Text can be associated with two sets of coefficients: (a) internal coefficients βlk attached to
wavelets ψlk for (l, k) ∈ Tint and (b) external coefficients β̃lk attached to partitioning intervals
Ilk for (l, k) ∈ Text (see Section 2.1.2). While wavelet priors (Section 2.2.1) assign the prior
distribution internally on βlk , Bayesian CART priors [20, 25] (Section 2.2.2) assign the prior
externally on β̃lk . We discuss and relate these two strategies in more detail below.

2.2.1. Tree-shaped wavelet priors. Traditional (linear) Haar wavelet reconstructions for
f deploy all wavelet coefficients βlk with resolutions l smaller than some d > 0. This strategy
amounts to fitting a flat tree with d layers (i.e., a tree that contains all nodes up to a level
d , see Figure 2) or, equivalently, a regular dyadic regression histogram with 2d bins. This
construction can be made more flexible by selecting coefficients prescribed by trees that are
not necessarily flat. Given a full binary tree T ∈ T, one can build the following wavelet
reconstruction of f using only active wavelet coefficients that are inside a tree T :

(8) fT ,β(x) = β−10ψ−10(x) + ∑
(l,k)∈Tint

βlkψlk(x) = ∑
(l,k)∈T ′

int

βlkψlk(x),

where β = (β−10, (βlk)0≤l≤L−1,0≤k<2l )′ is a vector of wavelet coefficients and where T ′
int =

Tint ∪ {(−1,0)} is the ‘rooted’ tree with the index (−1,0) added to Tint. Note that |T ′
int| =

|Text|.
Define a tree-shaped wavelet prior on fT ,β as the prior induced by the hierarchical model

(9)

T ∼ �T,

(βlk)lk | T ∼ ⊗
(l,k)∈T ′

int

π(βlk) ⊗ ⊗
(l,k)/∈T ′

int

δ0(βlk),

where �T is a prior on trees as described in Section 2.1.1 and where the active wavelet
coefficients βlk for (l, k) ∈ Tint follow a distribution with a bounded and positive density
π(βlk) on R. The prior (9) is seen as a distribution on R2L

, where all remaining coefficients,
that is, βlk’s for l ≥ L, are set to 0.

FIG. 2. Flat tree with edges weighted by the amplitude of the Haar wavelets.
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The prior (9) contains the so-called sieve priors [18] (i.e., flat trees) as a special case,
where the sieve is with respect to the approximating spaces Vect{ψlk, l < d} for some d ≥ 0.
For nonparametric estimation of f0, it is well known that sieve priors can achieve (nearly)
adaptive rates in the L2-sense (see, e.g., [33]). In turns out, however, that sieve priors (and
therefore flat tree priors) are too rigid to enable adaptive results for stronger losses such as the
supremum norm, as we demonstrate in Theorem 5 in Section 3.4 (Supplementary Material).
This theorem illustrates that supremum norm adaptation using Bayesian (or other likelihood-
based) methods is a delicate phenomenon that is not attainable by many typical priors.

By definition, the prior (9) weeds out all wavelet coefficients βlk that are not supported
by the tree skeleton (i.e., are not internal nodes in T ). This has two shrinkage implications:
global and local. First, the global level of truncation (i.e., the depth of the tree) in (9) is not
fixed but random. Second, unlike in sieve priors, only some low resolution coefficients are
active depending on whether or not the tree splits the node (l, k). These two shrinkage aspects
create hope that tree-shaped wavelet priors (9) attain adaptive supremum norm rates (up to
log factors) and enable construction of adaptive confidence bands. We see later in Section 3
that this optimism is indeed warranted.

For adaptive wavelet shrinkage, [23] propose a Gaussian mixture spike-and-slab prior on
the wavelet coefficients. The point mass spike-and-slab incarnation of this prior was studied
by [39] and [49]. Independently for each wavelet coefficient βlk at resolutions larger than
some l0(n) (strictly increasing sequence), the prior in [49] can be written in the standard
spike-and-slab form

(10) π(βlk | γlk) = γlkπ(βlk) + (1 − γlk)δ0(βlk),

where γlk ∈ {0,1} for whether or not the coefficient is active with P(γlk = 1 | θl) = θl . More-
over, the prior on all coefficients at resolutions no larger than l0(n) is dense, that is, θl = 1 for
l ≤ l0(n). The value θl can be viewed as the probability that a given wavelet coefficient βlk at
resolution l will contain ‘signal.’

There are undeniable similarities between (9) and (10), in the sense that the binary inclu-
sion indicator γlk in (10) can be regarded as the node splitting indicator γlk in (4). While
the indicators γlk in (10) are independent under the spike-and-slab prior, they are hierarchi-
cally constrained under the CART prior, where the pattern of nonzeroes encodes the tree
oligarchy. The seeming resemblance of the CART-type prior (9) to the spike-and-slab prior
(10) makes one naturally wonder whether, unlike sieve-type priors, CART posteriors attain
adaptive supremum-norm inference.

2.2.2. Bayesian CART priors. A perhaps more transparent approach to assigning a tree-
shaped prior on f is through histograms (as opposed to wavelet reconstructions from Sec-
tion 2.2.1). Each tree T ∈ T generates a random partition via intervals Ilk (see Section 2.1.2)
and gives rise to the following histogram representation:

(11) f̃T ,β̃(x) = ∑
(l,k)∈Text

β̃lkIIlk
(x),

where β̃ = (β̃lk : (l, k) ∈ Text)
′ is a vector of reals interpreted as step heights and where Ilk’s

are obtained from the tree T as in Section 2.1.2 (and as illustrated in Example 1). We now
define the (Dyadic) Bayesian CART prior on f using the following hierarchical model on the
external coefficients rather than internal coefficients (compare with (9)):

(12)

T ∼ �T,

(β̃lk)(l,k)∈Text | T ∼ ⊗
(l,k)∈Text

π̃(β̃lk),
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FIG. 3. (a) Example of a full binary tree, edges weighted by the amplitude of the Haar wavelets. (b) Pinball
matrix of the tree in (a).

where �T is as in Section 2.1, and where the height β̃lk at a specific (l, k) ∈ Text has a
bounded and positive density π̃ (β̃lk) on R. This model coincides with the widely used
Bayesian CART priors using a midpoint dyadic splitting rule (as we explained in Sec-
tion 2.1.2). In practice, the density π̃ is often chosen as centered Gaussian with some variance
σ 2 > 0 [20, 25].

The histogram prior (11) can be rephrased in terms of wavelets. Indeed, the histogram
representation (11) can be rewritten in terms of the internal coefficients, that is, f̃T ,β̃(x) =
fT ,β(x) as in (8), with βlk’s and β̃lk’s linked via

(13) β̃lk = β−10 +
l−1∑
j=0

s�k/2l−j−1�2j/2βj�k/2l−j �,

where sk = (−1)k+1. The identity (13) follows the fact that for x ∈ Ilk we obtain β̃lk =∑
(l′,k′)∈Plk

βl′k′ψl′k′ from (11), where Plk ≡ {(j, �k/2l−j�) : j = 0, . . . , l − 1} are the ances-
tors of the bottom node (l, k). Note that ψj�k/2l−j � = 2j/2s�k/2l−j−1� where s = (−1)k+1 for
whether x belongs to the left (positive sign) or right (negative sign) of the wavelet piece.
There is a pinball game metaphor behind (13). A ball is dropped through a series of dyad-
ically arranged pins of which the ball can bounce off to the right (when sk = +1) or to the
left (when sk = −1). The ball ultimately lands in one of the histogram bins Ilk whose coef-
ficient β̃lk is obtained by aggregating βlk’s of those pins (l, k) that the ball encountered on
its way down. The pinball aggregation process can be understood from Figure 3. The duality
between the equivalent representations (11) and (8) through (13) provides various avenues for
constructing prior distributions, and enables an interesting interpretation of Bayesian CART
[20, 25] as a correlated wavelet prior, as we now see.

