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Many statistical estimands can expressed as continuous linear functionals
of a conditional expectation function. This includes the average treatment ef-
fect under unconfoundedness and generalizations for continuous-valued and
personalized treatments. In this paper, we discuss a general approach to esti-
mating such quantities: we begin with a simple plug-in estimator based on an
estimate of the conditional expectation function, and then correct the plug-
in estimator by subtracting a minimax linear estimate of its error. We show
that our method is semiparametrically efficient under weak conditions and
observe promising performance on both real and simulated data.

1. Introduction. Suppose we observe n independent and identically distributed samples
(Zi, Yi) ∼ P with support in Z ×R, and we want to estimate a continuous linear functional
of the form

(1) ψ(m) = E
[
h(Zi,m)

]
at m(z) = E[Yi |Zi = z].

Our main result establishes that we can build efficient estimators for a wide variety of such
problems simply by subtracting from a plugin estimator ψ(m̂) a minimax linear estimate of
its error ψ(m̂) − ψ(m).

The following estimands from the literature on causal inference and missing data are of
this type and can be estimated efficiently by our approach.

EXAMPLE 1 (Mean with outcomes missing at random). We observe covariates Xi and
some but not all of the corresponding outcomes Y �

i . We write Wi ∈ {0,1} to indicate whether
the outcome Y �

i was observed, and define Zi = (Xi,Wi) and Yi = WiY
�
i ; we then estimate

the linear functional ψ(m) = E[m(Xi,1)] at m(x,w) = E[Yi |Xi = x,Wi = w]. This will be
equal to the mean E[Y �

i ] if, conditional on covariates Xi , each outcome Y �
i is independent of

its nonmissingness Wi (Rosenbaum and Rubin (1983)).

EXAMPLE 2 (Average partial effect). Letting Zi = (Xi,Wi) ∈ X × R, we estimate
the average of the derivative of the response surface m(x,w) with respect to w, ψ(m) =
E[ ∂

∂w
{m(Xi,w)}w=Wi

]. This estimand, and weighted variants of it quantify the average ef-
fect of a continuous treatment Wi under exogeneity (Powell, Stock and Stoker (1989)).

EXAMPLE 3 (Average partial effect in the conditionally linear model). In the setting of
the previous example, we make the additional assumption that the regression function m

is conditionally linear in w, m(x,w) = μ(x) + wτ(x). The average partial effect is then
ψ(m) = E[τ(Xi)].

EXAMPLE 4 (Distribution shift). We estimate the effect of a shift in the distribution
of the conditioning variable Z from one known distribution, P0, to another, P1, that is,
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ψ(m) = ∫
m(z)(dP1(z) − dP0(z)) for m(z) = E[Yi | Zi = z]. Under exogeneity assump-

tions, this estimand can be used to compare policies for assigning personalized treatments,
and estimators for it form a key building block in methods for estimation of optimal treatment
policies.

Below, we first discuss our estimator in the simple case that h(z,m) in (1) does not depend
on z, that is, h(z,m) = ψ(m). In this case, for example, in Example 4, we can evaluate ψ(m)

without knowledge of the distribution P of z, and we say that our functional of interest ψ(·)
is evaluable. From Section 1.3 on, we will address the general case where h also depends
on z and so, even if we knew m a priori, we could only approximate ψ(m) with a sample
average n−1 ∑n

i=1 h(Zi,m).

1.1. Estimating evaluable linear functionals. Consider the estimation of ψ(m) where
ψ(·) is an evaluable mean-square-continuous linear functional. The estimator we propose
takes a plugin estimator ψ(m̂), and then subtracts out an estimate of its error ψ(m̂)−ψ(m) =
ψ(m̂ − m) obtained as a weighted average of regression residuals,

(2) ψ̂ = ψ(m̂) − 1

n

n∑
i=1

γ̂i

(
m̂(Zi) − Yi

)
.

Our approach builds on a result of Chernozhukov et al. (2016) and Chernozhukov, Newey and
Robins (2018), who show that we can use the Riesz representer for ψ to construct efficient
estimators of this type.

To motivate this approach recall that, by the Riesz representation theorem, any continuous
linear functional ψ(·) on the square integrable functions from Z to R has a Riesz represen-
ter γψ(·), that is, a function satisfying

∫
γψ(z)f (z) dP (z) = ψ(f ) for all square-integrable

functions f (e.g., Peypouquet (2015), Theorem 1.41). Then, if we set γ̂i = γψ(Zi) in (2), the
second term in the estimator acts as a correction for the error of ψ(m̂) because

ψ(m̂) − ψ(m) =
∫

γψ(z)(m̂ − m)(z) dP (z) ≈ 1

n

n∑
i=1

γψ(Zi)
(
m̂(Zi) − m(Zi)

)

= 1

n

n∑
i=1

γψ(Zi)
(
m̂(Zi) − Yi

) + 1

n

n∑
i=1

γψ(Zi)
(
Yi − m(Zi)

)
.

(3)

Thus, plugging the above expression into (2), we see that if we could compute our estimator
with the oracle Riesz representer weights γψ(Zi), its error would very nearly be a weighted
sum of mean-zero noise n−1 ∑n

i=1 γψ(Zi)εi where εi = Yi −m(Zi). This behavior is asymp-
totically optimal with a great deal of generality (e.g., Newey (1994), Proposition 4).

Our goal will be to imitate the behavior of this oracle estimator without a priori knowl-
edge of the Riesz representer. One possible approach is to determine the form of the Riesz
representer γψ(·) by solving analytically the set of equations that define it,

(4)
∫

γψ(z)f (z) dP (z) = ψ(f ) for all f satisfying
∫

f (z)2 dP (z) < ∞,

then estimate it and plug the resulting weights γ̂i = γ̂ψ(Zi) into (2). In the context of our
first example, the estimation of a mean with outcomes missing, the Riesz representer is the
inverse probability weight γψ(w,x) = w/e(x) where e(x) = P [Wi = 1 | Xi = x], and this
plug-in approach involves first obtaining an estimate ê(x) of treatment probabilities and then
weighting by its inverse. This is the well-known Augmented Inverse Probability Weighting
(AIPW) estimator of Robins, Rotnitzky and Zhao (1994). Chernozhukov et al. (2018) provide
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general results on the efficiency of such estimators, provided γ̂ψ(Zi) − γψ(Zi) goes to zero
fast enough in squared-error loss.

We take another approach. Considering our regression estimator m̂ and the design
Z1 . . .Zn to be fixed,1 we simply choose the weights γ̂ ∈ R

n that make our correction term
n−1 ∑n

i=1 γ̂i(m̂(Zi) − Yi) a minimax linear estimator of what it is intended to correct for,
ψ(m̂ − m). To be precise, we first choose an absolutely convex set of functions F which we
believe should contain the regression error m̂ − m. We then choose weights γ̂i that perform
best in terms of worst case mean squared error over possible regression errors m̂ − m ∈ F
and conditional variances satisfying Var[Yi | Zi] ≤ σ 2. This specifies the weights γ̂ as the
solution to a convex optimization problem,

γ̂ = argmin
γ∈Rn

{
I 2
ψ,F (γ ) + σ 2

n2 ‖γ ‖2
}
, Iψ,F (γ ) = sup

f ∈F

{
1

n

n∑
i=1

γif (Zi) − ψ(f )

}
.

The good properties of minimax linear estimators like this one are well known. Donoho
(1994) and related papers (Armstrong and Kolesár (2018), Cai and Low (2003), Donoho and
Liu (1991), Ibragimov and Khas’minskiı̆ (1984), Johnstone (2015), Juditsky and Nemirovski
(2009)) show that when a regression function m is in a convex set F and Yi |Zi ∼ N(0, σ 2

i ),
a minimax linear estimator of a linear functional ψ(m) will come within a factor 1.25 of the
minimax risk over all estimators. In addition to strong conceptual support, estimators of the
type have been found to perform well in practice across several application areas (Armstrong
and Kolesár (2018), Imbens and Wager (2019), Zubizarreta (2015)).

