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We study the problem of community detection in multilayer networks,
where pairs of nodes can be related in multiple modalities. We introduce
a general framework, that is, mixture multilayer stochastic block model
(MMSBM), which includes many earlier models as special cases. We propose
a tensor-based algorithm (TWIST) to reveal both global/local memberships
of nodes, and memberships of layers. We show that the TWIST procedure
can accurately detect the communities with small misclassification error as
the number of nodes and/or number of layers increases. Numerical studies
confirm our theoretical findings. To our best knowledge, this is the first sys-
tematic study on the mixture multilayer networks using tensor decomposi-
tion. The method is applied to two real datasets: worldwide trading networks
and malaria parasite genes networks, yielding new and interesting findings.

1. Introduction. Networks arise in many areas of research and applications, which come
in all shapes and sizes. The most studied and best understood are static network models. Many
other network models are also in existence, but have been less studied. One such example is
the multilayer networks, which are a powerful representation of relational data, and com-
monly encountered in contemporary data analysis [26]. The nodes in a multilayer network
represent the entities of interest and the edges in different layers indicate the multiple re-
lations among those entities. Examples include brain connectivity networks, world trading
networks, gene-gene interactive networks and so on. In this paper, we focus on the multilayer
networks with the same nodes set of each layer and there are no edges between two different
layers.

The study on multilayer networks has received an increasing interest. Considering the
dependency among the different layers, [42] derives consistency results for the community
assignments from the maximum likelihood estimators in two models. Consistency properties
of various methods for community detection under the multilayer stochastic block model
are investigated in [43]. Three different matrix factorization-based algorithms are employed
in [41, 52] and [14] separately. Common community structures for multiple networks are
identified via two spectral clustering algorithms with theoretical guarantee in [6]. In [2],
authors introduce the common subspace independent-edge multiple random graph model to
describe a heterogeneous collection of networks with a shared latent structure and propose a
joint spectral embedding of adjacency matrices to simultaneously and consistently estimate
underlying parameters for each graph. Consistency results for a least squares estimation of
memberships under the multilayer stochastic block model framework are derived in [33].
Several literature focus on recovering the network from a collection of networks with edge
contamination. The original network is estimated from multiple noisy realizations utilizing
community structure in [31] and low-rank expectation in [36]. A weighted latent position

Received February 2020; revised April 2021.
MSC2020 subject classifications. 62H30, 91C20.
Key words and phrases. Network community detection, multilayer network, tensor, tucker decomposition.

3181

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/21-AOS2079
http://www.imstat.org
mailto:majing@ust.hk
mailto:zlyuab@connect.ust.hk
mailto:madxia@ust.hk
mailto:tingeric.li@polyu.edu.hk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


3182 JING, LI, LYU AND XIA

graph model contaminated via an edge weight gross error model is proposed in [51] with
an estimation methodology based on robust Lq estimation followed by low-rank adjacency
spectral decomposition.

In applications, a random effects stochastic block model is proposed by [44] for the neu-
roimaging data, and a statistical framework with a significance and a robustness test for de-
tecting common modules in the Drosophila melanogaster dynamic gene regulation network
is proposed in [63].

Most of the literature about community detection in multilayer networks is limited to con-
sistent membership setting, which means all the layers carry information about the same
community assignment. However, in reality, different layers may have different community
structures. For instance, in a social network, layers related with sports (people connected with
the same sport hobbies) may have different community structure with layers about movie
taste (people connected with similar movie taste). Understanding the large-scale structure of
multilayer networks is made difficult by the fact that the patterns of one type of link may
be similar to, uncorrelated with, or different from the patterns of another type of link. These
differences from layer to layer may exist at the level of individual links, connectivity patterns
among groups of nodes, or even the hidden groups themselves to which each node belongs.
In [4], authors pointed out that, in order to do community detection on multilayer networks,
it is crucial to know which layers have related structure and which layers are unrelated, since
redundant information across layers may provide stronger evidence for clear communities
than each layer would on its own. Such situation is not clearly discussed in the works men-
tioned above. A strata multilayer stochastic block model (sMLSBM) is proposed in [49],
which assumes that the layers in a stratum follow an identical SBM model. They propose to
analyze each layer separately, and conduct network comparisons pairwisely. It is unclear how
the multiple strata of layers contribute to the network structures. Moreover, their estimating
method does not integrate multiple layers, which causes potential information loss. Although,
authors in [40, 45] introduced community structure variety as time varying, it is hard to be
applied in general multilayer networks without time ordering. A joint embedding for multi-
ple networks analysis is introduced in [3], which collects multiple adjacency matrices into a
single large matrix with some off-diagonal tethering. Theoretical results are proved under the
random dot product graph model, which requires stringent sparsity conditions.

In this paper, we introduce a general framework, that is, mixture multilayer stochastic
block model (MMSBM), and propose a tensor-based algorithm (TWIST) to reveal both
global/local memberships of nodes, and memberships of layers. To fix ideas, we start with
a simple motivating example, illustrated in Figure 1. We have L = 3 layers of networks
{G1,G2,G3}, each containing 3 local communities. The 3 networks are of m = 2 types: {G2}
and {G1,G3}. The community structure differs between {G2} and the other two networks as
some members in the third community g23 are in the second one g12 in {G1} and {G3}. View-
ing the 3 layers of networks together, we notice that there are 4 global communities, in which
members stay in all layers throughout. Clearly, the global communities are related to, but
different from the local ones in each network. Our interest lies in detecting both local as well
as global community structures, which are of great value in theory and practice. There is an
increasing literature on the global community structure as mention earlier. However, to the
best of our knowledge, there is no systematic investigation into detecting local and global
community structure together.

Our line of attack can be illustrated via the following diagram in Figure 2. First, we pool
adjacency matrices from all layers of networks to form a tensor (multiway array), and then
apply the TWIST (to be introduced later) to obtain the global community structure as well as
labels of each layer. We then group the layers of networks with the same labels, which will
be used to detect local community structures. Details will be unfolded next.
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FIG. 1. A toy example.

The main contributions of this paper are summarized as follows.
First, we propose a very general model to handle the type of problems discussed above. To

be more specific, we will introduce the so-called mixture multilayer stochastic block model
(MMSBM), which can characterize the different community structures among different lay-
ers of the multilayer network. In some way, the MMSBM resembles the relatively well stud-
ied multilayer stochastic block model (MLSBM) [17, 42, 43, 49]. However, the MMSBM
is more general in that it allows the multilayer network to contain different block structures.
Thus, the MMSBM not only allows each layer to have different community structures, but
also can maintain the consistent structure in the network.

Second, we propose a tensor-based method to study the MMSBM. The approach is referred
to as the Tucker decomposition with integrated SVD transformation (TWIST). Unlike earlier
approaches for multilayer network analysis, TWIST can uncover the clusters of layers, the
local and global membership of nodes simultaneously. On the theoretical front, we prove

FIG. 2. The general procedure of TWIST.
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for MMSBM that TWIST can consistently recover the layer labels and global memberships
of nodes under near optimal network sparsity conditions. In addition, network labels can
be exactly recovered under a slightly stronger network sparsity condition. To the best of
our knowledge, this is the first systematic study on statistical guarantees about community
detection in a mixture multilayer networks using tensor decomposition. Our primary technical
tool is a sharp concentration inequality of sparse tensors, which might be of independent
interest.

Finally, two real-world applications of the proposed methodology are demonstrated to
be a powerful tool in analysing multilayer networks. The algorithm is easy to use and can
help practitioners quickly uncover interesting findings, which would otherwise be difficult by
using other tools.