2.3. The g-prior for trees. We now discuss various ways of assigning a prior distribu-
tion on the bottom node histogram heights β̃lk and, equivalently, the internal Haar wavelet
coefficients βlk . This section also describes an interesting connection between the widely
used Bayesian CART prior [20, 25] and a g-prior [64] on wavelet coefficients. For a given
tree T , let βT = (βlk : (l, k) ∈ T ′

int)
′ denote the vector of ordered internal node coefficients

βlk including the extra root node (−1,0) (and with ascending ordering according to 2l + k).
Similarly, β̃T = (βlk : (l, k) ∈ Text)

′ is the vector of ordered external node coefficients β̃lk .
The duality between βT and β̃T is apparent from the pinball equation (13) written in matrix
form,

(14) β̃T = AT βT ,
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where AT is a square |Text| × |T ′
int| matrix (noting |Text| = |T ′

int|), further referred to as the
pinball matrix. Each row of AT encodes the ancestors of the external node, where the nonzero
entries correspond to the internal nodes in the family pedigree. The entries are rescaled, where
younger ancestors are assigned more weight. For example, the tree T in Figure 3(a) induces
a pinball matrix AT in Figure 3(b). The pinball matrix AT can be easily expressed in terms
of a diagonal matrix and an orthogonal matrix as

(15) AT A′
T = DT where DT = diag{d̃lk,lk}(l,k)∈Text, d̃lk,lk = 2l .

This results from the fact that the collection (2l/2Ilk, (l, k) ∈ Text) is an orthonormal system
spanning the same space as (ψjk, (j, k) ∈ T ′

int), so D
−1/2
T AT is an orthonormal change-of-

basis matrix. We now exhibit precise connections between the theoretical wavelet prior (9)
which draws βlk ∼ π and the practical Bayesian CART histogram prior which draws β̃lk ∼ π̃ .

Recall that the wavelet prior (9) assumes independent wavelet coefficients, for example,
through the standard Gaussian prior βT ∼ N (0, I|Text|). Starting from within the tree, this
translates into the following independent product prior on the bottom coefficients β̃lk through
(14):

(16) β̃T ∼ N (0,DT ) where DT was defined in (15),

that is, var β̃lk = 2l where the variances increase with the resolution l.
The Bayesian CART prior [20, 25], on the other hand, starts from outside the tree by

assigning β̃T ∼ N (0, gnI|Text|) for some gn > 0, ultimately setting the bottom node variances
equal. This translates into the following ‘g-prior’ on the internal wavelet coefficients through
the duality (14).

DEFINITION 2. Let T ∈ T with a pinball matrix AT and denote with βT the internal
wavelet coefficients. We define the g-prior for trees as

(17) βT ∼ N
(
0, gn

(
A′

T AT
)−1)

for some gn > 0.

Note that, except for very special cases (e.g., flat trees) A′
T AT is in general not diagonal,

unlike AT A′
T . This means that the correlation structure induced by the Bayesian CART prior

on internal wavelet coefficients is nontrivial, although A′
T AT admits some partial sparsity.

We characterize basic properties of the pinball matrix in Section S-2.1 in the Supplemen-
tary Material. For example, Proposition S-3 shows that matrices A′

T AT and AT A′
T have the

same eigenspectrum consisting of values 2l where l corresponds to the depth of the bottom
nodes. This means that the g-prior variances (diagonal elements of gn(A

′
T AT )−1) are lower-

bounded by the minimal eigenvalue of gn(A
′
T AT )−1 which equals gn2−l (where l is the

depth of the deepest external node) which is lower-bounded by gn/n. Since the traditional
wavelet prior assumes variance 1, the choice gn = n matches the lower bound 1 by under-
smoothing all possible variance combinations. While other choices could be potentially used
(see [28, 29, 40] in the context of linear regression), we will consider gn = n in our results
below.

We regard (17) as the ‘g-prior for trees’ due to its apparent similarity to g-priors for linear
regression coefficients [64]. The g-prior has been shown to have many favorable properties
in terms of invariance or predictive matching [4, 5]. Here, we explore the benefits of the g-
type correlation structure in the context of structured wavelet shrinkage where each ‘model’
is defined by a tree topology. The correlation structure (17) makes this prior very different
from any other prior studied in the context of wavelet shrinkage.
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3. Inference with (dyadic) Bayesian CART. In this section, we investigate the infer-
ence properties of tree-based posteriors, showing that (a) they attain the minimax rate of
posterior concentration in the supremum-norm sense (up to a log factor), and (b) enable un-
certainty quantification: for f in the form of adaptive confidence bands, and for smooth func-
tionals thereof, in terms of Bernstein-von Mises type results. For clarity of exposition, we fo-
cus now on the one-dimensional case, but the results readily extend to the multi-dimensional
setting with Rd , d ≥ 1 fixed, as predictor space; see Section S-1.4 for more details.

3.1. Posterior supremum-norm convergence. Let us recall the standard inequality (see,
e.g., (60) below), for f0 a continuous function and f a Haar histogram (8), with coefficients
β0

lk and βlk ,

(18) ‖f − f0‖∞ ≤ ∣∣β−10 − β0−10

∣∣ + ∑
l≥−1

2l/2 max
0≤k<2l

∣∣βlk − β0
lk

∣∣ =: �∞(f, f0).

As �∞ dominates ‖ · ‖∞, it is enough to derive results for the �∞-loss.
Given a tree T ∈ T, and recalling that trees in T have depth at most L := Lmax = �log2 n�,

we consider a generalized tree-shaped prior � on the internal wavelet coefficients, recalling
the notation T ′

int from Section 2.2,

(19)

T ∼ �T,

(βlk)l≤L,k<2l |T ∼ π(βT ) ⊗ ⊗
(l,k)/∈T ′

int

δ0(βlk),

where π(βT ) is a law to be chosen on R|T ′
int|, not necessarily of a product form. This is a

generalization of (9), which allows for correlated wavelet coefficients (e.g., the g-prior). Let
XT denote the vector of ordered responses Xlk in (2) for (l, k) ∈ T ′

int. From the white noise
model, we have

XT = βT + 1√
n
εT with εT ∼ N (0, I|Text|) (given T ).

By Bayes’ formula, the posterior distribution �[· |X] of the variables (βlk)l≤L,k has density

(20)
∑
T ∈T

�[T | X] · π(βT | X) · ∏
(l,k)/∈T ′

int

I0(βlk),

where, denoting as shorthand NX(T ) = ∫
e− n

2 ‖βT ‖2
2+nX′

T βT π(βT )dβT ,

π(βT | X) = e− n
2 ‖βT ‖2

2+nX′
T βT π(βT )

NX(T )
,(21)

�[T |X] = WX(T )∑
T ∈T WX(T )

with WX(T ) = �T(T )NX(T ).(22)

Let us note that the sum in the last display is finite, as we restrict to trees of depth at most
L = Lmax. Note that the classes of priors �T from Section 2 are nonconjugate, the posterior
on trees is given by the somewhat intricate expression (22) and does not belong to one of the
classes of �T priors. While the posterior expression (21) allows for general priors π(βT ), we
will focus on conditionally conjugate Gaussian priors for simplicity. This assumption is not
essential and can be relaxed. For instance, in case π(βT ) is of a product form, one could use
a product of, for example, Laplace distributions, using similar ideas as in [17], Theorem 5.

Our first result exemplifies the potential of tree-shaped priors by showing that Dyadic
Bayesian CART achieves the minimax rate of posterior concentration over Hölder balls in the



3492 I. CASTILLO AND V. ROČKOVÁ

sup-norm sense, that is, εn = (n/ logn)−α/(2α+1), up to a logarithmic term. Define a Hölder-
type ball of functions on [0,1] as

(23) H(α,M) :=
{
f ∈ C[0,1] : max

l≥0,0≤k<2l
2l( 1

2 +α)
∣∣〈f,ψlk〉

∣∣ ∨ ∣∣〈f,ψ−10〉
∣∣ ≤ M

}
.

For balanced Haar wavelets ψlk as in (3), H(α,M) contains the a standard α-Hölder (resp.
Lipschitz when α = 1) ball of functions for any α ∈ (0,1], defined as

(24) Hα
M :=

{
f : ‖f ‖∞ ≤ M,

|f (x) − f (y)|
|x − y|α ≤ M ∀x, y ∈ [0,1]

}
.

Our master rate-theorem, whose proof can be found in Section 6, is stated below. It will be
extended in various directions in the sequel.

