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Estimation of the number of components (or order) of a finite mixture
model is a long standing and challenging problem in statistics. We propose
the Group-Sort-Fuse (GSF) procedure—a new penalized likelihood approach
for simultaneous estimation of the order and mixing measure in multidimen-
sional finite mixture models. Unlike methods which fit and compare mix-
tures with varying orders using criteria involving model complexity, our ap-
proach directly penalizes a continuous function of the model parameters.
More specifically, given a conservative upper bound on the order, the GSF
groups and sorts mixture component parameters to fuse those which are re-
dundant. For a wide range of finite mixture models, we show that the GSF is
consistent in estimating the true mixture order and achieves the n−1/2 conver-
gence rate for parameter estimation up to polylogarithmic factors. The GSF
is implemented for several univariate and multivariate mixture models in the
R package GroupSortFuse. Its finite sample performance is supported by
a thorough simulation study, and its application is illustrated on two real data
examples.

1. Introduction. Mixture models are a flexible tool for modelling data from a popula-
tion consisting of multiple hidden homogeneous subpopulations. Applications in economics
(Bosch-Domènech et al. (2010)), machine learning (Goodfellow, Bengio and Courville
(2016)), genetics (Bechtel et al. (1993)) and other life sciences (Thompson, Smith and Boyle
(1998), Morris, Richmond and Grimshaw (1996)) frequently employ mixture distributions.
A comprehensive review of statistical inference and applications of finite mixture models can
be found in the book by McLachlan and Peel (2000).

Given integers N,d ≥ 1, let F = {f (y; θ) : θ = (θ1, . . . , θd)� ∈ � ⊆ R
d,y ∈ Y ⊆ R

N } be
a parametric family of density functions with respect to a σ -finite measure ν, with a compact
parameter space �. The density function of a finite mixture model with respect to F is given
by

(1.1) pG(y) =
∫
�

f (y; θ)dG(θ) =
K∑

j=1

πjf (y; θ j ),

where

(1.2) G =
K∑

j=1

πjδθj

is the mixing measure with θ j = (θj1, . . . , θjd)� ∈ �, j = 1, . . . ,K , and the mixing proba-
bilities 0 ≤ πj ≤ 1 satisfy

∑K
j=1 πj = 1. Here, δθ denotes the Dirac measure placing mass at

θ ∈ �. The θ j are said to be atoms of G, and K is called the order of the model.
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Let Y1, . . . ,Yn be a random sample from a finite mixture model (1.1) with true mixing
measure G0 =∑K0

j=1 π0j δθ0j
. The true order K0 is defined as the smallest number of atoms

of G0 for which the component densities f (·; θ0j ) are different, and the mixing proportions
π0j are nonzero. This paper is concerned with parametric estimation of K0.

In practice, the order of a finite mixture model may not be known. An assessment of
the order is important even if it is not the main object of study. Indeed, a mixture model
whose order is less than the true number of underlying subpopulations provides a poor fit,
while a model with too large of an order, which is said to be overfitted, may be overly com-
plex and hence uninformative. From a theoretical standpoint, estimation of overfitted finite
mixture models leads to a deterioration in rates of convergence of standard parametric esti-
mators. Indeed, given a consistent estimator Gn of G0 with K > K0 atoms, the parametric
n−1/2 convergence rate is generally not achievable. Under the so-called second-order strong
identifiability condition, Chen (1995) and Ho and Nguyen (2016a) showed that the optimal
pointwise rate of convergence in estimating G0 is bounded below by n−1/4 with respect to
an appropriate Wasserstein metric. In particular, this rate is achieved by the maximum likeli-
hood estimator up to a polylogarithmic factor. Minimax rates of convergence have also been
established by Heinrich and Kahn (2018), under stronger regularity conditions on the para-
metric family F . Remarkably, these rates deteriorate as the upper bound K increases. This
behaviour has also been noticed for pointwise estimation rates in mixtures which do not sat-
isfy the second-order strong identifiability assumption—see, for instance, Chen and Chen
(2003) and Ho and Nguyen (2016b). These results warn against fitting finite mixture models
with an incorrectly specified order. In addition to poor convergence rates, the consistency of
Gn does not guarantee the consistent estimation of the mixing probabilities and atoms of the
true mixing measure, though they are of greater interest in most applications.

The aforementioned challenges have resulted in the development of many methods for es-
timating the order of a finite mixture model. It is difficult to provide a comprehensive list of
the research on this problem, and thus we give a selective overview. One class of methods in-
volves hypothesis testing on the order using likelihood-based procedures (Dacunha-Castelle
and Gassiat (1999), McLachlan (1987), Liu and Shao (2003)), and the EM-test (Chen and
Li (2009), Li and Chen (2010)). These tests typically assume knowledge of a candidate or-
der; when such a candidate is unavailable, estimation methods can be employed. Minimum
distance-based methods for estimating K0 have been considered by Chen and Kalbfleisch
(1996), James, Priebe and Marchette (2001), Woo and Sriram (2006), Heinrich and Kahn
(2018), and Ho, Nguyen and Ritov (2020). The most common parametric methods involve
the use of an information criterion, whereby a penalized likelihood function is evaluated for
a sequence of candidate models. Examples include Akaike’s Information Criterion (AIC;
Akaike (1974)) and the Bayesian Information Criterion (BIC; Schwarz (1978)). The latter
is arguably the most frequently used method for mixture order estimation (Keribin (2000),
Leroux (1992), McLachlan and Peel (2000)), though it was not originally developed for non-
regular models. This led to the development of information criteria such as the Integrated
Completed Likelihood (ICL; Biernacki, Celeux and Govaert (2000)), and the Singular BIC
(sBIC; Drton and Plummer (2017)). Bayesian approaches include the method of Mixtures of
Finite Mixtures, whereby a prior is placed on the number of components (Miller and Harrison
(2018), Nobile (1994), Richardson and Green (1997), Stephens (2000)), and model selection
procedures based on Dirichlet Process mixtures, such as those of Ishwaran, James and Sun
(2001) and the Merge–Truncate–Merge method of Guha, Ho and Nguyen (2019). Motivated
by regularization techniques in regression, Chen and Khalili (2008) proposed a penalized
likelihood method for order estimation in finite mixture models with a one-dimensional pa-
rameter space �, where the regularization is applied to the difference between sorted atoms
of the overfitted mixture model. Hung et al. (2013) adapted this method to estimation of
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the number of states in Gaussian Hidden Markov models, which was also limited to one-
dimensional parameters for different states. Despite its model selection consistency and good
finite sample performance, the extension of this method to multidimensional mixtures has not
been addressed. In this paper, we take on this task and propose a far-reaching generalization
called the Group-Sort-Fuse (GSF) procedure.

The GSF postulates an overfitted finite mixture model with a large tentative order K > K0.
The true order K0 and the mixing measure G0 are simultaneously estimated by merging re-
dundant mixture components, by applying two penalties to the log-likelihood function of
the model. The first of these penalties groups the estimated atoms, while the second penalty
shrinks the distances between those which are in high proximity. The latter is achieved by
applying a sparsity-inducing regularization function to consecutive distances between these
atoms, sorted using a so-called cluster ordering (Definition 2). Unlike most existing meth-
ods, this form of regularization, which uses continuous functions of the model parameters as
penalties, circumvents the fitting of mixture models of all orders 1,2, . . . ,K . In our simu-
lations we noticed that using EM-type algorithms (Dempster, Laird and Rubin (1977)), the
GSF is less sensitive to the choice of starting values than methods which involve maximizing
likelihoods of mixture models with different orders. By increasing the amount of regulariza-
tion, the GSF produces a series of fitted mixture models with decreasing orders, as shown in
Figure 1 for a simulated dataset. This qualitative representation, inspired by coefficient plots
in penalized regression (Friedman, Hastie and Tibshirani (2008)), can also provide insight on
the mixture order and parameter estimates for purposes of exploratory data analysis.

The main contributions of this paper are summarized as follows. For a wide range of
second-order strongly identifiable parametric families, the GSF is shown to consistently esti-
mate the true order K0, and achieves the n−1/2 rate of convergence in parameter estimation
up to polylogarithmic factors. To achieve this result, the sparsity-inducing penalties used in
the GSF must satisfy conditions which are nonstandard in the regularization literature. We
also derived, for the first time, sufficient conditions for the strong identifiability of multino-
mial mixture models. Thorough simulation studies based on multivariate location-Gaussian
and multinomial mixture models show that the GSF performs well in practice. The method

FIG. 1. Regularization plots based on simulated data from a location-Gaussian mixture with K0 = 5, d = 2.
The fitted atoms θ̂j (λ) = (θ̂j1(λ), θ̂j2(λ))�, j = 1, . . . ,K = 12, are plotted against a regularization parameter λ.
Across coordinates, each estimated atom is identified by a unique color.
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is implemented for several univariate and multivariate mixture models in the R package
GroupSortFuse.1

The rest of this paper is organized as follows. We describe the GSF method, and compare
it to a naive alternative in Section 2. Asymptotic properties of the method are studied in
Section 3. Our simulation results and two real data examples are respectively presented in
Sections 4 and 5, and Supplement E.6 (Manole and Khalili (2021)). We close with some
discussions in Section 6. Proofs, numerical implementation, and additional simulation results
are given in Supplements A–F.