Methodologically, the main difference between our proposal and the references cited above
is that we use the minimax linear approach to debias a plugin estimator ψ(m̂) rather than as
a stand-alone estimator. Because we “augment” the minimax linear estimator by applying it
after regression adjustment in the same way that the AIPW estimator augments the inverse
probability weighting estimator, we refer to our approach as the Augmented Minimax Linear
(AML) estimator. Our main result establishes semiparametric efficiency of the AML estima-
tor under considerable generality.

We note that the weights γ̂ that underlie minimax linear estimation can be interpreted as
a penalized least-squares solution to a set of estimating equations suggested by the definition
(4) of the Riesz representer γψ ,

(5)
1

n

n∑
i=1

γif (Zi) ≈ ψ(f ) for all f ∈ F .

These estimating equations generalize covariate balance conditions from the literature on
the estimation of average treatment effects, and when analyzing our estimator we build on
approaches used to study treatment effect estimators that use balancing weights (e.g., Athey,
Imbens and Wager (2018), Graham, De Xavier Pinto and Egel (2012), Imai and Ratkovic
(2014), Kallus (2020), Zubizarreta (2015)); see Section 1.5 for further discussion.

The restriction of f to a strict subset F of the square-integrable functions is necessary,
as there are infinitely many square-integrable functions f that agree on our sample Z1 . . .Zn

and they need not even approximately agree in terms of ψ(f ). Our choice of this subset F ,
a set that characterizes our uncertainty about the regression error function m̂ − m, focuses
our estimated weights γ̂ on the role they play in ensuring that (5) is satisfied for this function
f = m̂−m. The size of this subset F , measured by, for example, its Rademacher complexity,
determines the accuracy with which these equations (5) can be simultaneously satisfied. The

1If we estimate m̂ on an auxiliary sample, this is the case when we condition on both that sample and on
Z1 . . .Zn. However, our results do not require m̂ to be estimated on an auxiliary sample.
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smaller we can make F , that is, the better the consistency guarantees we have for m̂, the
more accurately we can solve (5). In practice, we may take F to be a set of smooth functions,
functions that are approximately sparse in some basis, functions of bounded variation, etc.

That our weights γ̂i approximately solve the estimating equations (5) does not imply that
they estimate the Riesz representer γψ(·) well in the mean-square sense. However, to what-
ever degree the oracle weights γi = γψ(Zi) also approximately solve (5), it will imply that γ̂

and γψ(·) are close in the sense that

(6)
1

n

n∑
i=1

[
γ̂i − γψ(Zi)

]
f (Zi) ≈ 0 for all f ∈ F .

This property holds if and only if the vector with elements γ̂i − γψ(Zi) is small or approxi-
mately orthogonal to every vector with elements f (Zi) for f ∈ F . And it implies that when
m̂ − m ∈F , our estimator (2) approximates the corresponding oracle estimator, as the differ-
ence between them is n−1 ∑n

i=1[γ̂i − γψ(Zi)][(m̂ − m)(Zi) − εi].
We state below a simple version of our main result. In essence, if an estimator m̂ converges

to m in mean square and our regression error m̂−m is in a uniformly bounded Donsker class
F or more generally satisfies (m̂ − m)/OP (1) ∈ F , then our approach can be used to define
an efficient estimator.

1.2. Definitions. As a measure of the scale of a function f relative to an absolutely con-
vex set F , we define the gauge ‖f ‖F = inf{α > 0 : f ∈ αF}. We will write Fr to denote the
localized class {f ∈F : ‖f ‖L2(P ) ≤ r}, gF to denote the class of products {gf : f ∈ F}, and
h(·,F) to denote the image class {h(·, f ) : f ∈ F}. We will write S to denote the closure of
a subspace S of the square-integrable functions and S⊥ to denote its orthogonal complement,
and will write spanF to denote the closure of spanF . We will say that a set of functions F
from Z →R is pointwise bounded if supf ∈F |f (z)| < ∞ for all z ∈ Z , uniformly bounded if
supf ∈F‖f ‖∞ < ∞ where ‖f ‖∞ = supz∈Z |f (z)|, and pointwise closed if f ∈ F whenever
it is the limit of a sequence fj ∈F in the sense that limj→∞ fj (z) = f (z) for all z ∈ Z .

1.3. Setting. We observe (Y1,Z1) . . . (Yn,Zn)
i.i.d.∼ P with Yi ∈ R and Zi in an arbitrary

set Z . We assume that m(z) = E[Yi | Zi = z] is in a subspace S of the square integrable
functions and that v(z) = Var[Yi | Zi = z] is bounded. And we let F be an absolutely convex
set of square integrable functions.

Our estimand is ψ(m) for a continuous linear functional ψ(·) on a subspace S ∪ spanF
of the square integrable functions, which takes the form ψ(m) = Eh(Zi,m). The Riesz rep-
resentation theorem guarantees the existence and uniqueness of a function γψ ∈ spanF sat-
isfying the set of equations {Eγψ(Z)f (Z) = ψ(f ) : f ∈ spanF}.2 We call this function the
Riesz representer of ψ on the tangent space spanF . This generalizes our prior definition (4),
coinciding when spanF is the space of square integrable functions.

Our regularity and efficiency claims are relative to the set of all one-dimensional sub-
models Pt through P0 = P for which, letting (Yt ,Zt ) ∼ Pt , the regression functions
mPt (z) = E[Yt | Zt = z] are in S and satisfy limt→0‖mPt − mP ‖L2(P ) = 0 and the squares of
εt = Yt − mPt (Zt ) are uniformly integrable. For these claims, we use the additional assump-
tions that there is a regular conditional probability P [Yi ∈ · | Zi = z] and that S⊥ has a dense
subset of bounded functions.

2In this statement, we implicitly work with the unique extension of the continuous functional ψ(·) defined on
spanF to a functional defined on its closure spanF (e.g., Lang (1993), Theorem IV.3.1).
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THEOREM 1. In the setting above, choose finite σ > 0 and consider the estimator

ψ̂AML = 1

n

n∑
i=1

[
h(Zi, m̂) − γ̂i

(
m̂(Zi) − Yi

)]
where(7)

γ̂ = argmin
γ∈Rn

{
I 2
h,F (γ ) + σ 2

n2 ‖γ ‖2
}
,

Ih,F (γ ) = sup
f ∈F

{
1

n

n∑
i=1

[
γif (Zi) − h(Zi, f )

]}
.

(8)

If F is uniformly bounded and pointwise closed; F , γψF and h(·,F) are Donsker; and
h(Z, ·) is pointwise bounded and mean-square equicontinuous on F in the sense that
supf ∈F |h(z, f )| < ∞ for each z ∈ Z and limr→0 supf ∈Fr

‖h(·, f )‖L2(P ) = 0; then our
weights converge to the Riesz representer of ψ on the tangent space spanF , that is,

(9)
1

n

n∑
i=1

(
γ̂i − γψ(Zi)

)2 →P 0.

If, in addition, m̂ has the tightness and consistency properties

(10) ‖m̂ − m‖F = OP (1) and ‖m̂ − m‖L2(Pn) = oP (1)

then our estimator ψ̂AML is asymptotically linear, that is,

ψ̂AML − ψ(m) = 1

n

n∑
i=1

ι(Yi,Zi) + oP

(
n−1/2)

where

ι(y, z) = h(z,m) − γψ(z)
(
m(z) − y

) − ψ(m)

(11)

and, therefore,
√

n(ψ̂AML − ψ(m))/V 1/2 ⇒ N (0,1) with V = E[ι(Y,Z)2].
Furthermore, an estimator satisfying (11) is regular on the model class S if S ⊆ spanF ,

and asymptotically efficient if, in addition, v(·)γψ(·) ∈ S .3

Theorem 1 follows from a finite sample result, Theorem 2, that we will discuss in Sec-
tion 2. We end this section with a few remarks on the statistical behavior of the estimator,
focusing on the choices of m̂,F, σ that define a specific estimator ψ̂ of this type. We defer
the discussion of computational issues to Appendix D (Hirshberg and Wager (2021)).