The rest of the paper is organized as follows. Section 2 introduces the mixture multilayer
stochastic block model (MMSBM) for describing the mixture structure. A new algorithm,
the TWIST, is proposed in Section 3. We explore the theoretical properties of TWIST under
the MMSBM in Section 4. Moreover, we make comparisons between our main results and
the cutting-edge theoretical results in Section 5. The advantages of the proposed method
are numerically evaluated with comprehensive simulations in Section 6 and two real data
examples in Section 7. Section 8 gives concluding remarks and discussions. More numerical
examples, and all the proofs are shown in the Supplementary Material [22].

2. Model framework.

2.1. Mixture multilayer stochastic block model (MMSBM). The observed data contains
L-layers of networks on the same set of vertices: V = [n] := {1,2, . . . , n}:

G = {Gl : l = 1, . . . ,L}.
Assume that there is a mixture of m latent network models, and each network Gl is sampled
independently from this mixture of models with probability π = (π1, . . . , πm). Denoting sl ∈
{1, . . . ,m} as a random latent label of Gl with 1 ≤ l ≤ L, then

P(sl = j) = πj with
m∑

j=1

πj = 1.

Assume that each of the m classes of networks satisfies the stochastic block model (SBM).
More specifically, for j ∈ [m], the j th class SBM is described by membership matrix
Zj ∈ {0,1}n×Kj and the probability matrix Bj := p̄B0

j ∈ [0,1]Kj×Kj (both are determinis-
tic), where Kj is the number of communities and p̄ ∈ (0,1] characterizes the overall network
sparsity. We assume maxj ‖B0

j ‖max = 1 for identifiability. Note that each row of Zj has ex-
actly one entry that is nonzero and Al ∈ {0,1}n×n is the observed adjacency matrix of Gl . For
simplicity, we denote:

• SBM(Zj ,Bj ) = the j th SBM with parameter Zj and Bj , j = 1, . . . ,m.

• Vj
k = the kth community in the j th SBM. So Vj

k ⊂ V and
⋃Kj

k=1 V
j
k = V .

• Lj = #{l : sl = j,1 ≤ l ≤ L} = the number of layers generated by SBM(Zj ,Bj ). Clearly,
L = ∑m

j=1 Lj .

• ◦
K = K1 + · · · + Km and S = {sl}Ll=1 and V

j := {Vj
k }Kj

k=1.

Conditioned on the class label sl , the observed adjacency matrix Al ∈ {0,1}n×n of Gl obeys
Bernoulli distribution:

Al(i1, i2)|sl i.i.d.∼ Bern
(
Zsl (i1, :)BslZsl (i2, :)�

)
(2.1)

for all i1 ≤ i2 ∈ [n], where Z(i, :) denotes the ith row of Z.
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The resulting model is referred to as “mixture multilayer stochastic block model”
(MMSBM). By observing {Gl}Ll=1 or their adjacency matrices {Al}Ll=1, our goal is to recover
the latent classes {sl}Ll=1 and hidden community structures. Hereinafter, we view {sl}Ll=1 as
hidden and deterministic labels, rather than random variables. We note that MMSBM can be
generalized to cases that each layer has different probability matrix Bl’s.

2.2. Adjacency tensor and its decomposition. Observing the L layers of networks, we
define the adjacency tensor A ∈R

n×n×L so that A’s lth slice

A(:, :, l) = Al, ∀1 ≤ l ≤ L.

See [27] for an introduction to tensor algebra. It follows from (2.1) that

E(Al|sl) = ZslBslZ
�
sl

, ∀1 ≤ l ≤ L,

from which we can derive the following tensor representation, whose proof is in the Supple-
mentary Material [22]. Note that the multilinear product in (2.2) is defined by

E
(
A(i1, i2, i3)|S) =

◦
K∑

j1=1

◦
K∑

j2=1

m∑
j3=1

B(j1, j2, j3)Z̄(i1, j1)Z̄(i2, j2)W̄ (i3, j3).

LEMMA 2.1 (Tensor representation). We have

E(A|S) = B ×1 Z̄ ×2 Z̄ ×3 W,(2.2)

where S = {sl}Ll=1 and:

• Z̄ = (Z1,Z2, . . . ,Zm) ∈ {0,1}n× ◦
K is the global membership matrix, whereas each Zj is

the local membership matrix,
• W = (es1, es2, . . . , esL)� ∈ {0,1}L×m is the network label matrix with each row of W hav-

ing exactly one nonzero entry, and ej ∈ R
m being the j th canonical basis vector,

• B ∈ R

◦
K× ◦

K×m is a 3-way probability tensor whose j th frontal slice is

B(:, :, j) = diag(0K1, . . . ,0Kj−1,Bj ,0Kj+1, . . . ,0Km), 1 ≤ j ≤ m

with 0K being a K × K zero matrix.

2.3. Local versus global memberships via Tucker decomposition. The matrix Z̄ defined
in Lemma 2.1 suggests the existence of global community structures. We say that two nodes
i1 and i2 belong to the same global community if and only if they belong to the same local
community for all the m classes of SBM, that is,

Z̄(i1, :) = Z̄(i2, :).
Let K̄ denote the number of global communities, that is, number of distinct rows of Z̄.
Clearly, maxj Kj ≤ K̄ ≤ ∏

j Kj . Denote V̄ = {V̄k}K̄k=1 the global community clusters such

that
⋃K̄

k=1 V̄k = V . Therefore, for two nodes i1 
= i2,

{i1, i2} ∈ V̄k ⇐⇒ {i1, i2} ∈ Vj
kj

for some kj ∈ [Kj ],∀j ∈ [m].(2.3)

Let r = rank(Z̄) denote the rank of Z̄. We hereby write the thin SVD of Z̄ as

Z̄ = ŪD̄R̄�,(2.4)
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where Ū ∈ R
n×r , R̄ ∈ R

◦
K×r have orthonormal columns, and D̄ is the singular value diagonal

matrix

D̄ = diag
(
σ1(Z̄), . . . , σr(Z̄)

) ∈R
r×r , σ1(Z̄) ≥ · · · ≥ σr(Z̄) > 0.

We note that Z̄ cannot be full rank in general, which is different from the canonical SBM.
Clearly, we have maxj Kj ≤ r ≤ min{ ◦

K − (m − 1), K̄}. If Kj ≡ K , the maximum rank of Z̄

is min{mK − m + 1, K̄}. If we define a K̄ × ◦
K matrix Z∗ containing the K̄ distinct rows of

Z̄, then r essentially equals the rank of Z∗. The real data examples in Section 7 show that it
often suffices to take r = K̄ in practice.

The global community structure can be checked by Ū as in Lemma 2.2.

LEMMA 2.2. For i1 ∈ V̄k1 and i2 ∈ V̄k2 with k1 
= k2, then ‖Ū (i1, :) − Ū (i2, :)‖�2 ≥
1/σ1(D̄).

By (2.4), the population adjacency tensor E(A|S) admits the Tucker decomposition as

E(A|S) = C̄ ×1 Ū ×2 Ū ×3 W̄,(2.5)

where the core tensor C̄ ∈ R
r×r×m is defined by

C̄ = B ×1
(
D̄R̄�) ×2

(
D̄R̄�) ×3 D

1/2
L(2.6)

and W̄ = WD
−1/2
L ∈ R

L×m so that W̄�W̄ = Im, and the diagonal matrix DL = diag(L1,

L2, . . . ,Lm).
We assume that C̄ has Tucker ranks (r, r,m), which implies that m ≤ r2. The decomposi-

tion (2.5) shows that the singular vectors of E(A|S) contain the latent network information.
More exactly, the singular vectors in the first dimension of E(A|S) could identify the global
community structures and singular vectors in the third dimension could identify the latent
network labels. After identifying the latent network labels, a post-processing procedure can
identify the local community structures.