Notation. Throughout the paper, |A| denotes the cardinality of a set A, and for any integer
K ≥ 1, AK = A × · · · × A denotes the K-fold Cartesian product of A with itself. SK denotes
the set of permutations on K elements {1,2, . . . ,K}. Given a vector x = (x1, . . . , xd)� ∈ R

d ,
we denote its 	p-norm by ‖x‖p = (

∑d
j=1 |xj |p)1/p , for all 1 ≤ p < ∞. In the case of the Eu-

clidean norm ‖·‖2, we omit the subscript and write ‖·‖. The diameter of a set A ⊆ R
d is de-

noted diam(A) = sup{‖x − y‖ : x, y ∈ A}. Given two sequences of real numbers {an}∞n=1 and
{bn}∞n=1, we write an � bn to indicate that there exists a constant C > 0 such that an ≤ Cbn

for all n ≥ 1. We write an 	 bn if an � bn � an. For any a, b ∈ R, we write a ∧b = min{a, b},
a∨b = max{a, b}, and a+ = a∨0. Finally, we let GK = {G : G =∑K

j=1 πjδθj
, θ j ∈ �,πj ≥

0,
∑K

j=1 πj = 1} be the class of mixing measures with at most K components.

Figures. All the numerical and algorithmic details of the illustrative figures throughout
this paper are given in Section 4 and Supplement D.

2. The Group-Sort-Fuse (GSF) method. Let Y1, . . . ,Yn be a random sample arising
from pG0 , where G0 ∈ GK0 is the true mixing measure with unknown order K0. Assume an
upper bound K on K0 is known—further discussion on the choice of K is given in Sec-
tion 3.3. The log-likelihood function of a mixing measure G with K > K0 atoms is said to
be overfitted, and is defined by

(2.1) ln(G) =
n∑

i=1

logpG(Yi).

The overfitted maximum likelihood estimator (MLE) of G is given by

(2.2) Ḡn =
K∑

j=1

π̄j δθ̄j
= argmax

G∈GK

ln(G).

As discussed in the Introduction, though the overfitted MLE is consistent in estimating G0
under suitable metrics, it suffers from slow rates of convergence, and there may exist atoms
of Ḡn whose corresponding mixing probabilities vanish, and do not converge to any atoms
of G0. Furthermore, from a model selection standpoint, Ḡn typically has order greater than
K0. In practice, Ḡn therefore overfits the data in the following two ways which we will refer
to below: (a) certain fitted mixing probabilities π̄j may be near-zero, and (b) some of the
estimated atoms θ̄ j may be in high proximity to each other. In this section, we propose a
penalized maximum likelihood approach which circumvents both types of overfitting, thus
leading to a consistent estimator of K0.

Overfitting (a) can readily be addressed by imposing a lower bound on the mixing prob-
abilities, as was considered by Hathaway (1986). This lower bound, however, could be par-
ticularly challenging to specify in overfitted mixture models. An alternative approach is to

1https://github.com/tmanole/GroupSortFuse

https://github.com/tmanole/GroupSortFuse


ESTIMATING THE NUMBER OF COMPONENTS IN FINITE MIXTURES 3047

penalize against near-zero mixing probabilities (Chen and Kalbfleisch (1996)). Thus, we be-
gin by considering the following preliminary penalized log-likelihood function

(2.3) ln(G) − ϕ(π1, . . . , πK), G ∈ GK,

where ϕ ≡ ϕn is a nonnegative penalty function such that infn≥1 ϕn(π1, . . . , πK) → ∞ as
min1≤j≤K πj → 0. We further require that ϕ is invariant to relabeling of its arguments, that
is, ϕ(π1, . . . , πK) = ϕ(πτ(1), . . . , πτ(K)), for any permutation τ ∈ SK . Examples of ϕ are
given at the end of this section. The presence of this penalty ensures that the maximizer of
(2.3) has mixing probabilities which stay bounded away from zero. Consequently, as shown
in Theorem 1 below, this preliminary estimator is consistent in estimating the atoms of G0,
unlike the overfitted MLE in (2.2). It does not, however, consistently estimate the order K0
of G0, as it does not address overfitting (b).

Our approach is to introduce a second penalty which has the effect of merging fitted atoms
that are in high proximity. We achieve this by applying a sparsity-inducing penalty rλn to the
distances between appropriately chosen pairs of atoms of the overfitted mixture model with
order K . It is worth noting that one could naively apply rλn to all

(
K
2

)
pairwise atom distances.

However, our simulations shown toward the end of this section suggest that such an exhaus-
tive form of penalization increases the sensitivity of the estimator to the upper bound K .
Instead, given a carefully chosen sorting of the atoms in R

d , our method merely penalizes
their K − 1 consecutive distances. This results in the double penalized log-likelihood Ln(G)

in (2.6), which we now describe using the following definitions.

DEFINITION 1. Let t1, . . . , tK ∈ � ⊆ R
d , and let P = {C1, . . . ,CH } be a partition of

{t1, . . . , tK}, for some integer 1 ≤ H ≤ K . Suppose

(2.4) max
ti ,tj∈Ch

‖ti − tj‖ < min
ti∈Ch
tl /∈Ch

‖ti − tl‖, h = 1, . . . ,H.

Then, each set Ch is said to be an atom cluster, and P is said to be a cluster partition.

According to Definition 1, a partition is said to be a cluster partition if the within-cluster
distances between atoms are always smaller than the between-cluster distances. The penaliza-
tion in (2.3) (asymptotically) induces a cluster partition {C1, . . . ,CK0} of the estimated atoms.
Heuristically, the estimated atoms falling within each atom cluster Ch approximate some true
atom θ0j , and the goal of the GSF is to merge these estimates, as illustrated in Figure 2. To do
so, the GSF hinges on the notion of cluster ordering—a generalization of the natural ordering
on the real line, which we now define.

DEFINITION 2. Let t = (t1, . . . , tK) ∈ �K . A cluster ordering is a permutation αt ∈ SK

such that the following two properties hold:

(i) Symmetry. For any permutation τ ∈ SK , if t′ = (tτ(1), . . . , tτ(K)), then αt′ = αt.
(ii) Atom Ordering. For any integer 1 ≤ H ≤ K and for any cluster partition P =

{C1, . . . ,CH } of {t1, . . . , tK}, α−1
t ({j : tj ∈ Ch}) is a set of consecutive integers for all

h = 1, . . . ,H .

If t1, . . . , tK ∈ � ⊆ R and t = (t1, . . . , tK), then the permutation αt ∈ SK which induces
the natural ordering tαt(1) ≤ · · · ≤ tαt(K) is a cluster ordering. When � ⊆ R

d , property (ii) is
satisfied for any permutation αt ∈ SK such that

(2.5) αt(k) = argmin
1≤j≤K

j /∈{αt(i):1≤i≤k−1}
‖tj − tαt(k−1)‖, k = 2, . . . ,K.
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FIG. 2. Illustration of a cluster partition P and a cluster ordering α
θ̃

with K = 12, based on the simulated

sample used in Figure 1, with true atoms θ01, . . . , θ05 denoted by lozenges (◆), and atoms θ̃ = (θ̃1, . . . , θ̃12),
obtained by maximizing the penalized log-likelihood (2.3), denoted by disks (•). The ellipses (. . . ) represent a
choice of P with K0 = 5 atom clusters. The blue line (—) represents a cluster ordering α

θ̃
, in the sense that

α
θ̃
(1) is the index of the bottommost point, α

θ̃
(2) is the index of the following point on the line, etc. The grey lines

(—) represent all the pairwise distances penalized by the naive method defined in Figure 3.

αt further satisfies property (i) provided αt(1) is invariant to relabeling of the components
of t. Any such choice of αt is therefore a cluster ordering in R

d , and an example is shown in
Figure 2 based on a simulated sample.

Given a mixing measure G =∑K
j=1 πjδθj

with θ = (θ1, . . . , θK), let αθ be a cluster or-
dering. For ease of notation, in what follows we write α ≡ αθ . Let ηj = θα(j+1) − θα(j), for
all j = 1, . . . ,K − 1. We define the penalized log-likelihood function

(2.6) Ln(G) = ln(G) − ϕ(π1, . . . , πK) − n

K−1∑
j=1

rλn

(‖ηj‖;ωj

)
,

where the penalty rλn(η;ω) is a nonsmooth function at η = 0 for all ω > 0, satisfying con-
ditions (P1)–(P3) discussed in Section 3. In particular, λn ≥ 0 is a regularization parameter,
and ωj ≡ ωj(G) > 0 are possibly random weights as defined in Section 3. Property (i) in
Definition 2, and the invariance of ϕ to relabelling of its arguments, guarantee that Ln(G) is
well-defined in the sense that it does not change upon relabeling the atoms of G. Finally, the
Maximum Penalized Likelihood Estimator (MPLE) of G is given by

(2.7) Ĝn =
K∑

j=1

π̂j δθ̂j
= argmax

G∈GK

Ln(G).