REMARK 1. Our approach does not require knowledge of the functional form of the
Riesz representer γψ(·), sparing us the trouble of solving (4) analytically.

REMARK 2. If ‖m‖F < ∞, the tightness and consistency properties (10) are satisfied
by the penalized least squares estimator m̂ = argminn−1 ∑n

i=1(Yi − m(Zi))
2 + λ‖m‖F for

an appropriate choice of λ (see Appendix E). For example, we might choose F to be the
absolutely convex hull {∑j βjφj : ‖β‖�1

≤ 1} of a sequence of basis functions satisfying∑∞
j=1 Eφ2

j (Zi) < ∞. It is Donsker (van der Vaart and Wellner (1996), Section 2.13.2) and

3If an estimator satisfies (11), a combination of two simple conditions implies efficiency: spanF = S and
v(·)S ⊆ S . The first says that we correct for all error functions m̂−m permitted by our assumption that m ∈ S , and
waste no effort on those (in S⊥) ruled out by it. The second holds when the conditional variance v(z) is sufficiently
simple relative to S , for example, when v(z) is constant or when the model class S is fully nonparametric in the
sense that it contains an approximation to every square integrable function.
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the corresponding estimator m̂ is �1-penalized regression in this basis. This approach is easy
to implement and performs well in simulation when λ is chosen by cross-validation. In our
simulations, we use a class of this type defined in terms of a basis of scaled Hermite polyno-
mials. Note that the requirement of a square summable basis rules out the settings commonly
used in high-dimensional statistics, in which sparsity and incoherence properties of the basis
functions φ1, φ2, . . . play a crucial role (e.g., Candes and Tao (2007)).

REMARK 3. The choices we make for m̂ and F reflect assumptions about the regres-
sion function m. In addition to nonparametric assumptions like smoothness, we may make
parametric or semiparametric assumptions. A semiparametric assumption distinguishes Ex-
amples 2 and 3, which consider the average partial effect for arbitrary functions m(x,w) and
for functions of the form m(x,w) = μ(x) + wτ(x), respectively.

In the latter case, which we discuss in detail in Section 3, the tangent space spanF is
smaller than the space of all square integrable functions, and the Riesz representer γF for
ψ(·) will be the orthogonal projection onto spanF of the Riesz representer γL2 for ψ(·) on
the tangent space of all square-integrable functions. An important consequence is that, under
our efficiency condition vγψ ∈ S , the optimal asymptotic variance in Example 3 is smaller
than that in Example 2.4 This reflects the ease of estimating the average partial effect in the
conditionally linear model relative to the general case.

Naturally, such an estimator will be considered superefficient if we entertain the possibility
that m(x,w) does not have the form μ(x) + wτ(x), that is, if our regularity condition S ⊆
spanF is not satisfied. In this case, our weights fail to adjust for the deviation m̂ − m for
some possible regression function m ∈ S in a neighborhood of m̂, and any gain in efficiency
possible by doing so is, in a local minimax sense, spurious. Characterization of the behavior
of our estimator under this form of misspecification is important but beyond the scope of this
paper.

This phenomenon is not unique to our approach; for additional discussion of the choice
of tangent space when estimating a Riesz representer see, for example, Remark 2.5 of
Chernozhukov et al. (2018) and Section 3 of Robins et al. (2007). It pervades the litera-
ture on inference in high dimensional statistics, which typically involves an estimate of the
Riesz representer on an appropriate tangent space of high-dimensional parametric functions
(e.g., Athey, Imbens and Wager (2018), Javanmard and Montanari (2014), Zhang and Zhang
(2014)). For example, when estimating a mean with outcomes missing at random in a high-
dimensional linear model m(x,w) = wxT β , γψ is the best linear-in-x approximation to the
inverse propensity weights w/e(x).

REMARK 4. Our assumption that ψ(·) has a square-integrable Riesz representer γψ ,
equivalent to its mean-square continuity, is necessary in the sense that ψ(m) does not have
a regular estimator when it is violated (Theorem 2.1 van der Vaart (1991), see Section B.1.2
here for details). If F has a finite uniform entropy integral, it is also sufficient. Theorem 1
requires no additional conditions on γψ because under this condition on F , the square inte-
grability of γψ implies our condition that γψF is Donsker (van der Vaart and Wellner (1996),
Example 2.10.23).

In the context of Example 1, in which γψ(x,w) is the inverse probability weight w/e(x)

for e(x) = P [Wi = 1 | Xi = x], this means that all we require of e(x) is that Eγ 2
ψ(Xi,Wi) =

4The difference in asymptotic variance between estimators using weights converging to γL2 (Example 2)

and weights converging to γF (Example 3) is Ev(Z)[γ 2
L2

(Z) − γ 2
F (Z)] = Ev(Z)[γL2(Z) − γF (Z)]2 +

2Ev(Z)γF (Z)[γL2(Z) − γF (Z)]. The first term in this decomposition is positive and the second term is zero
if vγF ∈ spanF , as in this case EγL2 (Z)[v(Z)γF (Z)] = ψ(vγF ) = EγF (Z)[v(Z)γF (Z)].
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E1/e(Xi) < ∞. D’Amour et al. (2021) highlights the need for a weak condition like this,
showing that the usual “strict overlap” condition that e(x) is bounded away from zero implies
strong constraints on the conditional distribution of Xi | Wi . Chen, Hong and Tarozzi (2008)
discusses the estimation of parameters defined by nonlinear moment conditions using overlap
assumptions comparable to what we use here.

In simulation settings in which γψ(Zi) has a spiky distribution, our estimator sometimes
outperforms a double robust oracle estimator that weights using the true Riesz representer
γψ , while a typical double robust estimator performs substantially worse than this oracle es-
timator. This suggests that common responses to limited overlap, like changing the estimand
(e.g., Crump et al. (2009), Li, Morgan and Zaslavsky (2018)) or assuming a semiparametric
model as in Remark 3, may not be needed as frequently with our approach.

REMARK 5. Although we assume no regularity conditions on the Riesz representer γψ ,
our weights γ̂i still estimate it consistently. This is a universal consistency result, in line
with well-known results about k-nearest neighbors regression and related estimators (Lugosi
and Zeger (1995), Stone (1977)). Heuristically, the reason for this phenomenon is that the
Riesz representer γψ is the unique5 weighting function that sets a population-analogue of
Ih,F to 0; because γ̂ comes close to doing the same, it must also approximate γψ . This
universal consistency property is not what controls the bias of our estimator ψ̂ . In fact, the
rate of convergence of γ̂i to γψ(Xi) is in general too slow for standard arguments for plug-in
estimators to apply. However, it plays a key role in understanding why we get efficiency under
heteroskedasticity even though we choose our weights by solving an optimization problem
(8) that is not calibrated to the conditional variance structure of Yi .

To understand this phenomenon, observe that under the conditions of Theorem 1, the con-
ditional bias term n−1 ∑n

i=1 h(Zi, m̂ − m) − γ̂i(m̂(Zi) − m(Zi)) in our error is oP (n−1/2). It
is therefore unnecessary to make an optimal bias-variance tradeoff by this sort of calibration
to get efficiency under heteroskedasticity and heteroskedasticity-robust confidence intervals;
the asymptotic behavior of our estimator is determined by the asymptotic behavior of our
noise term n−1 ∑n

i=1 γ̂iεi and, therefore, by the limiting weights γψ(Zi).
For the same reason, it is not necessary to know the error scale ‖m̂ − m‖F to form asymp-

totically valid confidence intervals. We stress that this is an asymptotic statement; in finite
samples, there are strong impossibility results for uniform inference that is adaptive to the
scale of an unknown signal (Armstrong and Kolesár (2018)). Furthermore, tuning approaches
that estimate and incorporate individual variances σi into the minimax weighting problem (8)
like those discussed in Armstrong and Kolesár (2017) may offer some finite-sample improve-
ment.