Compared with sMLSBM [49], our proposed MMSBM introduces the global member-
ships of vertices. It essentially characterizes how multiple strata of layers contribute to the
network structures. The random-effect SBM [44] allows nodes to change memberships in
different layers according to random effects. However, in MMSBM, the membership varies
across different layers according to layers’ classes.

3. Methodology: TWIST. By observing the multilayer networks {Gl}Ll=1 satisfying
model (2.1), our goals are to:

(1) recover the global community structures of vertices {V̄k}K̄k=1;
(2) identify network classes {sl}Ll=1, and grouping networks with the same class;

(3) recover the local community structures of vertices V
j = {Vj

k : k ∈ [Kj ]} for all j ∈
[m].
Note that in order to efficiently recover the local community structures, it is necessary to first
identify the network classes. As a result, task (3) usually follows from task (2).

By the decomposition of oracle tensor (2.5), the singular vectors Ū contains information of
global memberships since its column space comes from Z̄. Additionally, the singular vectors
W̄ contains information of network classes. Therefore, task (1) and task (2) are both related
with the Tucker decomposition of oracle tensor E(A|S). Since the oracle is unavailable, we
seek a low-rank approximation of A.
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Algorithm 1 Regularized power iterations for sparse tensor decomposition

Input: A ∈ {0,1}n×n×L, warm initialization Û (0) and Ŵ (0)

maximum iterations itermax and regularization parameters δ1, δ2 > 0.
Output: Û and Ŵ

Set counter iter = 0.
while iter < itermax do

Regularization: Ũ (iter) ←Pδ1(Û
(iter)) and W̃ (iter) ← Pδ2(Ŵ

(iter)) by (3.1).
iter ← iter + 1
Set Û (iter) to be the top r left singular vectors of M1(A ×2 Ũ (iter−1)� ×3 W̃ (iter−1)�).
set Ŵ (iter) to be the top m left singular vectors of M3(A×1 Ũ (iter−1)� ×2 Ũ (iter−1)�).

end while
Return Û ← Û (iter) and Ŵ ← Ŵ (iter).

3.1. Tucker decomposition with integrated SVD transformation (TWIST). In order to uti-
lize the low rank structure of the tensor and the 0-or-1 property of the elements, we propose
a new algorithm called Tucker decomposition with integrated SVD transformation (TWIST).
The general procedure is summarized below and illustrated in Figure 2.

• Step 1: Decomposition of adjacency tensor
Apply the regularized tensor power iterations to A to obtain its low-rank approximation.

The outputs are Û and Ŵ . Details are given in Algorithm 1.
• Step 2: Global memberships

Apply the standard K-means algorithm on the rows of Û to identify the global commu-
nity memberships and output ̂̄

V= {̂̄Vk}K̄k=1.
• Step 3: Network classes

Use the rows of Ŵ to identify the network classes and output the network classes: Ŝ =
{ŝl ∈ [m]}Ll=1. We can use either the standard K-means or the sup-norm related algorithm
(Algorithm 2).

• Step 4: Local memberships
We can find the local membership V

j = {Vj
k } by focusing on networks with the same

labels [34, 47]. More precisely, for each j ∈ {1, . . . ,m}, we can apply K-means either:
– to the sum of those networks with the same label

∑
l:ŝl=j Al , or

– to the subtensor A(:, :, {l : ŝl = j})), those slices with the same labels.

Outputs are V̂
j = {V̂j

k }Kj

k=1.

3.2. Features about TWIST. There are several key features concerning TWIST.

Warm starts for Û (0) and Ŵ (0) in Algorithm 1. Computing the optimal low-rank approx-
imation of a tensor A is NP-hard in general; see [18]. Algorithms with random initializations
can be always trapped in noninformative local minimals that can be nearly orthogonal to
the truth; see [5]. To avoid these issues, tensor decomposition algorithms usually run from a
warm starting point [10, 19, 24, 46, 50, 54, 55, 57, 60–62].

In Section 5.5, we will introduce a warm initialization algorithm, obtained by applying a
spectral method for initializing Û (0) by summing up all the network layers. Initialization of
Ŵ (0) is easy whenever Û (0) is available. We show in Lemma 5.6 that these initializations are
indeed warm under reasonable conditions.

Regularized power iterations for sparse tensor decomposition. Adjacency matrices from
some layers are often very sparse and the individual layers are even disconnected graphs.
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Algorithm 2 Network clustering by sup-norm K-means

Input: Ŵ , number of clusters m and threshold ε ∈ (0,1)

Output: Network labels Ŝ = {ŝl}Ll=1
Initiate C ← {1}, ŝ1 ← 1, k ← 1 and l ← 2.
while l ≤ L do

Compute j ← arg minj∈C ‖Ŵ (l, :) − Ŵ (j, :)‖
if ‖Ŵ (l, :) − Ŵ (j, :)‖ > ε then

k ← k + 1; ŝl ← k; C ← C ∪ {l}
else

ŝl ← ŝj
end if
l ← l + 1

end while
if k > m (or k < m) then

Set ε ← 2ε (or set ε ← ε/2); Rerun the algorithm.
else

Output Ŝ = {ŝl}Ll=1
end if

For example, in the Malaria parasite genes networks given in Section 7, three out of nine
networks are very sparse and disconnected. Under these circumstances, the popular tensor
power iteration algorithm, that is, high-order orthogonal iterations (HOOI, see [48]) may not
work. In fact, its statistical optimality was proved by [62] only for dense tensors, while its
properties on sparse random tensors remain much more challenging.

To handle sparse random tensors, we employ a regularized tensor power iteration algorithm
in Algorithm 1, which was used in [24] to deal with sparse hypergraph networks. Regulariza-
tions to singular vectors Û (t), Ŵ (t) are applied before each power iteration. We take Û (t), for
example, as Ŵ (t) is treated similarly. The regularization is done by

Pδ(U) = SVDr (U∗)
where U∗(i, :) := U(i, :) · min

{
δ,

∥∥U(i, :)∥∥}
/
∥∥U(i, :)∥∥i ∈ [n].(3.1)

The effect of regularization is to dampen the influence of “large” rows of Û (t), which is due
to the communities of small sizes, besides stochastic errors. Following Lemma 4.2, the true
singular vectors Ū is incoherent with max1≤j≤n ‖e�

j Ū‖ = O(
√

r/n) if D̄ is well conditioned.
In practice, we suggest

δ̂1 = 2
√

r · max
1≤i≤n

degi ·
(

n∑
i=1

deg2
i

)−1/2

and

δ̂2 = 2
√

m · max
1≤l≤L

negl ·
(

L∑
l=1

neg2
l

)−1/2

,

(3.2)

where the node degree degi = ∑
j,l A(i, j, l) and layer degree negl = ∑

i,j A(i, j, l).

K-means with sup-norm distance. Clearly, the accuracy of local membership clustering
(Step 4) hinges on the reliability of layer labelling. In Algorithm 2, a sup-norm version of K-
means is applied to the singular vectors Ŵ obtained from Algorithm 1, which then outputs the
network labels Ŝ = {ŝl}Ll=1. The sup-norm K-means has recently been extensively investigated



MIXTURE MULTILAYER NETWORKS 3189

and shown to perform well in network community detection. See, for example, [1, 12, 25, 35]
and references therein.