To summarize, the penalty ϕ ensures the asymptotic existence of a cluster partition
{C1, . . . ,CK0} of {̂θ1, . . . , θ̂K}. Heuristically, the estimated atoms in each Ch approximate one
of the atoms of G0, and the goal of the GSF is to merge their values to be equal. To achieve
this, Property (ii) of Definition 2 implies that any cluster ordering α is among the permu-
tations in SK which maximize the number of indices j such that θα(j), θα(j+1) ∈ Ch, and
minimize the number of indices l such that θα(l) ∈ Ch and θα(l+1) /∈ Ch, for all h = 1, . . . ,K0.
Thus our choice of α maximizes the number of penalty terms rλn(‖ηj‖;ωj) acting on dis-
tances between atoms of the same atom cluster Ch. The nondifferentiability of rλn at zero
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FIG. 3. A comparison of the GSF (—), and the naive alternative (. . . ) given by
argmaxG∈GK

{ln(G) − ϕ(π1, . . . , πK) − n
∑

j �=k rλn
(‖θj − θk‖;ωjk)}. The results are based on 500

simulated samples of size n = 200 from the bivariate Gaussian mixture Models F.1 (left, K0 = 2) and F.2 (right,
K0 = 3) given in Supplement F. Each point represents the percentage of times that a method with varying upper
bounds K correctly estimated K0.

ensures that, asymptotically, η̂j = 0 or equivalently θ̂α(j) = θ̂α(j+1) for certain indices j , and
thus the effective order of Ĝn becomes strictly less than the postulated upper bound K . This
is how the GSF simultaneously estimates both the mixture order and the mixing measure.
The choice of the tuning parameter λn determines the size of the penalty rλn and thus the
estimated mixture order. In Section 3, under certain regularity conditions, we prove the ex-
istence of a sequence λn for which Ĝn has order K0 with probability tending to one, and in
Section 4 we discuss data-driven choices of λn. Figure 3 compares the sensitivity with respect
to K of the GSF and a naive alternative that applies the penalty rλn to all

(
K
2

)
pairwise atom

distances.

Examples of the penalties ϕ and rλn . We now discuss some examples of penalty functions
ϕ and rλn . The functions ϕ(π1, . . . , πK) ∝ −∑K

j=1 logπj and ϕ(π1, . . . , πK) ∝∑K
j=1 π−ι

j
(for some ι > 0) were used by Chen and Kalbfleisch (1996) in the context of distance-
based methods for mixture order estimation. As seen in Supplement D.1, the former is
computationally convenient for EM-type algorithms, and we use it in all demonstrative
examples throughout this paper. Li, Chen and Marriott (2009) also discuss the function
ϕ(π1, . . . , πK) ∝ −min1≤j≤K logπj in the context of hypothesis testing for the mixture or-
der, which is more severe (up to a constant) than the former two penalties.

Regarding rλn , satisfying conditions (P1)–(P3) in Section 3, we consider the following
three penalties. For convenience, the first two penalties are written in terms of their first
derivatives with respect to η.

(i) The Smoothly Clipped Absolute Deviation (SCAD; Fan and Li (2001)),

r ′
λn

(η;ω) ≡ r ′
λn

(η) = λnI
{|η| ≤ λn

}+ (aλn − |η|)+
a − 1

I
{|η| > λn

}
, a > 2.

(ii) The Minimax Concave Penalty (MCP; Zhang (2010)),

r ′
λn

(η;ω) ≡ r ′
λn

(η) =
(
λn − |η|

a

)
+
, a > 1.
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(iii) The Adaptive Lasso (ALasso; Zou (2006)),

rλn(η;ω) = λnw|η|.
The Lasso penalty rλn(η;ω) = λn|η| does not satisfy all the conditions (P1)–(P3), and is
further discussed in Section 3.

3. Asymptotic study. In this section, we study asymptotic properties of the GSF, be-
ginning with preliminaries. We also introduce more notation in the sequence that it will be
needed. Throughout this section, except where otherwise stated, we fix K ≥ K0.

3.1. Preliminaries. Inspired by Nguyen (2013), we analyze the convergence of mixing
measures in GK using the Wasserstein distance. Recall that the Wasserstein distance of order
r ≥ 1 between two mixing measures G =∑K

j=1 πjδθj
and G′ =∑K ′

k=1 π ′
kδθ ′

k
is given by

(3.1) Wr

(
G,G′)= (

inf
q∈Q(π ,π ′)

K∑
j=1

K ′∑
k=1

qjk

∥∥θ j − θ ′
k

∥∥r) 1
r

,

where Q(π ,π ′) denotes the set of joint probability distributions q = {qjk : 1 ≤ j ≤ K,1 ≤
k ≤ K ′} supported on {1, . . . ,K}×{1, . . . ,K ′}, such that

∑K
j=1 qjk = π ′

k and
∑K ′

k=1 qjk = πj .
We note that the 	2-norm of the underlying parameter space � is embedded into the definition
of Wr . The distance between two mixing measures is thus largely controlled by that of their
atoms. The definition of Wr also bypasses the nonidentifiability issues arising from mixture
label switching. These considerations make the Wasserstein distance a natural metric for the
space GK .

A condition which arises in likelihood-based asymptotic theory of finite mixture models
with unknown order, called strong identifiability (in the second-order), is defined as follows.

DEFINITION 3 (Strong Identifiability; Chen (1995), Ho and Nguyen (2016a)). The fam-
ily F is said to be strongly identifiable (in the second-order) if f (y; θ) is twice differentiable
with respect to θ for all y ∈ Y , and the following assumption holds for all integers K ≥ 1.

(SI) Given distinct θ1, . . . , θK ∈ �, if we have ζj ∈ R, βj ,γ j ∈ R
d , j = 1, . . . ,K , such

that

ess sup
y∈Y

∣∣∣∣∣
K∑

j=1

{
ζjf (y; θ j ) + β�

j

∂f (y; θ j )

∂θ
+ γ �

j

∂2f (y; θ j )

∂θ∂θ� γ j

}∣∣∣∣∣= 0

then ζj = 0, βj = γ j = 0 ∈ R
d , for all j = 1, . . . ,K .

For strongly identifiable mixture models, the likelihood ratio statistic with respect to the
overfitted MLE Ḡn is stochastically bounded (Dacunha-Castelle and Gassiat (1999)). In addi-
tion, under condition (SI), upper bounds relating the Wasserstein distance between a mixing
measure G and G0 to the Hellinger distance between the corresponding densities pG and pG0

have been established by Ho and Nguyen (2016a). In particular, there exist δ0, c0 > 0 depend-
ing on the true mixing measure G0 such that for any G ∈ GK satisfying W2(G,G0) < δ0,

(3.2) h(pG,pG0) ≥ c0W
2
2 (G,G0),

where h denotes the Hellinger distance,

h(pG,pG0) =
(

1

2

∫
(
√

pG − √
pG0)

2 dν

) 1
2
.
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Specific statements and discussion of these results are given in Supplement B, and are used
throughout the proofs of our Theorems 1–3. Further discussion of condition (SI) is given in
Section 3.3. We also require regularity conditions (A1)–(A4) on the family F , condition (C)
on the cluster ordering αt, and condition (F) on the penalty ϕ, which we state below.

Define the family of mixture densities

(3.3) PK =
{
pG(y) =

∫
�

f (y; θ) dG(θ) : G ∈ GK

}
.

Let p0 = pG0 be the density of the true finite mixture model with its corresponding probabil-
ity distribution P0. Furthermore, define the empirical process

(3.4) νn(G) = √
n

∫
{p0>0}

1

2
log
{
pG + p0

2p0

}
d(Pn − P0), G ∈ GK,

where Pn = 1
n

∑n
i=1 δYi

denotes the empirical measure.
For any θ = (θ1, . . . , θd)� ∈ �, y ∈ Y , and G ∈ GK , let

U(y; θ ,G) = 1

pG(y)
f (y; θ),(3.5)

Uκ1...κM
(y; θ ,G) = 1

pG(y)

∂Mf (y; θ)

∂θκ1 · · · ∂θκM

(3.6)

for all κ1, . . . , κM = 1, . . . , d , and any integer M ≥ 1.
The regularity conditions are given as follows.

(A1) Uniform Law of Large Numbers. We have

sup
G∈GK

1√
n

∣∣νn(G)
∣∣ a.s.−→ 0, as n → ∞.

(A2) Uniform Lipschitz Condition. The kernel density f is uniformly Lipschitz up to the
second order (Ho and Nguyen (2016a)). That is, there exist C,δ > 0 such that for any γ ∈ R

d ,
θ1, θ2 ∈ �, and y ∈ Y ,∣∣∣∣γ �

(
∂2f (y; θ1)

∂θ∂θ� − ∂2f (y; θ2)

∂θ∂θ�
)
γ

∣∣∣∣≤ C‖θ1 − θ2‖δ
1‖γ ‖2

2.

(A3) Smoothness. There exists h1 ∈ L1(ν) such that | logf (y; θ)| ≤ h1(y) ν-almost ev-
erywhere. Moreover, the kernel density f (y; θ) possesses partial derivatives up to order 5
with respect to θ . For all M ≤ 5, all κ1, . . . , κM , and any atom θ0 of G0,

Uκ1...κM
(·; θ0,G0) ∈ L3(P0).