1.4. Comparison with double-robust estimation. Perhaps the most popular existing
paradigm for building asymptotically efficient estimators in our setting is via constructions
that first compute stand-alone estimates m̂(·) and γ̂ψ(·) for the regression function and the
Riesz representer, and then plug them into the following functional form (Chernozhukov et al.
(2016), Newey (1994), Robins and Rotnitzky (1995)):

(12) ψ̂DR = 1

n

n∑
i=1

[
h(Zi, m̂) − γ̂ψ(Zi)

(
m̂(Zi) − Yi

)]
,

5This uniqueness is violated when the tangent space spanF that ψ acts on is not the space of all square inte-
grable functions. However, the dual characterization Lemma 2 shows that our weights must converge to a function
in this tangent space, and it follows that they converge to the unique Riesz representer γψ on this tangent space.
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or an asymptotically equivalent expression (e.g., van der Laan and Rubin (2006)). This esti-
mator has a long history in the context of many specific estimands, for example, the afore-
mentioned AIPW estimator for the estimation of a mean with outcomes missing at random
(Cassel, Särndal and Wretman (1976), Robins, Rotnitzky and Zhao (1994)). In recent work,
Chernozhukov, Newey and Robins (2018) describe a general approach of this type, mak-
ing use of a novel estimator for the Riesz representer of a functional γψ in high dimensions
motivated by the Dantzig selector of Candes and Tao (2007).

In considerable generality, this estimator ψ̂DR is efficient when we use sample splitting6

to construct m̂ and these estimators satisfy (Chernozhukov et al. (2018), Zheng and van der
Laan (2011))

(13)
1

n

n∑
i=1

[
γ̂ψ(Zi) − γψ(Zi)

][
m̂(Zi) − m(Zi)

] = oP

(
n−1/2)

.

Taking the Cauchy–Schwarz bound on this bilinear form results in a well-known sufficient
condition on the product of errors, ‖γ̂ψ − γψ‖L2(Pn)‖m̂ − m‖L2(Pn) = oP (n−1/2). This phe-
nomenon, that we can trade off accuracy in how well the two nuisance functions m and γψ

are estimated, is called double-robustness.
While the estimator ψ̂AML defined in (7) shares the form of ψ̂DR, it is not designed to be

double robust. The weights γ̂ used in ψ̂AML are optimized for the task of correcting the error
of the plugin estimator ψ(m̂) when our assumptions on the regression error function m̂ − m

are correct. When this is the case and the class F characterizing our uncertainty about this
function is sufficiently small (e.g., Donsker), this allows us to be completely robust to the
difficulty of estimating the Riesz representer γψ . Our estimator will be efficient essentially
because the error γ̂ − γψ will be sufficiently orthogonal to all functions f ∈ F that (13) will
be satisfied uniformly over the class of possible regression error functions m̂ − m ∈ F . As
the existence of an estimator m̂ whose error m̂ − m is tight in the gauge of some Donsker
class F is equivalent to the existence of an oP (n−1/4)-consistent estimator of m, relative to
the aforementioned sufficient condition on the product of error rates, this characterization
completely eliminates regularity requirements on the Riesz representer γψ while requiring
the same level of regularity on the regression function m.

This type of phenomenon is not unique to our approach. The higher order influence func-
tion estimator of Robins et al. (2017) is efficient under the minimal Hölder-type smoothness
conditions on γψ and m. This includes the case where either m or γψ admits an oP (n−1/4)-
consistent estimator with no conditions on the other, as well as possibilities interpolating
these in which neither does (Robins et al. (2009)). Furthermore, Newey and Robins (2018)
show that, if m̂ and γ̂ψ are appropriately tuned series estimators fit using a three-way cross-
fitting scheme, ψ̂DR is efficient under minimal or nearly minimal Hölder-type smoothness
conditions. They also show that for this m̂, a cross-fit plug-in estimator n−1 ∑n

i=1 h(Zi, m̂)

will be efficient if m is Hölder-smooth enough to admit an oP (n−1/4)-consistent estimator,
and beyond this regime exhibits some double robustness—it is also efficient when m is less
smooth and γψ is smooth enough.

The use of undersmoothed, that is, less biased than variable, nuisance estimators seems
to be an important ingredient in estimators that beat the error rate product bound (see also
Kennedy (2020), van der Laan, Benkeser and Cai (2019)). Both here and in Newey and

6In particular, this result holds if we use the cross-fitting construction of Schick (1986), where separate data
folds are used to estimate the nuisance components m̂ and γ̂ψ and to compute the expression (12) given those
estimates. The three-way sample splitting scheme of Newey and Robins (2018), discussed below, refines this by
using different folds to estimate the two nuisance functions, and the remaining ones to compute the expression
(12).
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Robins (2018), γψ is estimated by solving a set of Riesz representer estimating equations (5)
subject to weak regularization or constraints. Furthermore, when F is a ball in a reproduc-
ing kernel Hilbert space, the minimax linear estimator (ψ̂AML with m̂ ≡ 0) is equivalently
described as a plug-in using a undersmoothed ridge regression estimator m̂ (Kallus (2020),
Theorem 22). Hirshberg, Maleki and Zubizarreta (2019) show that this estimator is efficient
essentially whenever ‖m‖F < ∞.

1.5. Comparison with minimax linear and balancing estimators. As discussed above,
our approach is primarily motivated as a refinement of conditional-on-design minimax lin-
ear estimators as developed and studied by a large community over the past decades (e.g.,
Donoho (1994), Ibragimov and Khas’minskiı̆ (1984), Juditsky and Nemirovski (2009)); how-
ever, our focus is on its behavior in a random-design setting, as in the literature on semipara-
metrically efficient inference and local asymptotic minimaxity, including results on doubly
robust methods (e.g., Bickel et al. (1998), Robins and Rotnitzky (1995), van der Laan and Ru-
bin (2006)). The conceptual distinction between these two settings is strong in causal infer-
ence and missing data problems, where in the former we consider an adversary that chooses
m(·) having observed the realized covariates and pattern of missing data, and in the latter we
consider an adversary that chooses m(·) having observed no part of the realized data.

We are aware of three estimators that can be understood as special cases of our augmented
minimax linear estimator (7). In the case of parameter estimation in high-dimensional linear
models, Javanmard and Montanari (2014) propose a type of debiased lasso that combines
a lasso regression adjustment with weights that debias the �1-ball, a convex class known to
capture the error of the lasso; Athey, Imbens and Wager (2018) develop a related idea for
average treatment effect estimation with high-dimensional linear confounding; and Kallus
(2018, 2020) proposes analogs for treatment effect estimation and policy evaluation, a spe-
cial case of Example 4, that adjust for nonparametric confounding using weights that de-
bias the unit ball of a reproducing kernel Hilbert space. The contribution of our paper rel-
ative to this line of work lies in the generality of our results, and also in characterizing the
asymptotic variance of the estimator under heteroskedasticity and proving efficiency in the
fixed-dimensional nonparametric setting. Given heteroskedasticity, the aforementioned pa-
pers prove

√
n-consistency but do not characterize the asymptotic variance directly in terms

of the distribution of the data; instead, they express the variance in terms of the solution to an
optimization problem analogous to (8).