THEOREM 1. Let �T be the Galton-Watson process prior from Section 2.1 with plk =
�−l and � > 2e3. Consider the tree-shaped wavelet prior (19) with π(βT ) ∼ N (0,�T ),
where �T is either I|T ′

int| or gn(A
′
T AT )−1 with gn = n. Define

(25) εn =
(

log2 n

n

) α
2α+1

for α > 0.

Then for any α ∈ (0,1], M > 0, any sequence Mn → ∞ we have for n → ∞
(26) sup

f0∈H(α,M)

Ef0�
[
fT ,β : �∞(fT ,β, f0) > Mnεn |X] → 0.

By (18), the statement (26) also holds for the supremum loss ‖ · ‖∞.

EXTENSION 1. While Theorem 1 is formulated for Bayesian CART obtained with Haar
wavelets, the concept of tree-shaped sparsity extends to general wavelets that give rise to
smoother objects than just step functions. With {ψlk} an S-regular wavelet basis on [0,1], for
example, the boundary-corrected wavelet basis of [24] (see [35], Chapter 4, with adaptation of
the range of indices l), and with f0 ∈H(α,M) defined in (23) for some M > 0 and arbitrary
0 < α ≤ S, one indeed obtains the statement (26) by choosing � ≥ �0(S) > 0 or c ≥ c0 > 0
large enough, see Section S-4.2.

Theorem 1 encompasses both original Bayesian CART proposals for priors on bottom
coefficients β̃T ∼ N (0, I|Text|) (the case �T = gn(AT A′

T )−1 discussed in Section 2.3) as
well as the mathematically slightly simpler wavelet priors �T = I|Text| (discussed in Sec-
tion 2.2.1). We did not fully optimize the constants in the statement; for instance, one can
check that � > 2 for the g-prior works. The rate εn in (25) coincides with the minimax rate
for the supremum norm in the white noise model up to a logarithmic factor (logn)

α
2α+1 . We

next show that this logarithmic factor is in fact real, that is, not an artifact of the upper-bound
proof. We state the results for smooth-wavelet priors, which enable to cover arbitrarily large
regularities, but a similar result could also be formulated for the Haar basis.

THEOREM 2. Let �T be one of the Bayesian CART priors from Theorem 1. Consider
the tree-shaped wavelet prior (19) with π(βT ) ∼ N (0,�T ), where �T is I|Text| and {ψlk} an
S-regular wavelet basis, S ≥ 1. Let εn be the rate defined in (25) for a given 0 < α ≤ S. Let
the parameters of �T verify either � ≥ �0(S) a large enough constant, or c ≥ c0 > 0 large
enough. For any M > 0, there exists m > 0 such that, as n → ∞,

(27) inf
f0∈H(α,M)

Ef0�
[
�∞(fT ,β, f0) ≤ mεn |X] → 0.
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In other words, there exists a sequence of elements of H(α,M) along which the posterior
convergence rate is slower than mεn in terms of the �∞-metric. In particular, the upper-bound
rate of Theorem 1 cannot hold uniformly over H(α,M) with a rate faster than εn, which
shows that the obtained rate is sharp (note the reversed inequality in (27) with respect to (26);
we refer to [13] for more details on the notion of posterior rate lower bound). The proof of
Theorem 2 can be found in Section S-4.3.

EXTENSION 2. Theorem 1 holds for a variety of other tree priors. This includes the con-
ditionally uniform prior mentioned in Section 2.1.1 with λ = 1/nc in (5), or an exponential-
type prior �T(T ) ∝ e−c|Text| lognIT ∈T for some c > 0. One can also assume a general Gaus-
sian prior on active wavelet coefficients with an unstructured covariance matrix �T which
satisfies λmin(�T ) � 1/

√
logn and λmax(�T ) � na for some a > 0. Detailed proofs can be

found in the Supplementary Material (Section S-4.1).

Only very few priors (actually only point mass spike-and-slab based priors, as discussed
in the Introduction) were shown to attain adaptive posterior sup-norm concentration rates.
Theorem 1 now certifies Dyadic Bayesian CART as one of them. The logarithmic penalty
in the rate (25) reflects that Bayesian CART priors occupy the middle ground between flat
trees (with only a depth cutoff) and spike-and-slab priors (with general sparsity patterns).
As mentioned earlier, flat trees are incapable of supremum-norm adaptation, as we formally
prove in Section 3.4. The fact that the more flexible Bayesian CART priors still achieves
supremum-norm adaptation in a near-optimal way is a rather notable feature. From a more
general perspective, we note that while general tools are available to derive adaptive L2- or
Hellinger-rate results in broad settings (e.g., model selection techniques, or the theory of pos-
terior rates in [32]), deriving adaptive L∞-results is often obtained in a case-by-case basis;
two possible techniques are wavelet thresholding (when empirical estimates of wavelet coef-
ficients are available) and Lepski’s method (which requires some ‘ordered’ set of estimators,
typically in terms of variance; for tree-estimators for instance it would not readily be appli-
cable). The fact that tree methods enable for supremum-norm adaptation in nonparametric
settings is one of the main take-away messages of this work.

3.2. Adaptive honest confidence bands for f0. We now turn to the ultimate landing point
of this paper, uncertainty quantification for f0 and its functionals. The existence of adaptive
confidence sets in general is an interesting and delicate question (see Chapter 8 of [35]). In
the present context of regression function estimation under the supremum norm loss, it is in
fact impossible to build adaptive confidence bands without further restricting the parameter
space. We do so by imposing some classical self-similarity conditions (see [35, 49] for more
details).

DEFINITION 3 (Self-similarity). Given an integer j0 > 0, we say that f ∈ H(α,M) is
self-similar if, for some constant ε > 0,

(28)
∥∥Kj(f ) − f

∥∥∞ ≥ ε2−jα for all j ≥ j0,

where Kj(f ) = ∑
l≤j−1

∑
k〈ψlk, f 〉ψlk is the wavelet projection at level j . The class of all

such self-similar functions will be denoted by HSS(α,M,ε).

Section 8.3.3 in [35] describes self-similar functions as typical representatives of the
Hölder class. As shown in Proposition 8.3.21 of [35], self-dissimilar functions are nowhere
dense in the sense that they cannot approximate any open set in H(α,M). In addition,
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Bayesian nonparametric priors for Hölder functions charge self-similar functions with proba-
bility 1. Finally, self-similarity does not affect the difficulty of the statistical estimation prob-
lem, where the (�∞) minimax rate is not changed after adding this assumption. A variant of
the self-similarity condition was shown to be necessary for adaptive inference, in that such
condition cannot essentially be weakened for uniform coverage with an optimal rate to hold
[11].

Following [49], we construct adaptive honest credible sets by first defining a pivot center-
ing estimator, and then determining a data-driven radius.

DEFINITION 4 (The median tree). Given a posterior �T[· |X] over trees, we define the
median tree T ∗

X = T ∗(�T[· |X]) as the set of nodes

(29) T ∗
X = {

(l, k), l ≤ Lmax,�
[
(l, k) ∈ Tint |X] ≥ 1/2

}
.

Similarly, as in the median probability model [3, 4], a node belongs to T ∗
X if its (marginal)

posterior probability to be selected by a tree estimator exceeds 1/2. Interestingly, as the ter-
minology suggests, T ∗

X is an actual tree, that is, the nodes follow hereditary constraints (see
Lemma S-10 in the Supplementary Material). We define the resulting median tree estimator
as

(30) f̂T (x) = ∑
(l,k)∈T ∗

X

Xlkψlk(x).

Moreover, we define a radius, for some vn → ∞ to be chosen, as

(31) σn = σn(X) = sup
x∈[0,1]

Lmax∑
l=0

vn

√
logn

n

2l−1∑
k=0

I(l,k)∈T ∗
X

∣∣ψlk(x)
∣∣.

A credible band with a radius σn(X) as in (31) and a center f̂T as in (30) is

(32) Cn = {
f : ‖f − f̂T ‖∞ ≤ σn(X)

}
.

Theorem 3, proved in Section S-4.4, shows that valid frequentist uncertainty quantification
with Bayesian CART is attainable (up to log factors). Indeed, the confidence band (32) has a
near-optimal diameter and a uniform frequentist coverage under self-similarity.