The rationale of Algorithm 2 is that when the rows of W̄ are well separated (similar to
Lemma 2.2), a rowwise screening of Ŵ can immediately recover the true network labels as
long as the rowwise perturbation bound of Ŵ − W is small enough. As shown in Section 5,
Algorithm 2 guarantees the exact clustering of networks under weak conditions.

In Steps 2–4, one could use alternative methods other than K-means clustering, which
might improve its performances. For example, we can use DBSCAN, Gaussian mixture
model, the SCORE method [20, 21, 24].

Estimating r , m and K̄ . In practice, the numbers of node communities and network
classes are unknown. Various methods are available for estimating the number of commu-
nities in a single network. The famous scree plot [11] method estimates rank by the number
of statistically significant components of the adjacency matrix or its normalization [23, 24].
Borrowing such ideas, if r and m are unknown, we apply Tensor decomposition with rel-
atively large ranks on A, and then estimate r and m based on the significant entries of the
core tensor. A numerical example in the Supplementary Material [22] illustrates how the idea
works in tensors. While doing data exploration, we can take K̄ from small to large. This pro-
duces few large groups initially, and gradually splits them into small groups with hierarchical
structure. See, for instance, [35, 38, 39]. The procedure stops when a reasonable community
structure is reached.

4. Preliminary results.

4.1. Notations and definitions. For ease of exposition, we introduce the following nota-
tion:

• Denote c, cj ,C,Cj ,C
′
j , j ≥ 1 as generic constants, which may vary from line to line.

• Denote ek as the kth canonical basis vector in Euclidean space (i.e., with only the kth entry
equal to 1 and others 0), whose dimension depends on each context.

• For a matrix M = {mij }, let
σi(M) = the ith largest singular value of M ,
‖M‖max = maxi,j |mij |, the maximal absolute value of all entries of M ,
‖M‖ = max{σ1(M

T M)}1/2, the spectral norm (Euclidean norm for vectors).
• For a d1 × d2 × d3 tensor T, let Mj (T) be a dj × (d1d2d3/dj ) matrix by unfolding T in

the j th dimension.

4.2. Signal strengths. Recall the low-rank decomposition of E(A|S) in (2.5) with

E(A|S) = C̄ ×1 Ū ×2 Ū ×3 W̄,

where S = {sl}Ll=1. The core tensor C̄ = B ×1 (D̄R̄�)×2 (D̄R̄�)×3 D
1/2
L = B̄ ×1 D̄ ×2 D̄ ×3

D
1/2
L where

B̄ = B ×1 R̄� ×2 R̄� ∈R
r×r×m(4.1)

Denote the signal strengths of C̄ and B̄ by σmin(C̄) and σmin(B̄), respectively. Generally,

σmin(T) = min
{
σrj

(
Mj (T)

) : j = 1,2,3
}

(4.2)

for any T with Tucker ranks (r1, r2, r3).
Recall that Bj = p̄B0

j for j ∈ [m], then we can define a third-order tensor B̄0 such that

B̄ = p̄B̄0. Also denote x � y iff x = O(y) and y = O(x). Then the following conditions
greatly simplify our presentation.
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CONDITION 1. Assume that:

• (A1): B̄0 has Tucker ranks (r, r,m) and σmin(B̄0) ≥ c1 for some constant c1 > 0;
• (A2): D̄ is well conditioned, that is, σ1(D̄) ≤ κ0σr(D̄) for some κ0 ≥ 1;
• (A3): Minimal network balance condition: Lmin � L/m, where Lmin = min1≤j≤m Lj ;
• (A4): Maximal network balance condition: Lmax � L/m, where Lmax = max1≤j≤m Lj .

Condition (A1) requires the core tensor B̄ to have full rank, which is mild for low-rank ten-
sor analysis. In the Supplementary Material [22], an example is included to explain condition
(A1) more specifically. We also prove that κ0 is related to the largest and smallest community
sizes of global memberships in the Supplementary Material [22].

LEMMA 4.1 (Signal strength). If conditions (A1) and (A2) hold, we have

σmin(C̄) ≥ c1κ
−2
0 r−1m · np̄

√
Lmin.

Further if (A3) holds and m,r, κ0 are fixed, then σmin(C̄) ≥ c0
√

Lnp̄.

By Lemma 4.1, the signal strength of C̄ is characterized by the overall network sparsity.

4.3. Incoherence property. Theoretically, the ideal regularization parameters in Algo-
rithm 1 are δ1 = max1≤j≤n ‖e�

j Ū‖ and δ2 = max1≤j≤L ‖e�
j W̄‖. Incoherence property en-

sures that singular vectors Ū and W̄ are not too correlated with or incoherent to the standard
basis ej ’s, as stated in the next lemma, which the sharp convergence rates of regularized
tensor power iteration algorithm rely crucially on.

LEMMA 4.2 (Incoherence of Ū and W̄ ). If conditions (A1) and (A2) hold, we have

δ1 ≤ κ0
√

r/n and δ2 ≤ κ0m
−1r/

√
Lmin.

Then under conditions (A1)–(A3), it follows from Lemma 4.2: δ2 ≤ C1κ0r/
√

mL.

4.4. Tensor incoherent norms and a concentration inequality. In this section, we fix S

and write EA in short for E(A|S). Given a random tensor A, we write

A = EA + (A −EA) = the signal + noise part.

A tensor norm is needed to measure the size of the noise part. In order to deal with extremely
sparse tensors, we will adopt the following definition, first introduced in [59].

DEFINITION 4.3 (Tensor incoherent norm [59]). For δ ∈ (0,1] and k = 1,2,3, define

‖A −EA‖k,δ := sup
U∈Uk(δ)

〈A −EA,U〉,

where Uk(δ) := {U = u1 ⊗u2 ⊗u3 : ‖uj‖�2 ≤ 1,∀j ; ‖uk‖�∞ ≤ δ}, ‖u‖�p is the lp-norm of u,
and 〈·, ·〉 denotes the vectorized inner product.

We now present a concentration inequality for tensor incoherent norms for sparse random
tensors, which is essential in proving Theorem 5.1. Let p̄ = maxj ‖EA(:, :, j)‖max.

THEOREM 4.4 (A concentration inequality for tensor incoherent norm). Suppose that
L ≤ n and Lnp̄ ≥ logn. Denote n1 = n2 = n and n3 = L. Then for k = 1,2,3, we have

P
{‖A −EA‖k,δ ≥ 3t

} ≤ 2

n2 + 10(logn)2⌈
log2

(
δ2nk

)⌉[
exp

(
− t2

C3p̄

)
+ exp

(
− 3t

C4δ

)]
provided t ≥ max{C1,C2δ

√
nk log(n)}√np̄ log(δ2nk) log(n) for some constants C1,C2 > 0.
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We make several remarks concerning the inequality.

1. The bound in Theorem 4.4 is sharper than that in [59] by a more sophisticated cardi-
nality calculation, in order to deal with extremely sparse networks. Analogous results were
previously established for sparse hypergraph networks [24] where the random tensor is sym-
metric, however, the dimension sizes (n and L) in our model can be drastically different (e.g.,
L � n), which needs more careful treatments.