There also exists h2 ∈ L3(P0) and ε > 0 such that for all y ∈ Y ,

sup
‖θ−θ0‖≤ε

∣∣Uκ1...κ5(y; θ ,G0)
∣∣≤ h2(y).

(A4) Uniform Boundedness. There exist ε1, ε2 > 0, and q1, q2 ∈ L2(P0) such that for all
y ∈ Y , |U(y; θ ,G)| ≤ q1(y), and for every κ1 = 1, . . . , d , |Uκ1(y; θ ,G)| ≤ q2(y), uniformly
for all G such that W2(G,G0) < ε1, and for all θ ∈ � such that ‖θ − θ0k‖ < ε2, for some
k ∈ {1, . . . ,K0}.
(A1) is a standard condition required to establish consistency of nonparametric maximum
likelihood estimators. A sufficient condition for (A1) to hold is that the kernel density f (y; θ)

is continuous with respect to θ for ν-almost every y (see Example 4.2.4 of van de Geer
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(2000)). Under condition (A2) and the Strong Identifiability condition (SI) in Definition 3,
local upper bounds relating the Wasserstein distance over GK to the Hellinger distance over
PK in (3.3) have been established by Ho and Nguyen (2016a)—see Theorem B.2 of Sup-
plement B. Under conditions (A3) and (SI), Dacunha-Castelle and Gassiat (1999) showed
that the likelihood ratio statistic for overfitted mixtures is stochastically bounded—see The-
orem B.1 of Supplement B. Condition (A4) is used to perform an order assessment for a
score-type quantity in the proof of the order selection consistency of the GSF (Theorem 3).

We further assume that the cluster ordering αt satisfies the following continuity-type con-
dition.

(C) Let θ0 = (θ01, . . . , θ0K0), and θ = (θ1, . . . , θK) ∈ �K . Suppose there exists a clus-
ter partition P = {C1, . . . ,CK0} of θ of size K0. Let τ ∈ SK0 be the permutation such
that (θαθ (1), . . . , θαθ (K)) = (Cτ(1), . . . ,Cτ(K0)), as implied by the definition of cluster or-
dering. Then, there exists δ > 0 such that, if for all k = 1, . . . ,K0 and θ j ∈ Ck , we have
‖θ j − θ0k‖ < δ, then τ = αθ0 .

An illustration of condition (C) is provided in Figure 4. It is easy to verify that the example
of cluster ordering in (2.5) satisfies (C) whenever the minimizers therein are unique. Finally,
we assume that the penalty ϕ ≡ ϕn satisfies the following condition:

(F) ϕn = anφ, where 0 < an = o(n), an �→ 0, and φ :⋃K
j=1(0,1]j → R+ is Lipschitz on

any compact subset of (0,1]j ,1 ≤ j ≤ K . Also, for all π1, . . . , πK ∈ (0,1] and ρk ≥ πk , 1 ≤
k ≤ K0 ≤ K , φ(π1, . . . , πK) ≥ φ(ρ1, . . . , ρK0), and φ(π1, . . . , πK) → ∞ as minj πj → 0.

Condition (F) holds for all examples of functions ϕ stated in Section 2. When rλn(η;ω) is
constant with respect to η away from zero, as is the case for the SCAD and MCP, condition
(P2) below implies that an is constant with respect to n. For technical purposes, we require
an to diverge when rλn is the ALasso penalty, ensuring that ϕn and nrλn are of comparable
order. In practice, however, we notice that the GSF is hardly sensitive to the choice of an.

Given G =∑K
j=1 πjδθj

∈ GK , we now define a choice of the weights ωj ≡ ωj(G) for the
penalty function rλn in (2.6), which are random and depend on G. It should be noted that the
choice of these weights is relevant for the ALasso penalty but not for the SCAD and MCP.

FIG. 4. Illustration of condition (C). The points of θ are depicted in blue (•) and the points of θ0 are depicted in
red (◆). The blue solid lines (—) denote the permutation αθ , while the red solid lines (—) denote the permutation
αθ0 . The ellipses (- - -) represent a choice of cluster partition of θ . The choice of cluster ordering in the left plot
satisfies condition (C), while that of the right plot does not.
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Define the estimator

(3.7) G̃n =
K∑

j=1

π̃j δθ̃j
= argmax

G∈GK

{
ln(G) − φ(π1, . . . , πK)

}
,

and let θ̃ = (θ̃1, . . . , θ̃K). Define η̃j = θ̃ α̃(j+1) − θ̃ α̃(j), for all j = 1, . . . ,K − 1, where α̃ ≡
αθ̃ , and recall that ηj = θα(j+1) − θα(j), where α ≡ αθ . Let u, v ∈ SK−1 be the permutations
such that

‖ηu(1)‖ ≥ · · · ≥ ‖ηu(K−1)‖, ‖η̃v(1)‖ ≥ · · · ≥ ‖η̃v(K−1)‖,
and set ψ = v ◦ u−1. Inspired by Zou (2006), for some β > 1, we then define

(3.8) ωj = ‖η̃ψ(j)‖−β, j = 1, . . . ,K − 1.

Finally, we define the Voronoi diagram of the atoms {̂θ1, . . . , θ̂K} of Ĝn in (2.7) by {V̂k : 1 ≤
k ≤ K0}, where for all k = 1, . . . ,K0, the sets

(3.9) V̂k = {
θ̂ j : ‖θ̂ j − θ0k‖ < ‖θ̂ j − θ0l‖,∀l �= k,1 ≤ j ≤ K

}
,

are called Voronoi cells with corresponding index sets Îk = {1 ≤ j ≤ K : θ̂ j ∈ V̂k}.
3.2. Main results. We are now ready to state our main results. Theorem 1 below shows

that {V̂k : 1 ≤ k ≤ K0} asymptotically forms a cluster partition of {̂θ1, . . . , θ̂K}. This result,
together with the rate of convergence established in Theorem 2, leads to the consistency of
the GSF in estimating K0, as stated in Theorem 3.

THEOREM 1. Assume conditions (SI), (A1)–(A2) and (F) hold, and let the penalty func-
tion rλn satisfy the following condition:

(P1) rλn(η;ω) ≥ 0 is a nondecreasing function of η ∈ R+ which satisfies rλn(0;ω) = 0
and limn→∞ rλn(η;ω) = 0, for all η,ω ∈ R+. Furthermore, for any fixed compact sets
I1, I2 ⊆ (0,∞), rλn(·;ω) is convex over I1 for large n, and diam(nrλn(I1; I2)) = O(an).

Then, as n → ∞:

(i) Wr(Ĝn,G0) → 0, almost surely, for all r ≥ 1.

Assume further that condition (A3) holds. Then:

(ii) φ(π̂1, . . . , π̂K) = Op(1). In particular, for every k = 1, . . . ,K0,
∑

j∈Îk
π̂j = π0k +

op(1).
(iii) For every 1 ≤ l ≤ K , there exists a unique 1 ≤ k ≤ K0, such that ‖θ̂ l − θ0k‖ = op(1),

thus {V̂k : 1 ≤ k ≤ K0} is a cluster partition of {̂θ1, . . . , θ̂K}, with probability tending to one.

Theorem 1(i) establishes the consistency of Ĝn under the Wasserstein distance—a property
shared by the overfitted MLE Ḡn (Ho and Nguyen (2016a)). This is due to the fact that, by
conditions (F) and (P1), the log-likelihood function is the dominant term in Ln, in (2.6).
Theorem 1(ii) implies that the estimated mixing proportions π̂j are stochastically bounded
away from 0, which then results in Theorem 1(iii) showing that every atom of Ĝn is consistent
in estimating an atom of G0. A straightforward investigation of the proof shows that this
property also holds for G̃n in (3.7), but not for the overfitted MLE Ḡn, which may have a
subset of atoms whose limit points are not among those of G0.

When K > K0, the result of Theorem 1 does not imply the consistency of Ĝn in esti-
mating K0. The latter is achieved if the number of distinct elements of each Voronoi cell
V̂k is equal to one with probability tending to one, which is shown in Theorem 3 below. To
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establish this result, we require an upper bound on the rate of convergence of Ĝn under the
Wasserstein distance. We obtain this bound by studying the rate of convergence of the density
pĜn

to p0, with respect to the Hellinger distance, and appeal to inequality (3.2). van de Geer
(2000) (see also Wong and Shen (1995)) established convergence rates for nonparametric
maximum likelihood estimators under the Hellinger distance in terms of the bracket entropy
integral

JB

(
γ, P̄

1
2
K(γ ), ν

)= ∫ γ

0

√
HB

(
u, P̄

1
2
K(u), ν

)
du, γ > 0,

where HB(u, P̄
1
2
K(u), ν) denotes the u-bracket entropy with respect to the L2(ν) metric of

the density family

P̄
1
2
K(u) =

{√
pG + p0

2
: G ∈ GK,h

(
pG + p0

2
,p0

)
≤ u

}
, u > 0.

In our work, however, the main difficulty in bounding h(pĜn
,p0) is the presence of the

penalty rλn . The following Theorem shows that, as n → ∞, if the growth rate of rλn away
from zero, as a function of η, is carefully controlled, then pĜn

achieves the same rate of
convergence as the MLE pḠn

.