THEOREM 3. Let 0 < α1 ≤ α2 ≤ 1, M ≥ 1 and ε > 0. Let � be any prior as in the
statement of Theorem 1. Let σn be as in (31) with vn such that (logn)1/2 = o(vn) and let
f̂T denote the median tree estimator (30). Then for Cn defined in (32), uniformly over α ∈
[α1, α2], as n → ∞,

inf
f0∈HSS(α,M,ε)

Pf0(f0 ∈ Cn) → 1.

For every α ∈ [α1, α2] and uniformly over f0 ∈ HSS(α,M,ε), the diameter |Cn|∞ =
supf,g∈Cn

‖f − g‖∞ and the credibility of the band verify, as n → ∞,

|Cn|∞ = OPf0

(
(n/ logn)−α/(2α+1)vn

)
,(33)

�[Cn |X] = 1 + oPf0
(1).(34)

Similarly as for Theorem 1, the results of Theorem 3 carry over to wavelet priors over
a smooth wavelet basis, leading to the construction of confidence sets with arbitrary regu-
larities 0 < α1 ≤ α2 < ∞. The undersmoothing factor vn is commonplace in the context of
confidence bands, with the condition vn � (logn)1/2 reflecting the slight logarithmic price
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FIG. 4. (Left) Pointwise 0.95% credible intervals together with a 95% L∞-credible band (gray area). (Right)
Not-intersected multiscale 0.95% credible band (S-14) (gray area) using wl = l1/2+0.01 (see Supplementary
Material, Section S-1.3.5) together with the ‘optimal’ set (32) obtained with vn = 1. The true function is
f0(x) = (4x − 1)I(x ≤ 1/2) + (−2x + 2)I(x > 1/2).

to pay for trees noted earlier in terms of L∞-estimation accuracy. In the previous statement
both confidence and credibility of Cn tend to 1. It is possible to achieve exact coverage by
intersecting Cn further with another ball. A natural way to do so (from the ‘estimating many
functionals’ perspective, see [18]) is to intersect with a multiscale ball (we refer to Sec-
tions S-1.3 and S-1.2 in the Supplementary Material for details and demonstrations). For
stability reasons, this intersection-band seems also preferable in practice and we present in
Figure 4 on the right an illustration of coverage of such a band in nonparametric regression.
Apart from the intersection band, another natural choice is an L∞-credible band. Namely,
given a centering estimator f̂ (such as the median-tree estimator), one can consider an L∞-
ball around f̂ that captures 0.95% of the posterior mass (see Figure 4 on the left). We are not
aware of any frequentist validation results for such bands in the adaptive L∞-setting. Results
for such type of credible sets have been obtained in the L2-setting, for instance, in [55]. To
guarantee coverage, the authors need to incorporate a ‘blow-up’ factor (diverging to infinity)
to the radius of the set (see [49] for more discussion). Finally, another possibility would be to
‘paste together’ marginal pointwise credible intervals (see Figure 4 on the left). It is not clear
how much ‘blow-up’ would be needed to guarantee frequentist coverage under self-similarity
and, again, we are not aware of any theoretical results for such sets.

3.3. Inference for functionals of f0: Bernstein–von Mises theorems. By slightly modi-
fying the Bayesian CART prior on the coarsest scales, it is possible to obtain asymptotic
normality results, in the form of Bernstein-von Mises theorems, that imply that posterior
quantile-credible sets are optimal-size confidence sets. In the next result, βS denotes the
bounded-Lipschitz metric on the metric space S (see also the Supplementary Material Sec-
tion S-1.3).

THEOREM 4. Assume the Bayesian CART priors �T from Theorem 1 constrained to
trees that fit j0(n) layers, that is, γlk = 1 for l ≤ j0(n), for j0(n) � √

logn.

1. BvM for smooth functionals ψb(f ) := 〈f, b〉. Let b ∈ L∞[0,1] with coefficients (blk =
〈b,ψlk〉). Assume

∑
k |blk| ≤ cl for all l ≥ 1 with

∑
l l

2cl < ∞. Then, in Pf0-probability,

βR
(
L

(√
n
(
ψb(f ) − ψ̂b

) |X)
,L

(
N

(
0,‖b‖2

2
))) → 0.
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2. Functional BvM for the primitive F(·) = ∫ ·
0 f . Let (G(t) : t ∈ [0,1]) be a Brownian

motion. Then, in Pf0 -probability,

βC([0,1])
(
L

(√
n

(
F(·) −

∫ ·
0

dX(n)
∣∣∣ X))

,L(G)

)
→ 0

As a consequence of this result, quantile credible sets for the considered functionals are
optimal confidence sets. For α ∈ (0,1), let q

ψb

α/2(X) and q
ψb

1−α/2(X) be the α/2 and 1 − α/2

quantiles of the induced posterior distribution on the functional ψb = ∫ 1
0 f (u)b(u)du and set

Ib(X) := [qψb

α/2(X), q
ψb

1−α/2(X)]. Theorem 4 (part 1) then implies (see [18] for a proof) that

Pf0

[
ψb(f0) ∈ Ib(X)

] → 1 − α.

Similarly, let Rn(X) be the data-dependent radius chosen from the induced posterior distri-
bution on F(·) = ∫ ·

0 f as follows, for F̂ (·) = ∫ ·
0 dX(n),

(35) �
[‖F − F̂‖∞ ≤ Rn(X) |X] = 1 − α.

Consider the band CF (X) := {F : ‖F − F̂‖∞ ≤ Rn(X)}. Then Theorem 4 (part 2) implies
(see [18], Corollary 2 for a related statement and proof), for F0(·) = ∫ ·

0 f0,

Pf0

[
F0 ∈ CF (X)

] → 1 − α.

In other words, the band (35) has exact asymptotic coverage. It can also be checked that
it is optimal efficient in semiparametric terms (that is, its width is optimal asymptotically).
We derive Theorem 4 as a consequence of an adaptive nonparametric BvM (Theorem S-3
in the Supplementary Material; see Section S-4.5 for a proof, where other possible choices
for j0(n) are discussed), only obtained so far for adaptive priors in the work of Ray [49],
which considered (conjugate) spike and slab priors. Derivation of the band (35) in practice is
easily obtained once posterior samples are available. Theorem 4 is illustrated, in the regres-
sion framework studied in Section S-1.1, on a numerical example with a piece-wise linear
regression function (details on the implementation are in Section S-1.2) in Figure 5. The left
panel presents a histogram of posterior samples (together with 2.5% and 97.5% quantiles)
of the rescaled primitive functional F̃ (x) = nF(x) = ∑

ti≤x f (ti) for x = 0.8 with true value
is marked with a red solid line. The right panel portrays the confidence band (35) which
uniformly captures the true functional (dotted line).

FIG. 5. (Left) 0.95% credible interval for the (rescaled) primitive functional F̃ (x) with x = 0.8; (Right) the
confidence band (35) obtained for f0(x) = (4x − 1)I(x ≤ 1/2) + (−2x + 2)I(x > 1/2).
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3.4. Lower bound: Flat trees are (grossly) suboptimal for the ‖ · ‖∞-loss. Recall that
the spike-and-slab prior achieves the actual �∞-minimax rate without any additional factor.
Interestingly, the very same prior misses the �2-minimax rate by a log factor [39]. This il-
lustrates that �2 and �∞ adaptations require different desiderata when constructing priors.
Product priors that correspond to separable rules do not yield adaptation with exact rates in
the �2 sense [12]. Mixture priors that are adaptive in �2, on the other hand, may not yield �∞
adaptation. We now provide one example of this phenomenon in the context of flat (complete
binary) trees.