In the special case of mean estimation with outcomes missing at random, the optimization
problem (8) takes on a particularly intuitive form, with

(14) Ih,F (γ ) = sup
f ∈F

{
1

n

n∑
i=1

(1 − Wiγi)f (Xi,1)

}

measuring how well the γ -weighted average of f (x,1) over the units with observed out-
comes matches its average over everyone. In other words, the minimax linear weights en-
force “balance” between these subsamples, which has been emphasized as fundamental to
this problem by several authors including Rosenbaum and Rubin (1983) and Hirano, Imbens
and Ridder (2003). Recently, there has been considerable interest in the use of balancing
weights, chosen to control Ih,F or a variant, in linear estimators and in augmented linear es-
timators (7) like those we consider here (Athey, Imbens and Wager (2018), Chan, Yam and
Zhang (2016), Graham, De Xavier Pinto and Egel (2012), Graham, Pinto and Egel (2016),
Hainmueller (2012), Imai and Ratkovic (2014), Kallus (2020), Ning, Peng and Imai (2017),
Wang and Zubizarreta (2017), Wong and Chan (2018), Zhao (2019), Zubizarreta (2015)). In
addition to generalizing beyond the missing-at-random problem, our Theorem 2 provides the
sharpest results we are aware of for balancing-type estimators in this specific problem.
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To do this, we bring together arguments from two strands of the balancing literature. The
first focuses on balancing small finite-dimensional classes, and in several instances it has been
shown that when tuned so that Ih,F (γ̂ ) is sufficiently small, the linear estimator is efficient
under strong assumptions on both m and γψ (Chan, Yam and Zhang (2016), Fan et al. (2016),
Graham, De Xavier Pinto and Egel (2012), Wang and Zubizarreta (2017)). The arguments
used to establish these results rely on the convergence of γ̂ to γψ at sufficient rate, much
like those used with the estimators discussed in the previous section. The second focuses on
balancing high or infinite-dimensional classes, and in several instances it has been shown
that when tuned so that Ih,F (γ̂ ) = OP (n−1/2), a level of balance that is attainable under
assumptions comparable to ours, the linear estimator is

√
n-consistent and the augmented

linear estimator is
√

n-consistent and asymptotically unbiased (Athey, Imbens and Wager
(2018), Kallus (2020), Wong and Chan (2018)). The arguments used to establish these results
fundamentally rely on balance to bound the estimator’s bias, and do not fully characterize the
estimator’s asymptotic distribution. Our argument is a refinement of this one, using balance
to do the bulk of the work, but relying on the convergence of the balancing weights γ̂ to
γψ to characterize the asymptotic distribution of our estimator and to establish asymptotic
unbiasedness under weaker conditions.

2. Estimating linear functionals. In this section, we give a more general characteriza-
tion of the behavior of our estimator. We begin by sketching our argument, which is based on
a decomposition of our estimator’s error into a bias-like term and a noise-like term. We con-
sider error relative to a sample-average version of our estimand, ψ̃(m) = n−1 ∑n

i=1 h(Zi,m),
as the difference ψ(m) − ψ̃(m) is out of our hands:

ψ̂AML − ψ̃(m) = 1

n

n∑
i=1

h(Zi, m̂) − γ̂i

(
m̂(Zi) − Yi

) − h(Zi,m)

= 1

n

n∑
i=1

h(Zi, m̂ − m) − γ̂i(m̂ − m)(Zi)︸ ︷︷ ︸
bias

+ γ̂i

(
Yi − m(Zi)

)︸ ︷︷ ︸
noise

.

(15)

In Appendix A, we prove finite sample bounds on the bias term and the difference between
the noise term and that of the oracle estimator with weights γψ(Zi). Our estimator will be
asymptotically linear, with the influence function of the oracle estimator, if both of these
quantities are op(n−1/2). We establish these bounds in three steps.

Step 1. We bound n−1 ∑n
i=1(γ̂i − γ �

i )2 for γ �
i = γψ(Zi). To do this, we work with a dual

characterization of our weights γ̂i as evaluations γ̂ψ(Zi) of a penalized least squares estimate
of the Riesz representer γψ :

γ̂ψ = argmin
g

{
‖g‖2

L2(Pn) − 2

n

n∑
i=1

h(Zi, g) + σ 2

n
‖g‖2

F

}

= argmin
g

{
‖g − γψ‖2

L2(Pn) − 2

n

n∑
i=1

hγψ (Zi, g) + σ 2

n
‖g‖2

F

}
,

(16)

where hγ (z, f ) = h(z, f )− γ (z)f (z). Here, the term involving hγψ plays the role of “noise”
in our least squares problem, as it has mean zero for any function f ∈ spanF . The first
characterization is established using strong duality in Lemma 2 and the second is derived by
completing the square.

Step 2. We bound the difference between our noise term and that of the oracle estimator,
n−1 ∑n

i=1(γ̂i − γ �
i )(Yi − m(Zi)), using the result of Step 1.
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Step 3. We bound our bias term by ‖m̂ − m‖FIh,F (γ̂ ), where as a consequence of the
definition of our weights γ̂ in (8),

(17) I 2
h,F (γ̂ ) ≤ I 2

h,F
(
γ �) + σ 2

n2

n∑
i=1

(
γ �
i

2 − γ̂ 2
i

)
.

The first term on the right-hand side can be characterized using empirical process techniques,
as Ih,F (γ �) is the supremum of the empirical measure indexed by the class of mean-zero
functions hγψ (·,F). And the second term can be shown, using some simple arithmetic, to be
op(n−1) when γ̂ is consistent. Thus, our bias term will be bounded by ‖m̂ − m‖F [IF (γ �) +
op(n−1/2)].
Step 3’. We refine this bound to take advantage of the consistency of m̂. To do this, we
show that our estimator behaves essentially the same way as an oracle that knows a sharp
bound ‖m̂ − m‖L2(Pn) ≤ ρ on our regression error and uses a refined model class F ′

ρ = {f :
‖f ‖2

F + ρ−2‖f ‖2
L2(Pn) ≤ 1} in place of F . The key insight is that this substitution changes

the dual (16) and its solution γ̂ very little, so replacing F with F ′
ρ in our bound (17) yields an

inequality that is approximately satisfied. Given the assumptions of Theorem 1, the resulting
refined bias term bound will be op(n−1/2), as ‖m̂ − m‖F ′

ρ
= Op(1) for ρ → 0 given our

tightness and consistency assumptions (10) and Ih,F ′
ρ
(γ �) = op(n−1/2) when ρ → 0 given

our Donskerity and equicontinuity assumptions.
We will now state our main result. Due to space constraints, all proofs are in the Appen-

dices.

Definitions. To characterize the size of a set G, we will use its Rademacher complex-
ity, Rn(G) = E supg∈G |n−1 ∑n

i=1 εig(Zi)| where εi = ±1 each with probability 1/2 in-
dependently and independently of the sequence Z1 . . .Zn, as well as the uniform bound
M∞(G) = supg∈G‖g‖∞. Letting hγ (z, f ) = h(z, f ) − γ (z)f (z), our bound depends on the
Rademacher complexity of the classes Fr , hγψ (·,Fr ), and hγ̃ (·,Fr ) for a regularized ap-
proximation γ̃ to γψ . The regularity of that approximation and, therefore, the regularity of
γψ itself, will be a factor in a higher order term. Without loss of generality, we will write our
weights as function evaluations γ̂i = γ̂ (Zi), and we will write a ∨ b and a ∧ b, respectively,
for the maximum and minimum of a and b and a � b and a � b meaning a = O(b) and
a = o(b).