THEOREM 2. Assume the same conditions as Theorem 1, and that the cluster ordering
αt satisfies condition (C). For a universal constant J > 0, assume there exists a sequence of
real numbers γn � (logn/n)1/2 such that for all γ ≥ γn,

(3.10) JB

(
γ, P̄

1
2
K(γ ), ν

)≤ J
√

nγ 2.

Furthermore, assume rλn satisfies the following condition:

(P2) The restriction of rλn to any compact subset of {(η,ω) ⊆ R
2 : η,ω > 0} is Lipschitz

continuous in both η and ω, with Lipschitz constant 	n = O(γ
3/2
n / logn), and an 	 n	n ∨ 1.

Then, h(pĜn
,p0) = Op(γn).

Gaussian mixture models are known to satisfy condition (3.10) for γn 	 (logn/n)
1
2 , under

certain boundedness assumptions on � (Ghosal and van der Vaart (2001), Genovese and
Wasserman (2000)). Lemma 3.2.1 of Ho (2017) shows that (3.10) also holds for this choice
of γn for many of the strongly identifiable density families which we discuss below. For
these density families, pĜn

achieves the parametric rate of convergence up to polylogarithmic
factors.

Let K̂n be the order of Ĝn, namely the number of distinct components θ̂ j of Ĝn with
nonzero mixing proportions. We now prove the consistency of K̂n in estimating K0.

THEOREM 3. Assume the same conditions as Theorem 2, and assume that the family F
satisfies condition (A4). Suppose further that the penalty rλn satisfies the following condition:

(P3) rλn(·;ω) is differentiable for all ω > 0, and

lim
n→∞ inf

{
γ −1
n

∂rλn(η;ω)

∂η
: 0 < η ≤ γ

1
2

n logn,ω ≥ (γ β
2

n logn
)−1
}

= ∞,

where γn is the sequence defined in Theorem 2, and β > 1 is the constant in (3.8).
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Then, as n → ∞:

(i) P(K̂n = K0) → 1. In particular, P(
⋂K0

k=1{|V̂k| = 1}) → 1.
(ii) W1(Ĝn,G0) = Op(γn).

Condition (P3) ensures that as n → ∞, rλn grows sufficiently fast in a vanishing neigh-
borhood of η = 0 to prevent any mixing measure of order greater than K0 from maximizing
Ln. In addition to being model selection consistent, Theorem 3 shows that for most strongly
identifiable parametric families F , Ĝn is a (logn/n)1/2-consistent estimator of G0. Thus, Ĝn

improves on the (logn/n)1/4 rate of convergence of the overfitted MLE Ḡn. This fact com-
bined with Theorem 1(iii) implies that the fitted atoms θ̂ j are also (logn/n)1/2-consistent in
estimating the true atoms θ0k , up to relabeling.

3.3. Remarks. We now discuss several aspects of the GSF in regards to the (SI) condi-
tion, penalty rλ, upper bound K , and its relation to existing approaches in Bayesian mixture
modeling.

(I) The Strong Identifiability (SI) Condition. A wide range of univariate parametric fami-
lies are known to be strongly identifiable, including most exponential families (Chen (1995),
Chen, Chen and Kalbfleisch (2004)), and circular distributions (Holzmann, Munk and Strat-
mann (2004)). Strongly identifiable families with multidimensional parameter space in-
clude multivariate Gaussian distributions in location or scale, certain classes of Student t-
distributions, as well as von Mises, Weibull, logistic and generalized Gumbel distributions
(Ho and Nguyen (2016a)). In this paper, we also consider finite mixture of multinomial dis-
tributions. To establish conditions under which this family satisfies condition (SI), we begin
with the following result.

PROPOSITION 1. Consider the binomial family with known number of trials M ≥ 1,

(3.11) F =
{
f (y; θ) =

(
M

y

)
θy(1 − θ)M−y : θ ∈ (0,1), y ∈ {0, . . . ,M}

}
.

Given any integer r ≥ 1, the condition (r + 1)K − 1 ≤ M is necessary and sufficient for F
to be strongly identifiable in the r th order (Heinrich and Kahn (2018)). That is, for any K

distinct points θ1, . . . , θK ∈ (0,1), and βjl ∈R, j = 1, . . . ,K , l = 0, . . . , r , if

sup
y∈{0,...,M}

∣∣∣∣∣
K∑

j=1

r∑
l=0

βjl

∂lf (y; θj )

∂θ l

∣∣∣∣∣= 0,

then βjl = 0 for every j = 1, . . . ,K and l = 0, . . . , r .

The inequality (r + 1)K − 1 ≤ M is comparable to the classical identifiability result of
Teicher (1963), which states that binomial mixture models are identifiable with respect to
their mixing measure if and only if 2K −1 ≤ M . Using Proposition 1, we can readily establish
the following result.

COROLLARY 1. A sufficient condition for the multinomial family

(3.12) F =
{(

M

y1, . . . , yd

) d∏
j=1

θ
yj

j : θj ∈ (0,1),0 ≤ yj ≤ M,

d∑
j

θj = 1,

d∑
j

yj = M

}

with known number of trials M ≥ 1, to satisfy condition (SI) is 3K − 1 ≤ M .
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(II) The Penalty Function rλn . Condition (P1) is standard and is satisfied by most well-
known regularization functions, including the Lasso, ALasso, SCAD and MCP, as long as
λn → 0, for large enough an, as n → ∞. Conditions (P2) and (P3) are satisfied by SCAD

and MCP when λn 	 γ
1
2

n logn. When γn 	 (logn/n)1/2, it follows that λn decays slower
than the n−1/4 rate, contrasting the typical rate λn 	 n−1/2 encountered in variable selection
problems for parametric regression (see, for instance, Fan and Li (2001)).

We now consider the ALasso with the weights ωj in (3.8), which are similar to those pro-
posed by Zou (2006) in the context of variable selection in regression. Condition (P2) implies

λnγ
− 3

2
n logn → 0, while condition (P3) implies λnγ

− β+2
2

n → ∞, where β is the parameter in
the weights. Thus, both conditions (P2) and (P3) are satisfied by the ALasso with the weights
in (3.8) only when β > 1 and by choosing λn 	 γ

3/2
n / logn. In particular, the value β = 1 is

invalid. When γn 	 (logn/n)1/2, it follows that λn 	 n−3/4(logn)−1/4 which decays much
faster than the sequence λn required for the SCAD and MCP discussed above. This discrep-
ancy can be anticipated from the fact the weights ωj corresponding to nearby atoms of G̃n

diverge. It is worth noting that the typical tuning parameter for the ALasso in parametric

regression is required to satisfy
√

nλn → 0 and n
1+β

2 λn → ∞, for any β > 0.
Finally, we note that the Lasso penalty rλn(η;ω) = λn|η| cannot simultaneously satisfy

conditions (P2) and (P3), since they would require opposing choices of λn. Furthermore, for
this penalty, when � ⊆ R and α is the natural ordering on the real line, that is θα(1) ≤ · · · ≤
θα(K), we obtain the telescoping sum

λn

K−1∑
j=1

|ηj | = λn

K−1∑
j=1

(θα(j+1) − θα(j)) = λn(θα(K) − θα(1))

which fails to penalize the vast majority of the overfitted components.
(III) Choice of the Upper Bound K . By Theorem 3, as long as the upper bound on the

mixture order satisfies K ≥ K0, the GSF provides a consistent estimator of K0. The following
result shows the behaviour of the GSF for a misspecified bound K < K0.

PROPOSITION 2. Assume that the family F satisfies condition (A3), and that the mixture
family {pG : G ∈ GK} is identifiable, Then, for any K < K0, as n → ∞, the GSF order
estimator K̂n satisfies: P(K̂n = K) → 1.

Guided by the above result, if the GSF chooses the prespecified upper bound K as the
estimated order, the bound is likely misspecified and larger values should also be examined.
This provides a natural heuristic for choosing an upper bound K for the GSF in practice,
which we further elaborate upon in Section 4.2 of the simulation study.