The flat tree of depth d = d(T ) is the binary tree which contains all possible nodes until
level d , that is, γlk = Il<d . An example of a flat tree with d = 3 layers is in Figure 2. The
simplest possible prior on tree topologies (confined to symmetric trees) is just the Dirac mass
at a given flat tree of fixed depth d = D; an adaptive version thereof puts a prior D and
samples from the set of all flat trees. Such priors coincide with so-called sieve priors, where
the sieve spans the expansion basis (e.g., Haar) up to level D. Flat dyadic trees only keep
Haar wavelet coefficients at resolutions smaller than some d > 0 (i.e., γlk = 0 for l ≥ d). The
implied prior on (βlk)lk can be written as, with π(βlk) ∝ σ−1

l φ(βlk/σl),

(36) (βlk) | d ∼ ⊗
l<d,k

π(βlk) ⊗ ⊗
l≥d,k

δ0(βlk),

where φ(·) is some bounded density that is strictly positive on R and σl are fixed positive
scalars. The sequence (σl) is customarily chosen so as it decays with the resolution index l,
for example, σl = 2−l(β+1/2) for some 0 < β ≤ α. This “undersmoothing” prior requires the
knowledge of (a lower bound on) α and yields a nonadaptive nonparametric BvM behavior
[18].

A tempting strategy to manufacture adaptation is to treat the threshold d as random through
a prior π(d) on integers (and take constant σl), which corresponds to the hierarchical prior
on regular regression histograms [51, 56]. It is not hard to check that the flat-tree prior (36)
with random d has a marginal mixture distribution similar to the one of the spike-and-slab
prior on each coordinate (l, k). Despite marginally similar, the probabilistic structure of these
two priors is very different. Zeroing out signals internally, the spike-and-slab prior (10) is
�∞-adaptive [39]. The flat tree prior (36), on the other hand, fits a few dense layers with-
out internal sparsity and is �2-adaptive (up to a log term) [56]. However, as shown in the
following theorem, flat trees fall short of �∞-adaptation.

THEOREM 5. Assume the flat tree prior (36) with random d , where π(d) is nonincreas-
ing and where the active wavelet coefficients βlk are Gaussian i.i.d. N (0,1). Moreover, as-
sume {ψlk} is an S-regular wavelet basis for some S ≥ 1. For any 0 < α ≤ S and M > 0,
there exists f0 ∈ H(α,M) such that

Ef0�
[
�∞(fT ,β, f0) < ζn |X] → 0,

where the lower-bound rate ζn is given by ζn = (
logn

n
)

α
2α+2 .

Theorem 5, proved in Section S-4.6, can be applied to standard priors π(d) with expo-
nential decrease, proportional to e−d or e−d logd , or to a uniform prior over {1, . . . ,Lmax}. In
[1], a negative result is also derived for sieve-type priors, but only for the posterior mean and
for Sobolev classes instead of the, here arguably more natural, Hölder classes for supremum
losses (which leads to different rates for estimating the functional-at-a-point). Here, we show
that when the target is the �∞-loss for Hölder classes the sieve-prior is severely suboptimal.
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3.5. Nonparametric regression: Overview of results. Our results obtained under the
white noise model can be transported to the more practical nonparametric regression model.
While these two models are asymptotically equivalent [10] (under uniform smoothness as-
sumptions satisfied, for example, by α-Hölderian functions with α > 1/2), it is not automatic
that the knowledge of a (wavelet shrinkage/nonlinear) minimax procedure in one model
implies the optimality in the other. It turns out, however, that our results can be carried
over to fixed-design regression without necessarily assuming α > 1/2. We assume outcomes
Y = (Y1, . . . , Yn)

′ arising from

(37) Yi = f0(ti) + εi, εi
iid∼ N (0,1), i = 1, . . . , n = 2Lmax+1

where f0 is an unknown regression function and {ti ∈ [0,1] : 1 ≤ i ≤ n} are fixed design
points. For simplicity, we consider a regular grid, that is, ti = i/n for 1 ≤ i ≤ n and assume
n is a power of 2. In Section S-1.1, we show that most results for Bayesian CART obtained
earlier in white noise carry over to the model (37) with a few minor changes. One minor
modification concerns the loss function. We mainly consider the ‘canonical’ supremum-norm
loss for the fixed design setting, that is, the ‘max-norm’ defined for given functions f , g by

‖f − g‖∞,n = max
1≤i≤n

∣∣f (ti) − g(ti)
∣∣,

but it is also possible to consider the whole supremum-norm loss ‖ · ‖∞. We postpone state-
ments and proofs to the Supplementary Material, Sections S-1.1 and S-6.1. In a numerical
study (Section S-1.2), we illustrate that the implementation of Bayesian CART [20, 25] and
the construction of our confidence bands is rather straightforward. For example, Figure 4
shows how inference can be carried out with Bayesian CART posteriors in nonparametric
regression with a piece-wise linear regression function using the intersecting band construc-
tion (detailed in Section S-1.3.5). Contrary to point-wise credible intervals (on the left) that
are easy to produce but do not cover, our multiscale confidence band (on the right) uni-
formly captures the true regression function. More details on this example are presented in
Section S-1.2.

4. Nondyadic Bayesian CART. A limitation of midpoint splits in dyadic trees is that
they treat the basis as fixed, allowing the jumps to occur only at pre-specified dyadic locations
even when not justified by data. General CART regression methodology [9, 31] avoids this
restriction by treating the basis as unknown, where the partitioning cells shrink and stretch
with data. In this section, we leave behind ‘static’ dyadic trees to focus on the analysis of
Bayesian (nondyadic) CART [20, 25] and its connection to Unbalanced Haar (UH) wavelet
basis selection.

4.1. Unbalanced Haar wavelets. UH wavelet basis functions [36] are not necessarily
translates/dilates of any mother wavelet function and, as such, allow for different support
lengths and design-adapted split locations. Here, we particularize the constructive definition
of UH wavelets given by [30]. Assume that possible values for splits are chosen from a
set of n = 2Lmax breakpoints X = {xi : xi = i/n,1 ≤ i ≤ n}. Using the scale/location index
enumeration, pairs (l, k) in the tree are now equipped with (a) a breakpoint blk ∈ X and (b)
left and right brackets (llk, rlk) ∈ X ∪ {0,1}. Unlike balanced Haar wavelets (3), where blk =
(2k +1)/2l+1, the breakpoints blk are not required to be regularly dyadically constrained and
are chosen from X in a hierarchical fashion as follows. One starts by setting l00 = 0, r00 = 1.
Then:

(a) The first breakpoint b00 is selected from X ∩ (0,1).
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(b) For each 1 ≤ l ≤ Lmax and 0 ≤ k < 2l , set

(38)
llk = l(l−1)�k/2�, rlk = b(l−1)�k/2� if k is even,

llk = b(l−1)�k/2�, rlk = r(l−1)�k/2� if k is odd.

If X ∩ (llk, rlk] �= ∅, choose blk from X ∩ (llk, rlk].
Let A denote the set of admissible nodes (l, k), in that (l, k) is such that X ∩ (llk, rlk] �= ∅,
obtained through an instance of the sampling process described above and let

B = (blk)(l,k)∈A

be the corresponding set of breakpoints. Each collection of split locations B gives rise to
nested intervals

Llk = (llk, blk] and Rlk = (blk, rlk].
Starting with the mother wavelet ψB−10 = ψ−10 = I(0,1), one then recursively constructs
wavelet functions ψB

lk with a support IB
lk = Llk ∪ Rlk as

(39) ψB
lk(x) = 1√

|Llk|−1 + |Rlk|−1

(
ILlk

(x)

|Llk| − IRlk
(x)

|Rlk|
)
.

By construction, the system �B
A = {ψB−10,ψ

B
lk : (l, k) ∈ A} is orthonormal in L2[0,1].With

UH wavelets, the decay of wavelet coefficients βlk = 〈f,ψB
lk〉 for a α-Hölder function f ver-

ifies |βB
lk| � max{|Llk|, |Rlk|}α+1/2, see Lemma S-6. [30] points out that the computational

complexity of the discrete UH transform could be unnecessarily large and imposes the bal-
ancing requirement max{|Llk|, |Rlk|} ≤ E(|Llk| + |Rlk|) ∀(l, k) ∈ A, for some 1/2 ≤ E < 1.
Similarly, in order to control the combinatorial complexity of the basis system, we require
that the UH wavelets are weakly balanced in the following sense.

DEFINITION 5. A system �B
A = {ψB−10,ψ

B
lk : (l, k) ∈ A} of UH wavelets is weakly bal-

anced with balancing constants E,D ∈ N∗ if, for any (l, k) ∈ A,

(40) max
(|Llk|, |Rlk|) = Mlk

2l+D
for some Mlk ∈ {1, . . . ,E + l}.