THEOREM 2. In the setting described in Section 1.3, consider the estimator ψ̂AML de-
fined in (7) with σ > 0 and F a uniformly bounded absolutely convex set of functions for
which h(·,F) is pointwise bounded. Let γψ be the Riesz representer of ψ on the tangent
space spanF and γ̃ minimize ‖γψ − γ ‖2

L2(Q) + (σ 2/n)‖γ ‖2
F for Q = P or Q = Pn. If F is

‖·‖L2(Q)-closed, this argmin exists and is unique, and for any positive δ, on the intersection of
an event of probability 1 − 4δ − 3 exp(−c2nr2

Q/M2∞(F)) and one on which ‖m̂ − m‖F ≤ sF
and ‖m̂ − m‖L2(Pn) ≤ sL2(Pn),

‖γ̂ − γ̃ ‖2
L2(Pn) ≤ 6

(
nr4/σ 2 + ‖γ̃ ‖F r2) ∨ 8r2 for r = rQ ∨ rM,

rQ = inf
{
r > 0 : Rn(Fc0r ) ≤ c1r

2/M∞(F)
}
,

rM =
{

inf
{
r > 0 : Rn

(
hγ̃ (·,Fr )

) ≤ δr2/2
}

for Q = P,

inf
{
r > 0 : Rn

(
hγψ (·,Fr )

) ≤ δr2/2
}

for Q = Pn,

(18)
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and for ιγ (y, z) = h(z,m) − γ (z)(m(z) − y) − ψ(m) and any positive ε ≤ 9/16,

√
n

∣∣∣∣∣ψ̂AML − ψ(m) − n−1
n∑

i=1

ιγ̃ (Yi,Zi)

∣∣∣∣∣
≤ (1/

√
δ)‖v‖∞‖γ̂ − γ̃ ‖L2(Pn)

+ √
2nsFφ

(
sL2(Pn)

sF
∨ c0r ∨ 6σ

ε
√

n

)(
1 + 2ε/

√
1 − ε2/36

)
+ √

2σsF
(‖γψ‖L2(Pn) ∧ ‖γψ‖1/2

L2(Pn)‖γ̂ − γψ‖1/2
L2(Pn)

)
/

√
1 − ε2/36.

(19)

Here, c0 . . . c2 are universal constants and

φ(ρ) = 2Rn(hγψ (·,F√
2ρ

))

δ
∨ 216

ε2

(
r2 + σ 2‖γ̃ ‖F

n

)
∨ 36σ 2‖γψ‖L2(P )

ε2
√

δc0nr
∨ 288σ 2

ε2n
.

Generalization to classes F that are not uniformly bounded is discussed in Appendix A.6.
In the asymptotic setting we considered in the Introduction, in which the distribution P ,

the class F and the tuning parameter σ are fixed, this result implies Theorem 1. The key
steps of the proof follow. We use the bound above for Q = Pn and the bound ‖γ̃ ‖F ≤
(
√

n/σ)‖γψ‖L2(Pn), which holds because ‖γ − γψ‖2
L2(Pn) + (σ 2/n)‖γ ‖2

F is smaller at its
minimizer than at γ = 0.

1. As γψ is fixed, the regularized approximation γ̃ converges to γψ in ‖·‖L2(Pn) as the
weight of regularization σ 2/n → 0, so our “influence function” ιγ̃ converges to the limit ιγψ .

2. Given our tightness and consistency assumptions (10), we can take sF ≥ ‖m̂ − m‖F
to be of constant order and sL2(Pn) ≥ ‖m̂ − m‖L2(Pn) to be converging to zero on a high
probability event. Thus, our remainder bound (19) goes to zero if

√
nφ(sn) → 0 for any

sequence sn converging to zero and r � n−1/4 and, therefore, ‖γ̂ − γ̃ ‖L2(Pn) → 0 (via (18)).
3. Both of these conditions hold if limt→0

√
nRn(Ft ) = limt→0

√
nRn(hγψ (·,Ft )) = 0.

The first limit is zero because F is Donsker. And the second is zero for the same reason,
as hγψ (·,Ft ) ⊆ Hω(t) where H = hγψ (·,F) is Donsker and ω(t) = supf ∈Ft

‖hγψ (·, f )‖L2(P )

satisfies limt→0 ω(t) = 0 under our equicontinuity and uniform boundedness assumptions.

We generally recommend that the tuning parameter σ be chosen without consideration of
sample size. The simple heuristic σ 2 ≈ maxi≤n Var[Yi | Zi] arises from the minimax inter-
pretation of our estimator, in which σ 2 is a bound on the conditional variance.7 However,
ψ̂AML is fairly robust to our choice of σ , and Theorem 2 justifies a wide range of choices.

To consider the impact of σ , we look at the role it plays in the dual characterization (16) of
our weights. As discussed above, this is a penalized least squares problem for estimating γψ .
From this perspective, taking σ to be of constant order is regularizing very weakly, and we
can improve the rate of convergence of γ̂ to our regularized approximation γ̃ by increasing
σ . On the other hand, consideration of the primal (8) shows that this comes at a cost in terms
of the maximal conditional bias Ih,F (γ̂ ), and if we have confidence that m̂ − m is in a small
class F , we can decrease σ so that Ih,F (γ̂ ) and, therefore, our bias is zero or nearly zero.
Recalling our discussion in Section 1.4, our choice of σ essentially trades off between two
properties of the error γ̂ψ − γψ : its degree of orthogonality to the specific functions in F ,
and its degree of “orthogonality” to all square integrable functions, that is, its magnitude
‖γ̂ − γψ‖L2(P ).

7In our minimax framework in Section 1.1, we also assume that ‖m̂ − m‖F ≤ 1. If we instead believe that

‖m̂ − m‖F ≈ α, our heuristic suggests σ 2 ≈ α−2 maxi≤n Var[Yi | Zi ].
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When we choose σ proportional to
√

nr , ψ̂AML is essentially a standard doubly robust
estimator. Our estimate of γψ is not undersmoothed as discussed in Section 1.4; with this
tuning, if ‖γψ‖F < ∞, our weights converge to γψ in empirical mean square at the rate r ,
typically the minimax rate for estimating γψ satisfying ‖γψ‖F < ∞ (see Appendix B.2).
The asymptotic linearity of ψ̂AML may then follow from the rate-product condition ‖γ̂ψ −
γψ‖L2(Pn)‖m̂ − m‖L2(Pn) = oP (n−1/2), which is a sufficient condition when we use sample
splitting to fit m̂.8 However, to improve our rate of convergence, we sacrifice orthogonality
of γ̂ψ − γψ to possible realizations of m̂ − m in F . This makes our estimator sensitive to the
rate of convergence of m̂ − m. We see this in our bound (19); the term proportional to σ will
be large.

3. Estimating the average partial effect in a conditionally linear outcome model. As
a concrete instance of our approach, we consider the problem of estimating an average partial
effect, assuming a conditionally linear treatment effect model. A statistician observes features
X ∈ X , a treatment dose W ∈R, and an outcome Y ∈ R and wants to estimate ψ , where

(20) ψ = E
[
τ(X)

]
assuming E[Y |X = x,W = w] = μ(x) + wτ(x).

By Theorem 1, our AML estimator will be efficient for ψ under regularity conditions when
Var[Yi |Xi,Wi] = v(Xi) is only a function of Xi .

In the classical case of an unconfounded binary treatment, the model (20) is general
and the estimand ψ corresponds to the average treatment effect (Imbens and Rubin (2015),
Rosenbaum and Rubin (1983)). At the other extreme, if W is real valued but τ(x) = τ is
constrained not to depend on x, then (20) reduces to the partially linear model as studied by
Robinson (1988). The specific model (20) has recently been studied by Athey, Tibshirani and
Wager (2019), Graham and Pinto (2018) and Zhao, Small and Ertefaie (2017). We consider
the motivation for (20) in Section 4 in the context a real-world application; here, we focus on
estimating ψ in this model.

Both μ(·) and τ(·) in the model (20) are assumed to have finite gauge with respect to an
absolutely convex class H, and we define

(21) FH = {
m : m(x,w) = μ(x) + wτ(x),‖μ‖2

H + ‖τ‖2
H ≤ 1

}
.

We can simplify the definition (8) of the minimax weights for this class:

(22) γ̂ = argmin
γ∈Rn

sup
μ∈H

[
1

n

n∑
i=1

γiμ(Xi)

]2

+ sup
τ∈H

[
1

n

n∑
i=1

(Wiγi − 1)τ (Xi)

]2

+ σ 2‖γ ‖2

n2 .

Given these weights, the augmented minimax linear estimator is

(23) ψ̂AML = 1

n

n∑
i=1

(
τ̂ (Xi) − γ̂i

(
μ̂(Xi) + Wiτ̂ (Xi) − Yi

))
.