(IV) Connections between the GSF and Existing Bayesian Approaches. When ϕ(π1, . . . ,

πK) = (1 − γ )
∑K

j=1 logπj , for some γ > 1, the estimator G̃n in (3.7) can be viewed as the
posterior mode of the overfitted Bayesian mixture model

θ1, . . . , θK
i.i.d.∼ H,(3.13)

(π1, . . . , πK) ∼ Dirichlet(γ, . . . , γ ), Yi |G =
K∑

j=1

πjδθj

i.i.d.∼ pG, i = 1, . . . , n,(3.14)

where H is a uniform prior on the (compact) set � ⊆ R
d . Under this setting, Rousseau and

Mengersen (2011) showed that when γ < d/2, the posterior distribution of G has the effect of
asymptotically emptying out redundant components of the overfitted mixture model, such that
the posterior expectation of the mixing probabilities of the (K − K0 + 1) extra components
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decay at the rate n−1/2, up to polylogarithmic factors. On the other hand, if γ > d/2, two or
more of the posterior atoms with nonnegligible mixing probabilities will have the tendency to
approach each other. The authors discuss that the former case results in more stable behaviour
of the posterior distribution. In contrast, under our setting with the choice γ > 1, Theorem 1(i)
implies that all the mixing probabilities of G̃n are bounded away from zero with probability
tending to one. This behaviour matches their above setting γ > d/2, though with a generally
different cutoff for γ . We argue that the GSF does not suffer from the instability described
by Rousseau and Mengersen (2011) in this setting, as it proposes a simple procedure for
merging nearby atoms using the second penalty rλ in (2.6), hinging upon the notion of cluster
ordering. From a Bayesian standpoint, this penalty can be viewed as replacing the i.i.d. prior
H in (3.13) by the following exchangeable and non-i.i.d. prior

(3.15) (θ1, . . . , θK) ∼ pθ (θ1, . . . , θK) ∝
K−1∏
j=1

exp
{−rλ

(‖θαθ (j+1) − θαθ (j)‖;ωj

)}
up to rescaling of rλ, which places high-probability mass on nearly-overlapping atoms. On
the other hand, Petralia, Rao and Dunson (2012), Xie and Xu (2020) replace H by so-called
repulsive priors, which favour diverse atoms, and are typically used with γ < d/2. For exam-
ple, Petralia, Rao and Dunson (2012) study the prior

(3.16) (θ1, . . . , θK) ∼ pθ (θ1, . . . , θK) ∝
K∏

j<k

exp
{−τ‖θ j − θk‖−1}, τ > 0.

In contrast to the GSF, the choice γ < d/2 ensures vanishing posterior mixing probabilities
corresponding to redundant components, which is further encouraged by the repulsive prior
(3.16). Without a post-processing step which thresholds these mixing probabilities, however,
this methods do not yield consistent order selection. It turns out that by further placing a prior
on K , order consistency can be obtained (Miller and Harrison (2018), Nobile (1994)).

A distinct line of work in nonparametric Bayesian mixture modeling places a prior, such
as a Dirichlet process, directly on the mixing measure G. Though the resulting posterior
typically has infinitely-many atoms, consistent estimators of K0 < ∞ can be obtained using
post-processing techniques, such as the Merge–Truncate–Merge (MTM) method of Guha,
Ho and Nguyen (2019). Both the GSF and MTM aim at reducing the overfitted mixture order
by merging nearby atoms. Unlike the GSF, however, the Dirichlet process mixture’s posterior
may have vanishing mixing probabilities, hence a single merging stage of its atoms is insuffi-
cient to obtain an asymptotically correct order. The MTM thus also truncates such redundant
components, and performs a second merging of their mixing probabilities to recover a proper
mixing measure. Both the truncation and merging stages use hard-thresholding rules. We
compare the two methods in our simulation study, Section 4.3.

4. Simulation study. We conduct a simulation study to assess the finite-sample perfor-
mance of the GSF. We develop a modification of the EM algorithm to obtain an approximate
solution to the optimization problem in (2.7). The main ingredients are the Local Linear Ap-
proximation algorithm of Zou and Li (2008) for nonconcave penalized likelihood models, and
the proximal gradient method (Nesterov (2004)). Details of our numerical solution are given
in Supplement D.1. The algorithm is implemented in our R package GroupSortFuse.

In the GSF, the tuning parameter λ regulates the order of the fitted model. Figure 1 (see
also Figure 3 in Supplement E.7) shows the evolution of the parameter estimates θ̂ j (λ) for
a simulated dataset, over a grid of λ-values. These qualitative representations can provide
insight about the order of the mixture model, for purposes of exploratory data analysis. For
instance, as seen in the figures, when small values of λ lead to a significant reduction in the
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postulated order K , a tighter bound on K0 can often be obtained. In applications where a
specific choice of λ is required, common techniques include v-fold Cross Validation and the
BIC, applied directly to the MPLE for varying values of λ (Zhang, Li and Tsai (2010)). In
our simulation, we use the BIC due to its low computational burden.

Default choices of penalties, tuning parameters, and cluster ordering. Throughout all
simulations and real data analyses in this paper, including those contained in Figures 1–3,
the following choices were used by default unless otherwise specified. We used the penalty
ϕ(π1, . . . , πK) = (1 − γ )

∑K
j=1 logπj , with the constant 1 − γ ≈ − log 20 following the sug-

gestion of Chen and Kalbfleisch (1996). The penalty rλ is taken to be the SCAD by default,
though we also consider simulations below which employ the MCP and ALasso penalties.
For the ALasso, the weights ωj are specified as in (3.8). The tuning parameter λ is selected
using the BIC as described above. The cluster ordering αθ is chosen as in (2.5). We recall that
this choice does not constrain αθ (1)—in our simulations, we chose this value using a heuris-
tic which ensures that αθ reduces to the natural ordering on R in the case d = 1. Further
numerical details are given in Supplement D.2.

4.1. Parameter settings and order selection results. Our simulations are based on multi-
nomial and multivariate location-Gaussian mixture models. We compare the GSF under the
SCAD (GSF-SCAD), MCP (GSF-MCP) and ALasso (GSF-ALasso) penalties to the AIC,
BIC, and ICL (Biernacki, Celeux and Govaert (2000)), as implemented in the R packages
mixtools (Benaglia et al. (2009)) and mclust (Fraley and Raftery (1999)). ICL per-
formed similarly to the BIC in our multinomial simulations, but generally underperformed
in our Gaussian simulations. Therefore, below we only discuss the performance of AIC and
BIC.

We report the proportion of times that each method selected the correct order K0, out of
500 replications, based on the models described below. For each simulation, we also report
detailed tables in Supplement E with the number of times each method incorrectly selected
orders other than K0. We fix the upper bound K = 12 throughout this section. For this choice,
the effective number of parameters of the mixture models hereafter is less than the smallest
sample sizes considered.

Multinomial mixture models. The density function of multinomial mixture model of or-
der K is given by

(4.1) pG(y) =
K∑

j=1

πj

(
M

y1, . . . , yd

) d∏
l=1

θ
yl

j l

with θ j = (θj1, . . . , θjd)� ∈ (0,1)d , y = (y1, . . . , yd)� ∈ {1, . . . ,M}d , where
∑d

l=1 θjl = 1,∑d
l yl = M . We consider 7 models with true orders K0 = 2,3, . . . ,8, dimensions d = 3,4,5,

and M = 35,50 to satisfy the strong identifiability condition 3K −1 ≤ M described in Corol-
lary 1. The parameter settings are given in Table 1. The results for M = 50 are reported in
Figure 5 below. Those for M = 35 are similar, and are relegated to Supplement E.1. The
simulation results are based on the sample sizes n = 100,200,400.

Under Model 1, all five methods selected the correct order most often, and exhibited sim-
ilar performance across all the sample sizes—the results are reported in Table 1 of Supple-
ment E.1. The results for Models 2–7 with orders K0 = 2,3,4,5, are plotted by percentage
of correctly selected orders in Figure 5. Under Model 2, the correct order is selected most
frequently by the BIC and GSF-ALasso, for all the sample sizes. Under Models 3 and 4, the
GSF with all three penalties, in particular the GSF-ALasso, outperforms AIC and BIC. Under
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TABLE 1
Parameter settings for the multinomial mixture Models 1–7

Model 1 2 3

π1, θ1 0.2, (0.2,0.2,0.2,0.2,0.2) 1
3 , (0.2,0.2,0.2,0.2,0.2) 0.25, (0.2,0.2,0.6)

π2, θ2 0.8, (0.1,0.3,0.2,0.1,0.3) 1
3 , (0.1,0.3,0.2,0.1,0.3) 0.25, (0.2,0.6,0.2)

π3, θ3
1
3 , (0.3,0.1,0.2,0.3,0.1) 0.25, (0.6,0.2,0.2)

π4, θ4 0.25, (0.45,0.1,0.45)

Model 4 5 6 7

π1, θ1 0.2, (0.2,0.2,0.6) 1
6 , (0.2,0.2,0.6) 1

7 , (0.2,0.2,0.6) 0.125, (0.2,0.2,0.2,0.4)

π2, θ2 0.2, (0.6,0.2,0.2) 1
6 , (0.2,0.6,0.2) 1

7 , (0.2,0.6, ,2) 0.125, (0.2,0.2,0.4,0.2)

π3, θ3 0.2, (0.45,0.1,0.45) 1
6 , (0.6,0.2,0.2) 1

7 , (0.6,0.2,0.2) 0.125, (0.2,0.4,0.2,0.2)

π4, θ4 0.2, (0.2,0.7,0.1) 1
6 , (0.45,0.1,0.45) 1

7 , (0.45,0.1,0.45) 0.125, (0.4,0.2,0.2,0.2)

π5, θ5 0.2, (0.1,0.7,0.2) 1
6 , (0.2,0.7,0.1) 1

7 , (0.1,0.7,0.2) 0.125, (0.1,0.3,0.1,0.5)

π6, θ6
1
6 , (0.1,0.7,0.2) 1

7 , (0.7,0.2,0.1) 0.125, (0.1,0.3,0.5,0.1)

π7, θ7
1
7 , (0.1,0.2,0.7) 0.125, (0.1,0.5,0.3,0.1)

π8, θ8 0.125, (0.5,0.1,0.3,0.1)

FIG. 5. Percentage of correctly selected orders for multinomial mixture Models 2–7.
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Models 5–7, all methods selected the correct order for n = 100 fewer than 55% of the time.
For n = 200, the GSF-SCAD and GSF-MCP select the correct number of components more
than 55% of the time, unlike AIC and BIC. All three GSF penalties continue to outperform
the other methods when n = 400.