Note that in the actual BART implementation, the splits are chosen from sample quantiles
to ensure balancedness (similar to our condition (40)). Quantile splits (Example 2 below)
are a natural way to generate many weakly balanced systems, providing a much increased
flexibility compared to dyadic splits, which correspond to uniform quantiles. Other examples
together with a graphical depiction of the unbalanced Haar wavelets for certain nondyadic
choices of split points blk are in the Supplementary Material (Figure S-3 in Section S-3).

EXAMPLE 2 (Quantile splits). Denote with G a c.d.f with a density g on [0,1] that
satisfies ‖g‖∞ ≤ 2D−1/(2E) for E,D > 0 chosen below and ‖1/g‖∞ ≤ Cq for some Cq >

0. Let us define a dyadic projection of G as

G−1
l (x) := 2−l⌊2lG−1(x)

⌋
,

and next define the breakpoints, for l ≤ Lmax and 0 ≤ k < 2l , as

(41) blk = G−1
Lmax+D

[
(2k + 1)/2l+1]

.

The system �B
A obtained from steps (a) and (b) with splits (41) is weakly balanced for E =

2 + 3Cq2D−1. This is verified in Lemma S-9 in the Supplementary Material (Section S-3.4).
Moreover, Figure 6 in illustrates the implementation of the quantile system, where splits are
placed more densely in areas where G(x) changes more rapidly.
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FIG. 6. Example of quantile splits for a uniform density g(x) and a nonuniform beta density g(x) using
Lmax = 6.

The nondyadic Bayesian CART prior is then defined as follows:

• Step 1 (Basis Generation). Sample B = (blk)0≤k<2l−1,l≤L from �B by following the steps
(a)–(b) around (38) subject to satisfying the balancing condition (40).

• Step 2 (Tree Generation). Independently of B , sample a binary tree T from one of the
priors �T described in Section 2.1.

• Step 3 (Step Heights Generation). Given T , we obtain the coefficients (βB
lk) from the tree-

shaped prior (19). Using the UH wavelets, the prior on the internal coefficients βB
lk can be

translated into a model on the histogram heights β̃B
lk through (8).

An example of such a prior is obtained by first randomly drawing quantiles (e.g., by drawing
a density at random verifying conditions as in Example 2) to generate the breakpoints for Step
1 and then following the construction from Section 2 for Steps 2–3. The following theorem
is proved in Section S-5.

THEOREM 6. Let �B be any prior on breakpoint collections that satisfy weak balanced-
ness according to Definition 5. Let �T be the Galton-Watson process prior from Section 2.1
with plk = �−l4 . Consider the tree-shaped wavelet prior (19) with π(βT ) ∼ N (0, I|Text|). Let
f0 ∈ Hα

M as in (24) for some M > 0 and 0 < α ≤ 1 and define

(42) εn = (logn)1+ 3
2

(
logn

n

) α
2α+1

.

Then, there exist �0, c0 > 0 depending only on the constants E, D in the weak balancedness
condition such that, for any � ≥ �0 and c ≥ c0, for any Mn → ∞, we have, for n → ∞
(43) Ef0�

[
�∞(fT ,β , f0) ≥ ‖fT ,β − f0‖∞ > Mnεn |X] → 0.

In the context of piecewise constant priors, Theorem 6 allows further flexibility in the
choice of the prior as compared to Theorem 1 in that the location of the breakpoints, on the
top of their structure given by the tree prior, can vary in their location according to its own
specific prior. Whether one can further weaken the balancing condition to still get optimal
multiscale results is an interesting open question that goes beyond the scope of this paper. In
addition, the log-factor in (42) could be further optimized, similarly as in Theorem 1.

5. Discussion. In this paper, we explored connections between Bayesian tree-based re-
gression methods and structured wavelet shrinkage. We demonstrated that Bayesian tree-
based methods attain (almost) optimal convergence rates in the supremum norm and obtain
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limiting results for functionals, that follow from a nonparametric and adaptive Bernstein–von
Mises theorem. The developed framework also allows us to construct adaptive credible bands
around f0 under self-similarity. To allow for nondyadically organized splits, we introduced
weakly balanced Haar wavelets (an elaboration on unbalanced Haar wavelets of [36]) and
showed that Bayesian CART performs basis selection from this library and attains a near-
minimax rate of posterior concentration under the sup-norm loss.

Although for clarity of exposition we focused on the white noise model, our results can be
extended to the more practical regression model for fixed regular designs (Section S-1.1 in the
Supplementary Material) or possibly more general designs under some conditions. We note
that the techniques of proof are nonconjugate in their key tree aspect, which opens the door
to applications in many other statistical settings. A version of Bayesian CART for density
estimation following the ideas of the present work is currently investigated by T. Randria-
narisoa as part of his Ph.D. thesis. More precisely, using the present techniques, it is possible
to develop multiscale rate results for Pólya trees with ‘optional stopping’ along a tree, in
the spirit of [60]. Our confidence set construction can be also shown to have local adaptation
properties. The ability of Bayesian CART to spatially adapt in this way will be investigated in
a followup work. Further natural extensions include high-dimensional versions of the model,
extending the multi-dimensional version briefly presented here, as well as forest priors. These
will be considered elsewhere.

6. Proof of Theorem 1. The proof proceeds in three steps. In Section 6.1, we first show
that the posterior concentrates on not too deep trees. In Section 6.2, we then show that the
posterior probability of missing signal vanishes and, finally, in Section 6.3 we show that the
posterior distribution concentrates around signals. To better convey main ideas, we present
the proof for the independent prior βT ∼ N (0,�T ) with �T = IK for K = |Text| and the
Galton-Watson (GW) tree prior from Section 2.1.1 with a split probability pl . The proof for
the g-prior �T = gn(A

′
T AT )−1 is more technically involved and is presented in Section S-

4.1 in the Supplementary Material.
We will be working conditionally on the event

(44) A =
{

max
−1≤l≤L,0≤k<2l

ε2
lk ≤ 2 log

(
2L+1)}

,

where L = Lmax = �log2 n�. Since εlk ∼ N (0,1), this event has a large probability in
the sense that P(Ac) � (logn)−1, which follows from P [max1≤i≤N |Zi | >

√
2 logN ] ≤

c0/
√

logN for some c0 > 0 when Zi ∼ N (0,1) for 1 ≤ i ≤ N .

6.1. Posterior probability of deep trees. The first step is to show that, on the event A, the
posterior concentrates on reasonably small trees, that is, trees whose depth d(T ) is no larger
than an ‘optimal’ depth which depends on the unknown smoothness α. Let us define such a
depth Lc = Lc(α,M) as

(45) Lc =
⌈

log2

(
(8M)

1
α+1/2

(
n

logn

) 1
2α+1

)⌉
.

LEMMA 1. Under the assumptions of Theorem 1, on the event A,

(46) �
[
d(T ) > Lc | X] → 0 (n → ∞).

PROOF. Consider one tree T ∈ T such that d(T ) ≥ 1 and denote with T − a pruned
subtree obtained from T by turning its deepest rightmost internal node, say (l1, k1), into a
terminal node. Then T − = T −

int ∪ T −
ext, where

T −
int = Tint \ {

(l1, k1)
}
, T −

ext = Text \ {
(l1 + 1,2k1), (l1 + 1,2k1 + 1)

} ∪ {
(l1, k1)

}
.
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Note that T − is a full binary tree and that the mapping T → T − is not necessarily injective.
Indeed, there are up to 2d(T −) trees T that give rise to the same pruned tree T −. Let Td =
{T ∈ T : d(T ) = d} denote the set of all full binary trees of depth exactly d ≥ 1. Then, using
the notation (22),

(47)

�[Td |X] =
∑

T ∈Td
WX(T )∑

T ∈T WX(T )
=

∑
T ∈Td

WX(T )
WX(T −)

WX(T −)∑
T ∈T WX(T )

where
WX(T )

WX(T −)
= �T(T )

�T(T −)

∫ ∏
(l,k)∈T ′

int
enXlkβlk−nβ2

lk/2 dπ(βT )∫ ∏
(l,k)∈T −

int
′ enXlkβlk−nβ2

lk/2 dπ(βT −)
.