Our formal results above give conditions under which it is asymptotically efficient. In this sec-
tion, our goal is to explore the behavior of this estimator empirically. For comparison, we in-
troduce some alternatives. The first is the minimax linear estimator ψ̂MLIN = n−1 ∑n

i=1 γ̂iYi ,
that is, ψ̂AML with m̂ ≡ 0. The others are variants of the doubly robust estimator ψ̂DR.
In this setting, the Riesz representer has the form γψ(x,w) = (w − e(x))/vw(x) with

8It is common to use sample splitting to fit γ̂ψ as well. Our bound (18) does not justify this, as it concerns em-
pirical mean squared error on the sample used to estimate γ̂ψ . However, in the course of our proof in Appendix A,
we show that with this tuning, γ̂ψ converges to γψ in population mean square at the rate r , which is sufficient.
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e(x) = E[W |X = x] and vw(x) = Var[W |X = x], so we consider a natural doubly robust
estimator based on plug-in estimates of these quantities,9

(24) ψ̂DR = 1

n

n∑
i=1

(
τ̂ (Xi) −

(
Wi − ê(Xi)

v̂w(Xi)

)(
μ̂(Xi) + Wiτ̂ (Xi) − Yi

))
.

Below, we numerically compare the relative merits of minimax linear, augmented minimax
linear, and plug-in doubly robust estimation of the average partial effect.

3.1. A simulation study. To better understand the merits of different approaches to aver-
age partial effect estimation, we conduct a simulation study. As baselines, we consider the
plug-in doubly robust estimator defined in (24), where ê(·) and v̂w(·) are fit separately, and an
oracle doubly robust estimator that uses the same functional form (24) but with oracle values
of e(Xi) and vw(Xi). We compare these baselines to an augmented minimax linear estimator
(AML) that uses minimax linear weights for a class FH as described in (23), as well as an
augmented minimax linear estimator over an extended class (AML+), a variant that uses the
same functional form but with the minimax linear weights for an extended class FH+ that
includes a set of estimated functions. We also consider the simpler minimax linear estimator
for each class. We provide further implementation details below.

3.1.1. Construction of augmented minimax linear estimators. We first describe how we
implement our approach, an augmented minimax linear estimator for the class FH described
in the section above (21). We take H to be the absolutely convex hull of a mean-square
summable set of basis functions as described in Remark 2. Specifically, we use a basis se-
quence φj = ajφ

′
j , where φ′

j are d-dimensional interactions of Hermite polynomials that are
orthonormal with respect to the standard normal distribution. The sequence of weights {aj }
varies with order k of the polynomial φj ; aj = 1/(k

√
nk,d) where nk,d is the number of terms

of order k. Observe that
∑∞

j=1 a2
j = ∑∞

k=1 1/k2 < ∞ and therefore
∑∞

j=1 Eφ2
j (X) < ∞ for

standard normal X or X with bounded density with respect to the standard normal.
Following our discussion in Remark 2, we take an �1-penalized least squares approach

to estimating the regression function m. Rather than using a fully nonparametric estimate
m̂(x,w), which would not be in our class FH, we fit a conditionally linear model μ̂(x) +
wτ̂(x) using the R-lasso method proposed by Nie and Wager (2017). To do this, we first
estimate the marginal response function r(x) = E[Yi |Xi = x] and e(x) via a cross-validated
�1-penalized regression (Tibshirani (1996)) on the basis φ(x). We then fit τβ(x) = φ(x)T β by
minimizing the �1-penalized R-loss n−1 ∑n

i=1[Yi − r̂(Xi)− (W − ê(Xi))τβ(Xi)]2 +λ‖β‖�1
,

with λ chosen by cross-validation. Finally, we set μ̂(x) = r̂(x) − τ̂ (x)ê(x). As discussed in
Nie and Wager (2017), this method is appropriate when the treatment effect function τ(x) is
simpler than r(x) and e(x), and allows for faster rates of convergence on τ(x) than the other
regression components whenever the nuisance components can be estimated at op(n−1/4)

rates in root-mean squared error.
We consider two options for the bias-correcting weights γ̂ . The simpler option is to use the

minimax weights for the class FH described in (21). This choice is directly motivated by our
formal results given in Theorem 1. As an alternative, motivated by popular idea of propensity-
stratified estimation in the causal inference literature (Rosenbaum and Rubin (1984)), we use

9For example, a random forest version of this estimator is available in the grf package of Athey, Tibshirani
and Wager (2019). In the binary treatment assignment case Wi ∈ {0,1}, we know that vw(x) = e(x)(1 − e(x));
and if we set v̂w(x) = ê(x)(1− ê(x)), then the estimator in (24) is equivalent to the augmented inverse-propensity
weighted estimator of Robins, Rotnitzky and Zhao (1994). For more general Wi , however, vw(x) is not necessarily
determined by e(x) and so we need to estimate it separately.
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minimax weights for an extended class FH+ where H+ extends H by adding to our basis
expansion φ(x) the following random basis functions:

• Multiscale strata of the estimated average treatment intensity ê(Xi) (we balanced over
histogram bins of width 0.05, 0.1 and 0.2),

• Basis elements obtained by depth-3 recursive dyadic partitioning (i.e., pick a feature, split
along its median and recurse), and

• Leaves generated by a regression tree on the Wi (Breiman et al. (1984)).

The underlying idea is that we may be able to improve the practical performance of the
method by opportunistically adding a small number of basis functions that help mitigate bias
in case of misspecification (i.e., when μ and τ do not have finite gauge ‖·‖H). The motivation
for focusing on transformations of ê(Xi) is that accurately stratifying on e(Xi) would suffice
to eliminate all confounding in the model (20).10 Because FH+ is a function of Z1 . . .Zn for
Zi = (Xi,Wi), it is not necessary to cross-fit to avoid biasing the “noise term” in our error
decomposition (15). With both FH and FH+, we take σ 2 = 1 in (22).

3.1.2. Baselines and software details. The baselines we consider combine the afore-
mentioned regression μ̂(x) + wτ̂(x) with various weighting schemes. The weights used
in the plug-in double robust estimator (24) involve ê as estimated above and an estimate
of vw(x) = Var[W | X = x], which we fit by cross-validated �1-penalized regression of
(Wi − ê(Xi))

2 on φ(Xi). The weights used in the double-robust oracle substitute the true
values of e(x) and vw(w) in our simulated design.

Tenfold cross-fitting is used throughout: where τ̂ (Xi) and μ̂(Xi) appear in (23) and (24),
we use estimators τ̂ (−i) and μ̂(−i) trained on the folds that do not include unit i. This reduces
dependence on (Yi,Xi,Wi) and, therefore, mitigates potential own-observation bias in ψ̂DR
(see, e.g., Chernozhukov et al. (2018)). However, we do get some dependence through the
estimates of r̂ and ê used to train τ̂ and through �1-penalty tuning parameters, which are
chosen once for all i by cross-validation. While this dependence could be eliminated using
a computationally demanding nested sample splitting scheme, we here follow the approach
taken in the grf package of Athey, Tibshirani and Wager (2019) and use a simplified scheme
described in Appendix C. Our theoretical results for ψ̂AML do not formally justify the use of
this cross-fitting scheme, as m̂(−i)(x,w) = μ̂(−i)(x) + wτ̂ (−i)(x) is a function of the fold
indicator fi as well as x,w, and for this reason ‖m̂ − m‖FH = ∞; however, this does not
seem to cause problems in our simulations.

All methods are implemented in the R package amlinear, and replication files are avail-
able at https://github.com/davidahirshberg/amlinear. We computed minimax linear weights
via the cone solver ECOS (Domahidi, Chu and Boyd (2013)), available in R via the package
CVXR (Fu et al. (2017)). When needed, we run penalized regression using the R package
glmnet (Friedman, Hastie and Tibshirani (2010)).