Multivariate location-Gaussian mixtures with unknown covariance matrix. The density
function of a multivariate Gaussian mixture model in mean, of order K , is given by

pG(y) =
K∑

j=1

πj

1√
(2π)d |�|

exp
{
−1

2
(y − μj )

��−1(y − μj )

}
,

where μj ∈ R
d , j = 1, . . . ,K , and � = {σij : i, j = 1, . . . , d} is a positive definite d × d

covariance matrix. We consider the 10 mixture models in Table 2 with true orders K0 =
2,3,4,5, and with dimension d = 2,4,6,8. For each model, we consider both an identity
and nonidentity covariance matrix �, which is estimated as an unknown parameter. The sim-
ulation results are based on the sample sizes n = 200,400,600,800.

The results for Models 1.a, 1.b, 3.a, 3.b, 4.a, 4.b are plotted by percentage of correctly
selected orders in Figure 6 below. Detailed results for the more challenging Models 2.a,
2.b, 5.a and 5.b are reported by percentage of selected orders between 1, . . . ,K(= 12) in
Tables 15 and 18 of Supplement E.2.

In Figure 6, under Models 1.a and 1.b with d = 2, all the methods selected the correct
number of components most frequently for n = 400,600,800; however, the performance of
all methods deteriorates in Model 1.b with nonidentity covariance matrix when n = 200.
Under Model 3.a with d = 4, all methods perform similarly for n = 400,600,800, but the

TABLE 2
Parameter settings for the multivariate Gaussian mixture models

Model σij π1,μ1 π2,μ2 π3,μ3 π4,μ4 π5,μ5

1.a I (i = j) 0.5, (0,0)� 0.5, (2,2)�
1.b (0.5)|i−j | 0.5, (0,0)� 0.5, (2,2)�

2.a I (i = j) 0.25, (0,0)� 0.25, (2,2)� 0.25, (4,4)� 0.25, (6,6)�
2.b (0.5)|i−j | 0.25, (0,0)� 0.25, (2,2)� 0.25, (4,4)� 0.25, (6,6)�

3.a
3.b

I (i = j)

(0.5)|i−j | 1
3 ,

⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ 1
3 ,

⎛⎜⎜⎜⎝
2.5
1.5
2

1.5

⎞⎟⎟⎟⎠ 1
3 ,

⎛⎜⎜⎜⎝
1.5
3

2.75
2

⎞⎟⎟⎟⎠

4.a
4.b

I (i = j)

(0.5)|i−j | 1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1.5
2.25
−1
0

0.5
0.75

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.25
1.5
0.75
0.25
−0.5
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−0.25
0.5

−2.5
1.25
0.75
1.5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1.5
−0.25
1.75
−0.5

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

5.a
5.b

I (i = j)

(0.5)|i−j | 1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1.5
0.75

2
1.5
1.75
0.5
2.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
0.75
1.5
1

1.75
0.5
2.5
1.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.5
2
1

0.75
2.5
1.5
1.75
0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
5 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.75
1
2

1.5
0.5
2.5
1.5
1.75

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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FIG. 6. Percentage of correctly selected orders for the multivariate Gaussian mixture models.

GSF-ALasso and the AIC outperformed the other methods for n = 200. Under Model 3.b,
the BIC outperformed the other methods for n = 400,600,800, but the GSF-ALasso again
performed the best for n = 200. In Models 4.a and 4.b with d = 6, the GSF with the three
penalties outperformed AIC and BIC across all sample sizes.

From Table 15, under Model 2.a with d = 2 and identity covariance matrix, the BIC and
the GSF with the three penalties underestimate and the AIC overestimates the true order,
for sample sizes n = 200,400. The three GSF penalties significantly outperform the AIC
and BIC, when n = 600,800. For the more difficult Model 2.b with nonidentity covariance
matrix, all methods underestimate across all sample sizes considered, but the AIC selects
the correct order most frequently. From Table 18, under Model 5.a, all methods apart from
AIC underestimated K0 for n = 200,400,600, and the three GSF penalties outperformed
the other methods when n = 800. Interestingly, the performance of all methods improves for
Model 5.b with nonidentity covariance matrix. Though all methods performed well for n =
400,600,800, the BIC did so the best, while the GSF-ALasso exhibited the best performance
when n = 200.

In summary, depending on the models and sample sizes considered here, in some cases
AIC or BIC exhibit the best performance, while in others the GSF based on at least one of
the penalties (ALasso, SCAD, or MCP) outperforms. The universality of information criteria
in almost any model selection problem is in part due to their ease of use on the investigator’s
part, while many other methods require specification of multiple tuning parameters. Though
we defined the GSF in its most general form, our empirical investigation suggests that, other
than λ and K , its tuning parameters (αt, ϕ, ωj , and choices therein) may not need to be tuned
beyond their default choices used here. We have shown that off-the-shelf data-driven methods
for selecting λ yield reasonable performance. We next discuss the choice of the bound K .
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4.2. Sensitivity analysis for the upper bound K . In this section, we assess the sensitivity
of the GSF with respect to the choice of upper bound K via simulation. Specifically, we show
the behaviour of the GSF for a range of K-values which are both misspecified (K < K0) and
well-specified (K ≥ K0). In the former case, by Proposition 2, the GSF is expected to select
the order K , whereas in the latter case, by Theorem 3, the GSF selects the correct K0 with
high probability.

We consider the multinomial Models 3 (K0 = 4) and 5 (K0 = 6) with sample size n = 400,
and the Gaussian Models 3.a (K0 = 3) and 4.a (K0 = 5) with sample size n = 600. The
results are based on 80 simulated samples from each model. For each sample, we apply the
GSF-SCAD with K = 2, . . . ,25, and then report the most frequently estimated order K̂ , as
well as the average estimated order over the 80 samples. The results are given in Figure 7.
Detailed results are reported by percentage of selected orders with respect to the bounds
K = 2, . . . ,25, in Tables 19–22 of Supplement E.3.

For all four models, it can be seen that the GSF estimates the order K most frequently
when K < K0. In fact, it does so on every replication for K = 1,2 (resp. K = 1,2,3) under
multinomial Model 3 (resp. Model 5). When K ≥ K0, the GSF correctly estimates the order
K0 most frequently for all four models. Although the average selected order is seen to slightly
deviate from K0 as K increases (as was already noted in Figure 3), the overall behaviour of
the GSF is remarkably stable with respect to the choice of K . The resulting elbow shape of
the solid red lines in Figure 7 is anticipated by Theorem 3 and Proposition 2.

Guided by the above results, in applications where finite mixture models (K0 < ∞) have
meaningful interpretations in capturing population heterogeneity, we suggest to examine the

FIG. 7. Sensitivity analysis of the GSF with respect to the upper bound K . Error bars represent one standard
deviation of the fitted order.
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GSF over a range of small to large values of K . This range may be chosen with consideration
of the resulting number of mixture parameters, with respect to the sample size n. An elbow-
shaped scatter plot of (K, K̂) can shed light on a safe choice of the bound K and the selected
order K̂ . We illustrate such a strategy through the real data analysis in Section 5.

4.3. Comparison of merging-based methods. We now compare the GSF to alternate or-
der selection methods which are also based on merging the components of an overfitted mix-
ture. Our simulations are based on location-Gaussian mixture models, though unlike Sec-
tion 4.1, we now treat the common covariance � as known. In addition to the GSF, and to the
AIC/BIC which are included as benchmarks, we consider the following two methods:

– The Merge–Truncate–Merge (MTM) procedure (Guha, Ho and Nguyen (2019)) described
in Section 3.3(IV), applied to posterior samples from a Dirichlet Process mixture (DPM).

– A hard-thresholding analogue of the GSF, denote by GSF-Hard, which is obtained by first
computing the estimator G̃n in (2.3), and then merging the atoms of G̃n which fall within
a sufficiently small distance λ > 0 of each other (see Algorithm 2 in Supplement D.2 for a
precise description). The GSF-Hard thus replaces the penalty rλ in the GSF with a post-hoc
merging rule. By a straightforward simplification of our asymptotic theory, the GSF-Hard
estimator satisfies the same properties as Ĝn in Theorems 1–3.

We fit the MTM procedure using the same algorithm and parameter settings as described
in Section 5 of Guha, Ho and Nguyen (2019). The truncation and (second) merging stages
of the MTM require a tuning parameter c > 0, which plays a similar role as λ in the GSF-
Hard. The authors recommend considering various choices of c in practice, though we are
not aware of a method for tuning c. We therefore follow them by reporting the performance
of the MTM for a range of c-values. For the GSF-Hard, we tune λ using the BIC. Further
implementation details are provided in Supplement D.2.