2. Clearly, if δ = 1, ‖A−EA‖k,δ reduces to the standard tensor operator norm ‖A−EA‖.
It is easy to check, by the maximum number of nonzero entries on the fibers of A −EA, that
‖A−EA‖ � 1 with high probability (see [33], Theorem 2). By comparison, if δ1 = O(1/

√
n)

and δ2 = O(1/
√

L), Theorem 4.4 shows that ‖A − EA‖1,δ1,‖A − EA‖3,δ2 = Op(
√

np̄) up
to some logarithmic factor. It can be much smaller than ‖A − EA‖ � 1 (w.h.p.) when L is
large.

3. To apply tensor incoherent norms to analyze the convergence property of power itera-
tions, it is necessary to prove that {Û (t)} and {Ŵ (t)} are incoherent. It is possible to generalize
the methods in [9, 28, 56, 58] for this purpose whose actual proof can be very involved. For
simplicity, we adopt an auxiliary regularization step (3.1) to truncate those singular vectors.

4. Without the condition L ≤ n, we can obtain a similar result by replacing all n’s in the
concentration inequality and constraint on t with (n∨L). Here, we focus on the regime L ≤ n

because it is the most common in multilayer network data.

5. Main results.

5.1. Error bound of regularized power iteration. Theorem 5.1 states that regularized
power iteration method (Algorithm 1) works if we have a warm initialization and a strong
enough signal-to-noise ratio. These conditions are typically required (see, e.g., [24, 55, 57,
62]) and generally unavoidable [62] in tensor data analysis.

For V̂ , V ∈Op,r = {V ∈ R
p×r : V T V = Ir}, the distance between their column spaces is

d(V̂ ,V ) := inf
O∈Or,r

‖V̂ − V O‖.

Define Err(t) = max{d(Û (t), Ū ),d(Ŵ (t), W̄ )}. We assume L ≤ n throughout this section. We
have the following result.

THEOREM 5.1 (General convergence results of regularized power iterations). Assume
that L ≤ n and:

• the initializations Û (0) and Ŵ (0) are warm, that is, Err(0) ≤ 1/4,
• the signal strength of C̄ satisfies

σmin(C̄) ≥ (
C1 + C2

(
(δ1

√
n) ∨ (δ2

√
L)

)
logn

)√
r ∧ m · √

np̄ log(n) log
((

δ2
1n

) ∨ (
δ2

2L
))

.

Then with probability at least 1 − 2n−2:

1. for all t ≤ tmax := C0 log(σmin(C̄)/(
√

np̄ + δ1δ2)), we have

Err(t) ≤ 1

2
· Err(t − 1) + C3

√
np̄ logn + δ1δ2 logn

σmin(C̄)

2. and we have Err(tmax) ≤ C3(
√

np̄ logn + δ1δ2 logn)/σmin(C̄).

Theorem 5.1 holds true on general tensor structures. Specializing Theorem 5.1 to the mix-
ture multilayer network model (Section 2) immediately yields the following corollary.
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COROLLARY 1. Assume that (A1)–(A3) hold. Further, assume:

• the initializations Û (0) and Ŵ (0) are warm, that is, Err(0) ≤ 1/4,
• the network sparsity satisfies√

Lnp̄ ≥ C0κ
3
0
(
r2/

√
m

)
log(κ0r) log2 n.(5.1)

Then with probability at least 1 − 2n−2, after at most tmax = O(logn) iterations, Err(tmax) ≤
C3κ

2
0 r · √log(n)/(mLnp̄).

By Corollary 1, if κ0, r,m are fixed and the network sparsity satisfies Lnp̄ ≥ C′
0 log4 n,

then Err(tmax) = Op(
√

log(n)/(Lnp̄)).

5.2. Consistency of recovering global memberships. Recall from Section 2 that the
global community structure is denoted as {V̄j }K̄j=1 where nodes i1 and i2 belong to the same

global community if and only if (ei1 − ei2)
�Z̄ = 0. In the TWIST algorithm, after applying

the K-means to the rows of Û , we get the vertices’ global membership ̂̄
V= {̂̄Vk, k ∈ [K̄]}.

We measure the performance by the Hamming error of clustering:

L(
̂̄
V, V̄) = min

τ : a permutation on [K̄]

n∑
i=1

K̄∑
k=1

1(i ∈ V̄k, i /∈ ̂̄Vτ(k)),

where we denote V̄= {V̄k, k ∈ [K̄]} and ̂̄
V= {̂̄Vk, k ∈ [K̄]}.

THEOREM 5.2 (Consistency of global clustering). Assume that (A1)–(A4) hold, and that
mink |V̄k| � n/K̄ . Then with probability at least 1 − n−2, we have

n−1 ·L(
̂̄
V, V̄) ≤ C3κ

6
0 r2 log(n)/(Lnp̄)

provided that the network sparsity satisfies√
Lnp̄ ≥ (

C1(K̄)1/2 + C2r logn
)(

κ3
0 r/

√
m

)
log(κ0r) log(n).(5.2)

REMARK 1. Although bound (5.2) appears to imply that increasing m would weaken
the sparsity condition, the parameters m, r , K̄ are mutually related. For example, m ≤ r2 and
r ≤ K̄ follows from Condition (A1) and the definition, respectively. Note that, for ease of
exposition, we only consider the case of balanced community sizes.

From Theorem 5.2, it follows that the relative clustering error is Op(log−3(n)) when
K̄,m,κ0 are bounded. Therefore, vertices’ global memberships can be consistently recov-
ered. We now compare our method with some other available ones in the literature.

• In the special case L = 1, MMSBM reduces to the standard SBM model. Then r = K̄ and
the sparsity condition (5.2) becomes np̄ ≥ C1K̄

4 log4(n), which is weaker than [47] but
stronger than [34]. Our misclustering error is larger than [34, 47], due to additional factors
emerged from tensor techniques.

• A special case when m = 1 is considered by [33], who shows that their algorithm is able to
consistently recover the communities if np̄

√
L � log3/2 n. On the other hand, our result

deals with more general mixture multilayer model, is computationally more efficient and
requires weaker network sparsity: np̄L � log4(n). As shown in Theorem 5.3, the depen-
dence of L in (5.2) is optimal if we ignore the logarithmic term. This improvement is due
to a sharper concentration inequality of A −EA in terms of tensor incoherent norm.
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• A joint matrix factorization method (Co-reg) is proposed in [43] for a special case with
m = 1 and different Bj s, in which they prove that their method can consistently recover
the vertices memberships if Lnp̄ � logn and the signal strengths of Bj s are similar. Their
network sparsity condition is similar to (5.2) up to logarithmic factor. On the other hand,
our approach differs from [43] in several aspects. Our method can perform vertices clus-
tering and network clustering simultaneously when m > 1. Computationally, [43] employs
a BFGS algorithm to solve the nonconvex programming, which is computationally more
intensive than TWIST.

We now prove that the sparsity condition (5.2) is nearly optimal up to logarithmic terms.
Consider a special MMSBM with m = 1, K1 = 2,L1 = L and define the parameter space
	n,p̄ := {(Z̄,B) : Z̄ ∈ {0,1}n×2, Z̄12 = 1n,B = B0 = p̄[1,0.5;0.5,1]}, where 1n denotes
the n-dimensional all one vector and p̄ ∈ (0,1/2) is a fixed constant. For any θ = (Z̄,B) ∈
	n,p̄ , we denote Pθ the probability distribution of A generated under SBM(Z̄,B), and the
definition of V̄ is the same as Theorem 5.2.

THEOREM 5.3 (Lower bound for global clustering). There exist absolute constants
c0, c1, β > 0 such that if the network sparsity satisfies Lnp̄ ≤ c0, then

inf̂̄
V

sup
θ∈	n,p̄

Pθ

(
n−1 ·L(

̂̄
V, V̄) ≥ c1

) ≥ β,

where inf̂̄
V

denotes the infimum over all estimators of V based on the data A.