Let XT = (Xlk : (l, k) ∈ T ′
int)

′ and βT = (βlk : (l, k) ∈ T ′
int)

′ be the top-down left-to-right
ordered sequences (recall that we order nodes according to the index 2l + k). Assuming
βT ∼ N (0,�T ), and denoting K = |Text| = |Tint| + 1,

(48)

WX(T )

WX(T −)
= �T(T )

�T(T −)

√
|�T −|

2π |�T |
∫

enX′
T βT −β ′

T [nIK+�−1
T ]βT /2 dβT∫

enX′
T −βT −−β ′

T −[nIK−1+�−1
T −]βT −/2

dβT −

= �T(T )

�T(T −)

√
|�T −|
|�T |

√√√√ |nIK−1 + �−1
T −|

|nIK + �−1
T |

en2X′
T (nIK+�−1

T )−1XT /2

en2X′
T − (nIK−1+�−1

T − )−1XT −/2
.

Since Xl1k1 corresponds to the node (l, k) with the highest index 2l + k, one can write XT =
(XT −,Xl1k1)

′.
We focus on the GW prior from Section 2.1.1 and on the independent prior �T = IK and

present proofs for the remaining priors in Section S-4.1. Using the expression (48) and since
(l1, k1) is the deepest rightmost internal node in T , and T is of depth d = d(T ) = l1 + 1,
using the definition of the GW prior,

WX(T )

WX(T −)
= �T(T )

�T(T −)

∏
(l,k)∈T ′

int\T ′−
int

e
n2

2(n+1)
X2

lk

√
n + 1

= pd−1(1 − pd)2

1 − pd−1

e
n2

2(n+1)
X2

l1k1√
n + 1

.

Suppose T has depth d(T ) > Lc. Then l1 ≥ Lc and from the Hölder continuity (23), one gets
8|βl1k1 | ≤

√
logn/n, where Lc is as in (45). Then, conditionally on the event (44),

(49) |Xl1k1 | ≤
1√
n

[
1

8

√
logn +

√
2 logn + log 4

]
and thereby 2X2

l1k1
≤ 5 logn/n. Recall that, under the GW-prior, the split probability is pd =

�−d . As � > 2, one has pd < 1/2 and so, for any d > Lc,

WX(T )

WX(T −)
≤ 2pd−1 exp

(
5n logn

4(n + 1)
− 1

2
log(1 + n)

)
< 2n3/4pd−1.

Going back to the ratio (47), we now bound, with a(n, d) =: 2n3/4pd−1,

�[Td |X]
a(n, d)

≤
∑

T ∈Td
WX(T −)∑

T ∈T WX(T )
≤

∑
T ∈T−

d
2d(T −)WX(T )∑

T ∈T WX(T )
≤ 2d,

where T−
d is the image of Td under the map T → T −, and using that at most 2d(T −) trees

are mapped to the same T −. Using this bound one deduces that, on the event A, with L =
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Lmax = log2 n,

�
[
d(T ) > Lc |X] =

L∑
d=Lc+1

�[Td |X] ≤ 4n3/4
L∑

d=Lc+1

2d−1pd−1

< 4n3/4L exp
[−Lc log(�/2)

]
.

As Lc � (logn)/(1 + 2α), the right-hand side goes to zero as soon as, for example,
log(�/2) > 7(1 + 2α)/8 that is, for α ≤ 1, � > 2e3. �

6.2. Posterior probability of missing signal. The next step is showing that the posterior
probability of missing a node with large enough signal vanishes.

LEMMA 2. Let us denote, for A > 0 to be chosen suitably large,

(50) S(f0;A) =
{
(l, k) : ∣∣β0

lk

∣∣ ≥ A
logn√

n

}
.

Under the assumptions of Theorem 1, on the event A from (44),

(51) �
[{
T : S(f0;A) � T

} | X] → 0(n → ∞).

PROOF. As before, we present the proof with the GW prior from Section 2.1.1 and for the
independent prior with �T = IK , referring to Section S-4.1 for the g-prior. Let us first con-
sider a given node (lS, kS) ∈ S(f0;A), for A to be specified below, and note that the Hölder
condition on f0 implies lS ≤ Lc (for n large enough). Let T\(lS ,kS) = {T ∈ T : (lS, kS) /∈ Tint}
denote the set of trees that miss the signal node in the sense that they do not have a cut at
(lS, kS). For any such tree T ∈ T\(lS,kS) we then denote by T + the smallest full binary tree
(in terms of the number of nodes) that contains T and that splits on (lS, kS). Such a tree can
be constructed from T ∈ T\(lS ,kS) as follows. Denote by (l0, k0) ∈ Text ∩ [(0,0) ↔ (lS, kS)]
the external node of T which is closest to (lS, kS) on the route from the root to (lS, kS) in a
flat tree (denoted by [(0,0) ↔ (lS, kS)]). Next, denote by T + the extended tree obtained from
T by sequentially splitting all (l, k) ∈ [(l0, k0) ↔ (lS, kS)]. Similarly as for T → T − above,
the map T → T + is not injective and we denote by T(lS ,kS) the set of all extended trees T +
obtained from some T ∈ T\(lS ,kS). Now, the posterior probability �[T\(lS,kS) |X] of missing
the signal node (lS, kS) equals

(52)

∑
T ∈T\(lS ,kS )

WX(T )∑
T ∈T WX(T )

≤
∑

T ∈T\(lS ,kS )

WX(T )
WX(T +)

WX(T +)∑
T ∈T(lS ,kS )

WX(T )
.

Let us denote by T (j) for j = −1, . . . , s the sequence of nested trees obtained by extending
one branch of T towards (lS, kS) by splitting the nodes [(l0, k0) ↔ (lS, kS)], where T + =
T (s) and T = T (−1). Then

(53)
WX(T )

WX(T +)
= �T(T )

�T(T +)

s∏
j=0

NX(T (j−1))

NX(T (j))
.

Under the GW process prior with pl = �−l for some � > 2, the ratio of prior tree probabilities
in the last expression satisfies

(54)
�T(T )

�T(T +)
= 1 − pl0

pl0

×
(

lS∏
l=l0+1

1

pl(1 − pl)

)
× 1

(1 − plS+1)2 .
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The first term is due to the fact that T + splits the node (l0, k0) while T does not. The second
term in the denominator is the extra prior probability of T + over T that is due to the branch
reaching out to (lS, kS). Along this branch (note that this is the smallest possible branch), one
splits only one daughter node for each layer l (thereby the term pl) and not the other (thereby
the term 1 − pl). The third term above is due to the fact that the two daughters of (lS, kS) are
not split. The quantity (54) is bounded by 2lS−l0+2�(l0+lS)(lS−l0+1)/2 < 4�2l2S .

Assuming �T = IK , we can write for any T in T\(lS ,kS)

(55)
WX(T )

WX(T +)
= �T(T )

�T(T +)

∏
(l,k)∈T +\T

√
n + 1

e
n2

2(n+1)
X2

lk

.

Using the definition of the model and the inequality 2ab ≥ −a2/2 − 2b2 for a, b ∈ R, we
obtain X2

lSkS
≥ (β0

lSkS
)2/2 − ε2

lSkS
/n. On the event A, one gets

exp
{
− n2

2(n + 1)
X2

lSkS

}
≤ exp

{
−n2(β0

lSkS
)2

4(n + 1)
+ n(log 2)(log2 n + 1)

n + 1

}
.

The term in (55) can be thus bounded, for any T ∈ T\(lS ,kS), by

WX(T )

WX(T +)
≤ C�2l2S exp

{
3(lS − l0 + 1)(log2 n + 1)

2
− nA2 log2 n

4(n + 1)

}
=: b(n, lS).

We now continue to bound the ratio (52). For each given T +, there are at most lS trees
T̃ ∈ T\(lS ,kS) which have the same extended tree T̃ + = T +. This is because T + is obtained
by extending one given branch by adding no more than lS nodes. Using this fact, (52), and
the definition of b(n, lS) on the last display,

�[T\(lS,kS) |X]
b(n, lS)

≤
∑

T ∈T\(lS ,kS )
WX(T +)∑

T ∈T(lS ,kS )
WX(T )

≤ lS

∑
T ∈T(lS ,kS )

WX(T )∑
T ∈T(lS ,kS )

WX(T )
.