We report the proportion of times that each method selected the correct order under Gaus-
sian Models 1.b and 2.a in Figure 8, based on n = 50,100,200,400. More detailed results

FIG. 8. Percentage of correctly selected orders for the multivariate Gaussian models with common and known
covariance matrix.
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TABLE 3
Average computational time (in seconds) per replication for the multivariate Gaussian models with common and

known covariance matrix

Model 1.b Model 2.a

AIC/ GSF- GSF- GSF- GSF- AIC/ GSF- GSF- GSF- GSF-
n BIC SCAD MCP ALasso Hard MTM BIC SCAD MCP ALasso Hard MTM

50 23.6 1.30 1.2 5.3 3.8 2830.0 21.1 2.6 1.8 5.3 3.9 2502.6
100 29.8 2.7 2.0 9.9 5.2 7148.2 25.6 6.3 3.8 9.9 5.4 5607.2
200 38.7 6.7 4.5 19.6 6.8 25,428.3 34.9 17.2 8.6 19.6 7.0 21,008.0
400 47.6 12.4 8.5 35.8 7.6 34,911.9 45.8 43.5 16.4 35.8 9.0 20,151.2
600 54.4 24.2 15.3 49.3 8.8 51,131.0 51.3 57.8 21.8 49.3 10.0 37,535.7
800 60.0 32.2 22.8 67.1 9.9 74,185.0 56.7 103.6 39.9 67.1 10.3 57,469.7

can be found in Supplement E.4, including those for n = 600,800. For each sample size,
we perform 80 replications due to the computational burden associated with fitting Dirichlet
Process mixture models. The MTM results are based on the posterior mode.

The AIC, BIC, and GSF under all three penalties exhibit improved performance under the
current setting with fixed �, compared to that of Section 4.1. The GSF-Hard performs rea-
sonably under Model 1.b but markedly underperforms in Model 2.a. Regarding the MTM, we
report the results under four consecutive c-values which were most favourable from a range
of 16 candidate values. Under Model 1.b, the MTM under all four c-values estimates K0 most
of the time, under most sample sizes, but underperforms compared to the remaining meth-
ods. In contrast, under Model 2.a, there exists a value of c for which the MTM remarkably
estimates K0 on nearly all replications. However, the sensitivity to c is also seen to increase,
which can be problematic in the absence of a data-driven tuning procedure. Finally, we recall
that the MTM is based on a nonparametric Bayes procedure, while the other methods are
parametric and might generally require smaller sample sizes to achieve reasonable accuracy.

We emphasize that MTM and GSF-Hard are both post-hoc procedures for reducing the
order of an overfitted mixing measure Gn, which is respectively equal to a sample from
the DPM posterior, or to the estimator G̃n. This contrasts the GSF, which uses continuous
penalties of the parameters to simultaneously perform order selection and mixing measure
estimation, and does not vary discretely with the tuning parameter λ. On the other hand, these
two post-hoc procedures have the practical advantage of being computationally inexpensive
wrappers on top of the well-studied estimators Gn, for which standard implementations are
available. To illustrate this point, in Table 3 we report the computational time associated with
the results from Figure 8, including also the sample sizes n = 600,800. It can be seen that
GSF-Hard is typically computable with an order of magnitude fewer seconds than the GSF
under any of the three penalties. The computational times for the MTM are largely dominated
by the time required to sample the DPM posterior with the implementation we used—the
post-processing procedure itself accounts for a negligible fraction of this time.

5. Real data example. We consider the data analyzed by Mosimann (1962), arising
from the study of the Bellas Artes pollen core from the Valley of Mexico, in view of re-
constructing surrounding vegetation changes from the past. The data consists of M = 100
counts on the frequency of occurrence of d = 4 kinds of fossil pollen grains, at n = 73 dif-
ferent levels of a pollen core. A simple multinomial model provides a poor fit to this data,
due to over-dispersion caused by clumped sampling. Mosimann (1962) modelled this extra
variation using a Dirichlet-multinomial distribution, and Morel and Nagaraj (1993) fitted a
3-component multinomial mixture model.
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We applied the GSF-SCAD with upper bounds K = 2, . . . ,25. For each K , we fitted the
GSF based on five different initial values for the modified EM algorithm, and selected the
model with optimal tuning parameter value. For K = 2, the estimated order was 2 and for
K ≥ 3, the most frequently selected order was K̂ = 3. Given the similarity of the sample size
and dimension with those considered in the simulations, below we report the fitted model
corresponding to the upper bound K = 12.

The models obtained by the GSF with the three penalties are similar—for instance, the
fitted model obtained by the GSF-SCAD is

0.15 Mult(̂θ1) + 0.25 Mult(̂θ2) + 0.60 Mult(̂θ3),

where Mult(θ) denotes the multinomial distribution with 100 trials and probabilities θ , θ̂1 =
(0.94,0.01,0.03,0.02)�, θ̂2 = (0.77,0.02,0.15,0.06)� and θ̂3 = (0.87,0.01,0.09,0.03)�.
The log-likelihood value for this estimate is −499.87. The coefficient plots produced by the
tuning parameter selector for GSF-SCAD are shown in Figure 9. Interestingly, the fitted order
equals 3, for all λ > 0.9 in the range considered, coinciding with the final selected order, and
with the aforementioned sensitivity analysis on K .

We also ran the AIC, BIC and ICL on this data. The AIC selected six components, while
the BIC and ICL selected three components. The fitted model under the latter two methods is

FIG. 9. Coefficient plots for the GSF-SCAD on the pollen data. The vertical red lines indicate the selected tuning
parameter.
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given by

0.17 Mult(̂θ1) + 0.22 Mult(̂θ2) + 0.61 Mult(̂θ3),

where θ̂1 = (0.95,0.02,0.03,0.01)�, θ̂2 = (0.77,0.02,0.15,0.07)� and θ̂3 = (0.87,0.01,

0.09,0.03)�, with entries rounded to the nearest hundredths. The log-likelihood value for
this estimate is −496.39.

6. Conclusion and discussion. In this paper, we developed the Group-Sort-Fuse (GSF)
method for estimating the order of finite mixture models with a multidimensional parameter
space. By starting with a conservative upper bound K on the mixture order, the GSF estimates
the true order by applying two penalties to the overfitted log-likelihood, which group and fuse
redundant mixture components. Under certain regularity conditions, the GSF is consistent
in estimating the true order and it further provides a

√
n-consistent estimator for the true

mixing measure (up to polylogarithmic factors). We examined its finite sample performance
via thorough simulations, and illustrated its application to two real datasets, one of which is
relegated to Supplement E.6.

We suggested the use of off-the-shelf methods, such as v-fold cross validation or the BIC,
for selecting the tuning parameter λn involved in the penalty rλn . Properties of such choices
with respect to our theoretical guidelines, or alternative methods specialized to the GSF,
require further investigation.

The methodology developed in this paper may be applicable to mixtures which satisfy
weaker notions of strong identifiability (Ho and Nguyen (2016b)). Extending our proof tech-
niques to such models is, however, nontrivial. In particular, bounding the log-likelihood ratio
statistic for the overfitted MLE Ḡn (Dacunha-Castelle and Gassiat (1999)), and the penal-
ized log-likelihood ratio for the MPLE Ĝn, would require new insights in the absence of
(second-order) strong identifiability. Empirically, we illustrated in Section 4.1 the promising
finite sample performance of the GSF under location-Gaussian mixtures with an unknown
but common covariance matrix, which themselves violate condition (SI).

We have shown that the GSF achieves a near-parametric rate of convergence under the
Wasserstein distance, but this rate only holds pointwise in the true mixing measure G0. Our
work leaves open the behaviour of the GSF when the true mixing measure is permitted to
vary with the sample size n—indeed, the minimax risk is known to scale at a rate markedly
slower than parametric (Heinrich and Kahn (2018), Wu and Yang (2020)).

We established in Proposition 2 the asymptotic behaviour of the GSF when the upper
bound K is underspecified. However, our work provides no guarantees when other aspects
of the mixture model PK = {pG : G ∈ GK} are misspecified, such as the kernel density fam-
ily F . We note that the recent work of Guha, Ho and Nguyen (2019) establishes the asymp-
totic behaviour of various Bayesian procedures under such misspecification, in terms of a
suitable Kullback–Leibler projection of the true mixture distribution. While we expect the
GSF to obey similar asymptotics, we are not aware of a general theory for maximum likeli-
hood estimation under misspecification in nonconvex models such as PK . We leave a careful
investigation of such properties to future work.

We believe that the framework developed in this paper paves the way to a new class of
methods for order selection problems in other latent-variable models, such as mixture of
regressions and Markov-switching autoregressive models (Frühwirth-Schnatter (2006)). Re-
sults of the type developed by Dacunha-Castelle and Gassiat (1999) in understanding large
sample behaviour of likelihood ratio statistics for these models, and the recent work of Ho,
Yang and Jordan (2019) in characterizing rates of convergence for parameter estimation in
over-specified Gaussian mixtures of experts, may provide first steps toward such extensions.
We also mention applications of the GSF procedure to nonmodel-based clustering methods,
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such as the K-means algorithm. While the notion of order, or true number of clusters, is
generally elusive in the absence of a model, extensions of the GSF may provide a natural
heuristic for choosing the number of clusters in such methods.
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