5.3. Network classification. We now show that the standard K-means algorithm on Ŵ

can consistently uncover the network classes of L layers under the network sparsity condi-
tion (5.2). Further under a slightly stronger network sparsity condition (5.3), we can apply
Algorithm 2 to exactly recover the layer labels with high probability. This shows that more
layers will provide more information about layer structure and be very helpful in exact clus-
tering of networks. Similarly, denote

L(Ŝ,S) = min
τ : permutation of [m]

L∑
l=1

1
(
sl 
= τ(ŝl)

)
.

THEOREM 5.4 (Consistency and exact recovery of network classes). Let S̃ = {s̃l}Ll=1 be
the output of the standard K-means algorithm applied to Ŵ .

1. Under the same conditions in Theorem 5.2, we have, with probability at least 1 − n−2,

L−1 ·L(̃S,S) ≤ C3κ
4
0 r2 log(n)/(mLnp̄),

where S = {sl}Ll=1.
2. We further assume √

Lnp̄ ≥ C1m
−1κ5

0 r5/2 log(rκ0) log5/2(n).(5.3)

There exist constants c1, c2 ∈ (0,1) such that with probability at least 1 − 3n−2,

L(̂S,S) = 0,(5.4)

where Ŝ = {ŝl}Ll=1 is the output of Algorithm 2 with parameters m and ε ∈ [c1, c2]√m/L.

By Theorem 5.4, in the case r,m,κ0 = O(1), Algorithm 2 is capable to exactly recover
the network classes using appropriately chosen parameter ε if the network sparsity satisfies√

Lnp̄ � log5/2 n. On the other hand, consistent network clustering requires, by (5.2), net-
work sparsity Lnp̄ � log4 n. Therefore, condition (5.3) is stronger with respect to the number
of layers L.



3194 JING, LI, LYU AND XIA

5.4. Consistency of local clustering. After obtaining the network classes, we can apply

spectral clustering on
∑

l:ŝl=j Al to recover the local memberships Vj = {Vj
k }Kj

k=1. Its consis-
tency can be directly proved by existing results in the literature. See [43].

THEOREM 5.5. Suppose that the conditions of Theorem 5.4 and equation (5.4) hold.

For all j ∈ [m], let V̂j = {V̂j
k }Kj

k=1 denote the output of K-means algorithm on
∑

l:ŝl=j Al . If

σKj
(B0

j ) ≥ c1 for some absolute constant c1 > 0 and |Vj
k | � n/Kj for all k ∈ [Kj ], then with

probability at least 1 − n−2,

n−1 ·L(
V̂

j ,Vj ) ≤ C1mK2
j log(n)/(Lnp̄).

5.5. Warm initialization for regularized power iteration. An important condition for the
success of Algorithm 1 is the existence of warm initialization,

Err(0) = max
{
d
(
Û (0), Ū

)
,d

(
Ŵ (0), W̄

)} ≤ 1/4.

In this section, we introduce a spectral method for initializing Û (0) by summing up all
the layers of networks. After that, we initialize Ŵ (0) by taking the left singular vectors of
M3(A)(Ũ (0) ⊗ Ũ (0)) where Ũ (0) =Pδ1(Û

(0)). Here, we abuse the notation and denote ⊗ the
Kronecker product. The following lemma shows that these initializations are indeed close to
the truth under reasonable conditions.

LEMMA 5.6 (Initialization). Let Û (0) denote the top-r left singular vectors of
∑L

l=1 Al

and let Ŵ (0) be the top-r left singular vectors of M3(A)(Ũ (0) ⊗ Ũ (0)) where Ũ (0) =
Pδ1(Û

(0)) with δ1 = max1≤j≤n ‖e�
j Ū‖. Then with probability at least 1 − 3n−2,

d
(
Û (0), Ū

) ≤ min
{
C3

√
np̄ log2(n)/σr

(
C̄ ×3

(
d�
L /L

)1/2)
,2

}
,(5.5)

where dL = (L1, . . . ,Lm)�. If δ1 = O(κ0
√

r/n) and

σr

(
C̄ ×3

(
d�
L /L

)1/2) ≥ C′
3

√
np̄ log2 n,(5.6)

then with same probability,

d
(
Ŵ (0), W̄

) ≤ min
{
C4rκ0

√
np̄ log2(n) log(κ0r)/σmin(C̄),2

}
.

Comparing the rate of initialization (5.5) and the rate after regularized power iterations in
Theorem 5.1, Algorithm 1 improves the estimation error by a ratio of σmin(C̄) and σr(C̄ ×3
(d�

L /L)1/2). In special cases, such an improvement can be significant. For instance, consider
m = r = 2 and L1 = L2 and C̄ ∈ R

2×2×2 with

C̄(:, :,1) =
(

1 + ε 0
0 1 + ε

)
and C̄(:, :,2) =

(
0 1 − ε

1 − ε 0

)
for some small number ε ∈ (0,1). It is easy to check that σmin(C̄) = σ2(M3(C̄)) = √

2(1 −
ε). On the other hand,

σ2
(
C̄ ×3

(
d�
L /L

)1/2) = √
2ε.

Moreover, if ε = 0, then C̄ ×3 (d�
L /L)1/2 is rank deficient implying that simply projecting

the multilayer networks into a graph can potentially cause serious information loss. See more
details in [24] and a similar discussion in [33].

It is worthwhile pointing out that one could use other methods to initialize Û (0) (the initial-
ization of Ŵ (0) is easy once it is done for Û (0)). Examples include the HOSVD by extracting
the top-r left singular vectors of M1(A), the joint matrix factorization method in [43], and
random projection [24].
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6. Simulation studies. We conduct several simulations to test the performance of
TWIST on the MMSBM with different choices of network sparsity, “out-in” ratio, number
of layers and the size of each layer. We use K-means as the clustering algorithm. The evalu-
ation criterion is the misclustering rate. All the experiments are replicated 100 times and the
average performances are reported.

We generate the data according to MMSBM in the following fashion. The underlying
class sl for the lth layer is generated from the multinomial distribution with P(sl = j) =
1/m, j = 1, . . . ,m. The membership z

j
i for node i in layer type j is generated from the

multinomial distribution with P(z
j
i = s) = 1/K, s = 1, . . . ,K . We choose the probability

matrix as B = pIK + q(1K1�
K − IK), where 1K is a K-dimensional all-one vector and IK is

the K × K identity matrix. Let α = q/p be the out-in ratio.

6.1. Global memberships. First, we consider the task of detecting the global member-
ships defined in Section 2. We compare the performance of TWIST with Tucker decom-
position initialized by HOSVD (HOSVD-Tucker), and we also adopt a baseline method by
performing spectral clustering on the sum of adjacency matrices from all layers (Sum–Adj).
Sum–Adj has been considered in literature [14, 43, 52] as a simple but effective procedure
[29]. The function “tucker” from the R package “rTensor” [37] is used to apply Tucker de-
composition for HOSVD-Tucker.

In simulation 1, the networks are generated with the number of nodes n = 600, the num-
ber of layers L = 20, number of types of networks m = 3, number of communities of each
network K = 2 and out-in ratio of each layer α = 0.4. The average degree d of each layer
varies from 2 to 20.

In simulation 2, the setting is the same as in Simulation 1 except the average degree of
each layer is fixed at d = 10 and the out-in ration α of each layer varies from 0.1 to 0.8.