By choosing A = A(�) > 0 large enough, this leads to

�[T\(lS ,kS) | X] � e(3/2+3 log�)(log2 n+1)2−A2
8 log2 n � e−A2

16 log2 n.

Then the result follows as, on the event A,∑
(lS ,kS)∈S(f0,A)

�[T\(lS,kS) |X] � 2Lc+1e−A2
16 log2 n � e−A2

32 log2 n → 0.
�

6.3. Posterior concentration around signals. Let us now show that the posterior does not
distort large signals too much.

LEMMA 3. Let us denote, for Lc as in (45) and S(f0;A) as in (50),

(56) T = {
T : d(T ) ≤ Lc, S(f0;A) ⊂ T

}
.

Then, on the event A, for some C′ > 0, uniformly over T ∈ T,

(57)
∫

max
(l,k)∈T ′

int

∣∣βlk − β0
lk

∣∣d�[βT |XT ] < C′
√

logn

n
,

with XT = (Xlk : (l, k) ∈ T ′
int)

′ the ordered vector of active responses.
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PROOF. For a given tree T with K = |Text| leaves, we denote by βT = (βlk : (l, k) ∈
T ′

int)
′ the vector of wavelet (internal node) coefficients, with XT the corresponding responses

and with εT the white noise disturbances. It follows from (21) that, given XT (so for fixed
εlk) and T , the vector βT has a Gaussian distribution βT | XT ∼ N (μT , �̃T ), where �̃T =
(nIK + �−1

T )−1 and μT = n�̃T (β0
T + 1√

n
εT ). Next, using Lemma S-4, we have

(58) E
[∥∥βT − β0

T
∥∥∞ |XT

] ≤ ∥∥μT − β0
T

∥∥∞ +
√

2σ̄ 2 logK + 2
√

2πσ̄ 2,

where σ̄ 2 = max diag(�̃T ). Focusing on the first term, we can write

(59)
∥∥μT − β0

T
∥∥∞ ≤ √

n‖�̃T εT ‖∞ + ∥∥(n�̃T − IK)β0
T

∥∥∞.

Using the fact (I + B)−1 = I − (I + B−1)−1, we obtain n�̃T − IK = −(IK + n�T )−1.
From now on, we focus on the simpler case �T = IK and refer to Section S-4.1.3 (Sup-
plementary Material) for the proof for the g-prior. With �T = IK we can write ‖(n�̃T −
IK)β0

T ‖∞ = ‖β0
T ‖∞

1+n
< C/n. Using the fact that ‖εT ‖∞ � √

logn on the event A, we obtain
√

n‖�̃T εT ‖∞ �
√

logn
n

. The sum of the remaining two terms in (58) can be bounded by a

multiple of
√

logn/n by noting that σ̄ 2 = 1/(n + 1). The statement (57) then follows from
(58). �

6.4. Supremum-norm convergence rate. Let us write f0 = f
Lc

0 + f
\Lc

0 , where f
Lc

0 is the
L2-projection of f0 onto the first Lc layers of wavelet coefficients. Under the Hölder condi-
tion the equality holds pointwise and ‖f \Lc

0 ‖∞ ≤ ∑
l>Lc

2l/22−l(1/2+α) � (logn/n)α/(2α+1).
The following inequality bounds the supremum norm by the �∞-norm:

(60)

‖f − f0‖∞ ≤ ∑
l≥−1

max
0≤k<2l

∣∣βlk − β0
lk

∣∣ · ∥∥∥∥ ∑
0≤k<2−l

|ψlk|
∥∥∥∥∞

≤ ∣∣〈f − f0, ϕ〉∣∣ + ∑
l≥0

2l/2 max
0≤k<2l

∣∣βlk − β0
lk

∣∣ = �∞(f, f0).

We use the notation S(f0;A), T as in (50) and (56) and

(61) E = {fT ,β : T ∈ T}.
Using the definition of the event A from (44), one can write

(62)
Ef0�

[
fT ,β : ‖fT ,β − f0‖∞ > εn |X]

≤ Pf0

[
Ac] + Ef0�

[
Ec |X] + Ef0

{
�

[
fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]

IA
}
.

By Markov’s inequality and the previous bound (60),

�
[
fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]

IA

≤ ε−1
n

∫
E
‖fT ,β − f0‖∞ d�[fT ,β |X]IA

≤ ε−1
n

∑
l≤Lc

2l/2
{∫

E
max

0≤k<2l

∣∣βlk − β0
lk

∣∣d�[fT ,β |X]IA
}

+ ε−1
n

∥∥f \Lc

0

∥∥∞.

With T as in (56), the integral in the last display can be written, for l ≤ Lc,∫
E

max
0≤k<2l

∣∣βlk − β0
lk

∣∣d�[fT ,β |X]

= ∑
T ∈T

π [T |X]
∫

max
0≤k<2l

∣∣βlk − β0
lk

∣∣d�[βT | XT ]
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= ∑
T ∈T

π [T |X]
∫

max
(

max
0≤k<2l ,(l,k)/∈T ′

int

∣∣β0
lk

∣∣, max
0≤k<2l ,(l,k)∈T ′

int

∣∣βlk − β0
lk

∣∣)d�[βT |XT]

≤ min
(

max
0≤k<2l

∣∣β0
lk

∣∣,A logn√
n

)
+ ∑

T ∈T

π [T |X]
∫

max
0≤k<2l ,(l,k)∈T ′

int

∣∣βlk − β0
lk

∣∣d�[βT |XT ],

where we have used that on the set E , selected trees cannot miss any true signal larger than
A logn/

√
n. This means that any node (l, k) that is not in a selected tree must satisfy |β0

lk| ≤
A logn/

√
n.

Let L∗ = L∗(α) be the integer closest to the solution of the equation in L given by
M2−L(α+1/2) = A logn/

√
n. Then, using that f0 ∈ H(α,M),

(63)

∑
l≤Lc

2
l
2 min

(
max

0≤k<2l

∣∣β0
lk

∣∣,A logn√
n

)
≤ ∑

l≤L∗
2

l
2 A

logn√
n

+ ∑
L∗<l≤Lc

2
l
2 M2−l( 1

2 +α)

≤ C2L∗/2A
logn√

n
+ C2−L∗α

≤ C̃2−L∗α ≤ c
(
n−1 log2 n

) α
2α+1 .

Using Pf0[Ac] + Ef0�[Ec | X] = o(1) and Lemma 3, one obtains

Ef0�
[
fT ,β : ‖fT ,β − f0‖∞ > εn |X]

≤ o(1) + ε−1
n

∑
l≤Lc

2l/2
[
min

(
max

0≤k<2l

∣∣β0
lk

∣∣,A logn√
n

)
+ C′

√
logn

n

]
+ ε−1

n

∥∥f \Lc

0

∥∥∞

≤ o(1) + ε−1
n

[
c

(
log2 n

n

) α
2α+1 + 2C′

√
2Lc logn

n

]
+ ε−1

n

∥∥f \Lc

0

∥∥∞

≤ o(1) + ε−1
n

[
c(logn)α/(2α+1) + 2C′]( logn

n

) α
2α+1 + ε−1

n

∥∥f \Lc

0

∥∥∞

for some C′ > 0. Choosing εn = Mn((log2 n)/n)
α

2α+1 , the right-hand side goes to zero for any
arbitrarily slowly increasing sequence Mn → ∞.
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SUPPLEMENTARY MATERIAL

Supplement to “Uncertainty quantification for Bayesian CART” (DOI: 10.1214/21-
AOS2093SUPP; .pdf). The supplement [19] contains additional material, including results
for nonparametric regression, a simulation study, an adaptive nonparametric Bernstein–von
Mises theorem, and details on tensor–multivariate versions of the considered prior distribu-
tions. It also contains all remaining proofs.

https://doi.org/10.1214/21-AOS2093SUPP
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[50] ROČKOVÁ, V. and SAHA, E. (2019). On theory for BART. In Proceedings of Machine Learning Research:
22nd International Conference on Artificial Intelligence and Statistics 89 2839–2848.
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