In simulation 3, the setting is the same as in Simulation 1, except that the out-in ratio is
fixed at α = 0.6 and the number of layers L varies from 10 to 60.

In simulation 4, the setting is the same as that in Simulation 3, except that the number of
layers is L = 20, d = 0.02n and the number of nodes n varies from 100 to 1200.

In simulation 5, n = 600, m = 3, K = 3, the out-in ratio for each layer is drawn from a
uniform distribution αl ∼ U(0.5,0.7), l ∈ {1,2, . . . ,L} the average degree for each layer is
drawn from a uniform distribution dl ∼ U(8,12), l ∈ {1,2, . . . ,L} and the number of layers
L varies from 10 to 60.

In simulation 6, L = 30, m = 3, K = 3, the out-in ratio for each layer is drawn from a
uniform distribution αl ∼ U(0.5,0.7), l ∈ {1,2, . . . ,L}, the average degree for each layer is
drawn from a uniform distribution dl ∼ U(0.015n,0.025n), l ∈ {1,2, . . . ,L} and the number
of nodes n varies from 100 to 1200.

The results of simulations 1–6 are given in Figure 3.

1. Clearly, the misclustering rate of all the methods decreases as the average degree of
each layer increases, the out-in ratio of each layer decreases and the number of layers in-
creases. This is consistent with our theoretical findings.

2. TWIST and HOSVD-Tucker, both utilizing tensor structure, perform much better than
Sum–Adj, which only uses matrix structure. The misclustering rate of TWIST and HOSVD-
Tucker decreases more rapidly.

3. TWIST outperforms HOSVD-Tucker when the signal is not strong enough, for exam-
ple, for d < 6 in Simulation 1; for α > 0.5 in Simulation 2; for L < 50 in Simulations 3 and
5; and for n < 800 in Simulations 4 and 6.
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FIG. 3. Overall, TWIST and HOSVD-Tucker perform much better than Sum–Adj. TWIST outperforms HOSVD–
Tucker when the signal is not strong enough, for instance d < 6 in (a), α > 0.5 in (b), L < 50 in (c) and (e) and
n < 800 in (d) and (f).

6.2. Layers’ labels. We now explore the task of clustering different types of layers. We
compare TWIST with HOSVD-Tucker and spectral clustering applied to the mode-3 flatting
of A (M3-SC).

In simulation 7, the networks are generated with the number of nodes n = 600, the num-
ber of layers L = 20, number of types of networks m = 3, number of communities of each
network K = 3 and out-in ratio of each layer α = 0.6. The average degree d of each layer
varies from 3 to 30.

In simulation 8, the networks are generated as in simulation 7, except that the average
degree of each layer d = 10, the number of layers L = 30 and the out-in ration α of each
layer varies from 0.1 to 0.9.

In simulation 9, the networks are the same as in simulation 8, except that the out-in ratio
α = 0.6 and the number of layers L varies from 20 to 80.

In simulation 10, the networks are the same as in simulation 9, except that the average
degree of each layer d = 0.02n and the the size of each layer n varies from 100 to 1200.

In simulation 11, n = 600, m = 3, K = 3, the out-in ratio for each layer is drawn from a
uniform distribution αl ∼ U(0.5,0.7), l ∈ {1,2, . . . ,L} the average degree for each layer is
drawn from a uniform distribution dl ∼ U(8,12), l ∈ {1,2, . . . ,L} and the number of layers
L varies from 20 to 80.

In simulation 12, L = 30, m = 3, K = 3, the out-in ratio for each layer is drawn from a
uniform distribution αl ∼ U(0.5,0.7), l ∈ {1,2, . . . ,L}, the average degree for each layer is
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FIG. 4. TWIST is the best overall, particularly when the signal is not strong enough, for instance, d < 15 in (a),
α > 0.4 in (b), L < 50 in (c) and (e) and n < 800 in (d) and (f). From Simulations 9 and 11, the naive method
M3-SC hardly changes as the number of layers increases.

drawn from a uniform distribution dl ∼ U(0.015n,0.025n), l ∈ {1,2, . . . ,L} and the number
of nodes n varies from 100 to 1200.

The results are presented in Figure 4. We make the following observations:

1. The misclustering rates of all three methods decrease as the average degree of each
layer increases, the out-in ratio of each layer decreases, the number of layers increases and
the size of each layer increases. This agrees with our theoretical results.

2. From Simulations 9 and 11, the naive method M3-SC shows no response to the increase
of the number of layers, as might be expected.

3. Overall, TWIST performs the best among the three methods. This can be clearly seen
when the signal is not strong enough, for instance, d < 15 in Simulation 7, α > 0.4 in Simu-
lation 8, L < 50 in Simulations 9 and 11 and n < 800 in Simulations 10 and 12.

7. Real data analysis. In this section, we apply TWIST to two real data sets: worldwide
food trading networks and Malaria parasite genes networks. The two datasets have been stud-
ied in the literature before. However, with TWIST, we are able to make some new, interesting
and sometimes surprising findings, which the earlier methods have failed to do so.

7.1. Malaria parasite genes networks. The var genes of the human malaria parasite Plas-
modium falciparum present a challenge to population geneticists due to their extreme diver-
sity, which is generated by high rates of recombination. Var gene sequences are characterized
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FIG. 5. Embedding of each layer in malaria parasite genes networks and hierarchical structure of network
classes.

by pronounced mosaicism, precluding the use of traditional phylogenetic tools. Larremore et
al. [30] identify 9 highly variable regions (HVRs), and then maps each HVR to a complex
network; see the figure in the Supplementary Material [22]. They show that the recombina-
tional constraints of some HVRs are correlated, while others are independent, suggesting that
this micromodular structuring facilitates independent evolutionary trajectories of neighboring
mosaic regions, allowing the parasite to retain protein function while generating enormous
sequence diversity.

Despite the innovative network approach, there are still some drawbacks in [30].

1. Even though 9 HVRs have been identified, only 6 HVRs have been used in the analysis,
while the other three HRVs are discarded due to their sparse structures, as seen in the figure
in the Supplementary Material [22]. However, these sparse networks still contain valuable
information, which would be of great interest to researchers and practitioners.

2. Community structures are identified individually for each network, and then compared
with each other to identify similar structures. This is not only very demanding and tedious
computationally, but also involves much human intervention. This becomes increasingly un-
desirable as the number of networks grows bigger.

Here, we propose to employ TWIST to the problem, in order to overcome the above dif-
ficulties. The data under investigation are the 9 HVRs used in [30]. Each network is derived
from the same set of 307 genetic sequences from var genes of malaria parasites. A node repre-
sents a specific gene and an edge is generated by comparing sequences pairwisely within each
HVR. More information about the data and data pre-processing could be found in [30]. In our
study, we consider 212 nodes, which appear on all 9 layers. This results in a 212 × 212 × 9
tensor, as shown in the figure in the Supplementary Material [22].

We apply TWIST to this 212 × 212 × 9 tensor with a core tensor of size 15 × 15 × 3. The
embedding of each layer is plotted in Figure 5. We make the following comments:

1. The 9 HVRs fall into 4 groups (Figure 5(a)): {1,2,3,4,5,6}, {7}, {8}, {9}.
By comparison, [30] found that the 6 HVRs fall into 4 groups (without layers 2–4):

{1,5,6}, {7}, {8}, {9}. The two findings are consistent.
2. TWIST places sparse networks of layers 2–4 to the same group as layers 1, 5 and 6.
By comparison, the sparse layers 2–4 had to be discarded in [30]. The new result im-

plies that the sequences remain mostly unchanged in the beginning (HVRs 1–6), and start to
diversify from HVR 7 onward.

3. Hierarchical structure of the 9 HVRs.
If we zoom in the mini group {1,2,3,4,5,6} (Figure 5(b)), we notice that the first 5 layers

are more tied together, so we have a finer partition: {1,2,3,4,5}, {6}. This operation can be
repeated. Therefore, TWIST can be easily used to form a hierarchical structure of the 9 HVRs
(Figure 5(c)).
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FIG. 6. Nodes embedding using TWIST and spectral decompositions with K = 4.

4. Computational ease of TWIST
TWIST can easily cluster layers and nodes using K-means. This is much easier than the

procedure in [30], which first finds the community structure for each layer, and then computes
their similarities.

5. Better community structure is obtained by combining information from similar layers.
TWIST is applied to the first 6 similar layers {1,2,3,4,5,6} to identify their common

local structure, while spectral clustering is applied to HVR 6 to find its community structure
as was done in [30]; see Figure 6(a)–(b). Clearly, the 4 local communities are much more
separated in Figure 6(a) than in (b).

7.2. Worldwide food trading networks. We consider the data set on the worldwide food
trading networks, which is collected by [13], and is available at http://www.fao.org. The
data contains an economic network in which layers represent different products, nodes are
countries and edges at each layer represent trading relationships of a specific food product
among countries.

We focus on the trading data in 2010 only. We convert the original directed networks
to undirected ones by ignoring the directions. We delete the links with weight less than 8
(the first quartile) and abandon the layers whose largest component consists of less than 150
nodes. These are done to filter out the less important information. Finally, we extract the
intersections of the largest components of the remaining layers.

After data preprocessing, we obtained a 30-layers network with 99 nodes at each layer.
Each layer represents trading relationships between 99 countries/regions worldwide with re-
spect to one of the 30 different food products. Together they form a third-order tensor of
dimension 99 × 99 × 30.

We first apply Algorithm 1 in the TWIST procedure to the data tensor, which results in a
tensor decomposition with a core tensor of dimension 20 × 20 × 2. The resulting two clusters
of layers are listed in Table 1. We then apply Algorithm 2 in the TWIST procedure to each
cluster of networks separately (here we have two clusters) to find the community structures
for each cluster, in order to obtain the clustering result of countries. This time, we take the

http://www.fao.org
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TABLE 1
The resulting two clusters of layers

Food cluster 1: Beverages nonalcoholic, Food prep nes, Chocolate products nes, Crude materials,
Fruit prepared nes, Beverages distilled alcoholic, Coffee green, Pastry, Sugar
confectionery, Wine, Tobacco unmanufactured

Food cluster 2: Cheese whole cow milk, Cigarettes, Flour wheat, Beer of barley, Cereals breakfast,
Milk skimmed dried, Juice fruit nes, Maize, Macaroni, Oil palm, Milk whole dried,
Oil essential nes, Rice milled, Sugar refined, Tea, Spices nes, Vegetables preserved
nes, Waters ice, etc, Vegetables fresh nes

core tensor of dimension 4 × 4 × 1. The embedding of 99 countries with clustering results
from K-means are shown in Figure 7. For the two types of networks, we plot in Figure 8 the
sum of adjacency matrices with nodes arranged according to the community labels to have a
glance of different community structures of two network types.

We make the following remarks from Table 1, Figures 7 and 8.

1. Trading patterns of food are different for unprocessed and processed foods.
Specifically, cluster 1 consists mainly of raw or unprocessed food (e.g., crude materials,

coffee green, unmanufactured tobacco), while cluster 2 is mainly made of processed food
(e.g., such as cigarettes, flour wheat, essential oil, milled rice, refined sugar).

2. For unprocessed food, global trading is the more dominant trading pattern than regional
one. Some countries have closer trading ties with countries across the globe.

From cluster 1, a small number of countries, such as China, Canada, United Kingdom,
United States, France, Germany, are very active in trading with others as well as among
themselves. This small group of countries is called a hub community. This reflects the fact
that these large countries import unprocessed food from, and/or export unprocessed food to a
great number of other countries worldwide.

3. For processed foods, regional trading is very dominant. In fact, the world trading map
is strikingly similar to the world geography map in Figure 7(b).

In cluster 2, countries are mainly clustered by the geographical location, that is, countries
in the same continent have closer trading ties. Examples of these clusters include countries
in America (United State, Canada, Mexico, Brazil, Chile), in Asia and Africa (China, Japan,
Singapore, Thailand, Indonesia, Philippines, India) and in Europe (Germany, Italy, Poland,
Spain, Denmark, Switzerland). Regional trading of processed food can have many advan-
tages, for example, keeping the food cost low due to lower transportation cost, and keeping
food fresh due to faster delivery.

There are some interesting “outliers” as well. For instance, United Kingdom has closer
trading ties with African and Middle Eastern countries than its European neighbor, which
might be interesting to delve into further.

8. Conclusion and discussion. In this paper, we have proposed a novel mixture multi-
layer stochastic block model (MMSBM) to capture the intrinsic local as well as global com-
munity structures. A tensor-based algorithm, TWIST, was proposed to conduct community
detection on multilayer networks and shown to be consistent under generally weak condi-
tions in the MMSBM framework. In particular, the method allows for very sparse networks
in many layers. The proposed method outperforms other state of the art methods both in
nodes community detection and layers clustering by extensive simulation studies. We also
applied the algorithm to two real data sets and found some interesting results.

A number of future directions are worth exploring. As a natural extension, one can gener-
alize the tensor-based representation to account for adjacency matrices capturing the degree
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FIG. 7. Embedding of countries on two different types of food trading networks.
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FIG. 8. Heat maps of two types of networks.

heterogeneity of nodes. The layers of networks could have the spatial and temporal structures
of networks in many real-world applications, so one could incorporate these into the model.
On a more theoretical level, it is of interest to explore theoretical properties in other random
graph models. It is also important to develop scalable algorithms that can handle millions of
nodes with thousands of layers in this big data era.

Estimation of the block probability matrices {Bj }mj=1 can be useful in applications; see,
for example, [15, 45] and [53]. The low-rank expected adjacency tensor E(A|S), also called
probability tensor, is built from Bj ’s. The step 1 of TWIST, seeking a low-rank approxima-
tion of A, immediately yields an estimate of the probability tensor. However, this procedure
cannot directly deliver the estimates for Bj ’s. Toward that end, after the step 4 of TWIST, one
can utilize the learned local membership V̂j to construct the respective membership matrix
Ẑj ∈ {0,1}n×Kj . Finally, one can estimate the block probability matrix by

B̂j = (
Ẑ�

j Ẑj

)−1
Ẑ�

j

(
1

|{l : ŝl = j}|
∑

l:ŝl=j

Al

)
Ẑj

(
Ẑ�

j Ẑj

)−1 ∀j ∈ [m].

The error of B̂j relies crucially on the clustering performances of layers, that is, how many
layers in {l : ŝl = j} really belong to the same SBM. Interested readers are suggested to refer
to a recent work [15] for the methodology and theory of estimating block probability matrices
under MMSBM.

Statistical inferences, for example, for the number of local communities, under MMSBM
are of great importance. After the step 3 of TWIST, based on the collection of {Âl : ŝl = j},
we can extend many existing approaches, for example, based on the distributions of singular
values [8, 32] or network moments [7, 16, 64], to test the number of local communities.
Substantial efforts are required to investigate the theoretical performances of these methods
under MMSBM, which we leave for future works.
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