3.1.3. Simulation design. We considered data-generating distributions of the form

Xi ∼ N (0, Id×d), Wi |Xi ∼ LXi
, Yi |Xi, Wi = N

(
b(Xi) + Wiτ(Xi),1

)
,

for different choices of dimension d , treatment assignment distribution LXi
, baseline main

effect μ(·) and treatment effect function τ(·). We considered the following four setups, each
of which depends on a sparsity level k that controls the complexity of the signal.

10In the case of binary treatments Wi , this corresponds to the classical result of Rosenbaum and Rubin (1983),
who showed that the propensity score is a balancing score. With nonbinary treatments, E[Wi |Xi ] is not in general
a balancing score (Imbens (2000)); however, it is a balancing score for our specific model (20).

https://github.com/davidahirshberg/amlinear
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FIG. 1. Comparing augmented minimax linear estimation with minimax linear estimation. The solid line y = x

indicates equivalent performance and the dotted lines indicate improvements of 50%, 100%, 150%, etc. in root
mean squared error.

1. Beta-distributed treatment, Wi |Xi ∼ B(α(Xi),1 − α(Xi)), with ζ(x) = ∑k
j=1 xj/

√
k,

η(x) = sign(ζ(x))ζ 2(x), α(x) = max{0.05,min{0.95, 1/(1+ exp[−η(x)])}}, μ(x) = η(x)+
0.2(α(x) − 0.5), and τ(x) = −0.2.

2. Scaled Gaussian treatment, Wi |Xi ∼ N (λ(Xi), λ
2(Xi)), with η(x) = 2k−1 ∏k

j=1 xj ,
μ(x) = sign(η(x))

√|η(x)|, λ(x) = 0.1 sign(μ(x)) + μ(x), and τ(x) = max{x1 + x2,0}/2.
3. Poisson treatment, Wi |Xi ∼ Poisson(λ(Xi)), with τ(x) = k−1 ∑k

j=1 cos(πxj/3),

λ(x) = 0.2 + τ 2(x), and μ(x) = 4d−1 ∑d
j=1 xj + 2λ(x).

4. Log-normal treatment, log(Wi)|Xi ∼ N (λ(Xi),1/32), with ζ(x) = ∑k
j=1 xj/

√
k,

μ(x) = max{0,2ζ(x)}, λ(x) = 1/(1 + exp[− sign(ζ(x))ζ 2(x)]), and τ(x) = sin(2πx1).

3.2. Results. We first compare our augmented minimax linear estimators with the cor-
responding minimax linear estimators. Figure 1 compares the resulting mean-squared errors
for ψ across several variants of the simulation design (the exact parameters used are the same
as those used in Table 1). The left panel shows results where the weights are minimax over
FH, while the right panel has minimax weights over FH+ .

Overall, we see that the augmented minimax linear estimator is sometimes comparable to
the minimax linear one and sometimes substantially better. Thus, while results of Donoho
(1994) and Armstrong and Kolesár (2018) imply that the augmented estimator can be little
better than the minimax linear estimator for a convex signal class F in terms of its behavior
at a few specific signals m ∈ F , this does not appear representative of behavior in general.
Furthermore, as the bias of our augmented estimator is bounded as a proportion of ‖m̂−m‖F
rather than ‖m‖F , our approach offers a natural way to accommodate signals in some noncon-
vex signal classes: those for which, for some choice of m̂, the regression error function m̂−m

is well characterized in terms of some strong norm ‖·‖F . This can be the case, for example,
when estimating a vector of regression coefficients β by �1-penalized regression: ‖β̂ − β‖�1
will be small either if ‖β‖�1

is small or, to a degree determined by incoherence properties
of φ(X), if β is sparse (e.g., Lecué and Mendelson (2018)). This phenomenon offers some
explanation for the good behavior we observe empirically, as the functions μ(x) = φ(x)T βμ

and τ(x) = φ(x)T βτ defining our signal m(x,w) = μ(x)+wτ(x) have some degree of spar-
sity and ‖m̂ − m‖2

FH = ‖β̂μ − βμ‖2
�1

+ ‖β̂τ − βτ‖2
�1

.
In Table 1, we compare augmented minimax linear estimation with doubly robust esti-

mators, both using an estimated and an oracle Riesz representer. In terms of mean-squared
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TABLE 1
Performance of four methods described in Section 3.1 on the simulation designs from Section 3.1.3. We report

root-mean squared error, bias, and coverage of 95% confidence intervals averaged over 200 simulation
replications

Method Double rob. plugin Augm. minimax Augm. minimax+ Double rob. oracle

n p k rmse bias covg rmse bias covg rmse bias covg rmse bias covg

setup 1 600 6 3 0.13 0.03 0.98 0.14 0.03 0.98 0.13 0.00 0.98 0.18 −0.01 0.96
600 6 4 0.16 0.06 0.92 0.16 0.04 0.94 0.15 0.03 0.93 0.21 0.00 0.92
600 12 3 0.22 0.09 0.78 0.18 −0.00 0.87 0.17 0.05 0.90 0.27 −0.04 0.90
600 12 4 0.21 0.14 0.78 0.15 0.01 0.94 0.17 0.09 0.90 0.23 −0.03 0.93

1200 6 3 0.10 0.03 0.94 0.11 0.06 0.92 0.10 0.02 0.96 0.12 0.00 0.98
1200 6 4 0.11 0.03 0.94 0.11 0.05 0.92 0.10 0.02 0.96 0.13 0.00 0.94
1200 12 3 0.11 0.02 0.90 0.10 0.01 0.95 0.10 0.02 0.94 0.14 0.00 0.94
1200 12 4 0.15 0.06 0.86 0.11 0.00 0.92 0.12 0.04 0.90 0.16 −0.00 0.94

setup 2 600 6 1 0.15 0.12 0.52 0.11 0.09 0.74 0.08 0.02 0.94 0.09 0.00 0.92
600 6 2 0.23 0.22 0.08 0.21 0.20 0.04 0.09 0.07 0.85 0.10 0.00 0.94
600 12 1 0.16 0.14 0.44 0.12 0.11 0.62 0.08 0.03 0.93 0.08 0.00 0.98
600 12 2 0.27 0.26 0.02 0.25 0.24 0.00 0.11 0.09 0.76 0.10 0.01 0.95

1200 6 1 0.12 0.11 0.30 0.09 0.08 0.52 0.05 0.01 0.95 0.06 −0.00 0.96
1200 6 2 0.20 0.20 0.00 0.20 0.19 0.00 0.06 0.04 0.90 0.06 −0.00 0.96
1200 12 1 0.12 0.11 0.31 0.10 0.09 0.48 0.05 0.01 0.96 0.06 −0.00 0.98
1200 12 2 0.22 0.22 0.00 0.21 0.20 0.00 0.07 0.04 0.86 0.07 0.00 0.94

setup 3 600 6 3 0.23 0.23 0.04 0.14 0.13 0.44 0.11 0.09 0.72 0.08 −0.00 0.96
600 6 4 0.20 0.20 0.12 0.13 0.11 0.54 0.10 0.09 0.72 0.07 −0.00 0.96
600 12 3 0.25 0.24 0.03 0.21 0.20 0.10 0.12 0.10 0.70 0.08 −0.01 0.95
600 12 4 0.21 0.20 0.09 0.18 0.17 0.16 0.11 0.10 0.72 0.08 −0.01 0.94

1200 6 3 0.20 0.19 0.01 0.10 0.09 0.55 0.07 0.05 0.78 0.05 −0.01 0.97
1200 6 4 0.18 0.18 0.01 0.08 0.07 0.68 0.06 0.05 0.85 0.05 −0.01 0.96
1200 12 3 0.23 0.22 0.00 0.16 0.15 0.02 0.08 0.07 0.76 0.05 −0.00 0.96
1200 12 4 0.19 0.19 0.00 0.14 0.14 0.13 0.08 0.07 0.70 0.05 0.00 0.94

setup 4 600 6 4 0.22 0.16 0.84 0.16 −0.03 0.94 0.11 −0.02 1.00 0.16 0.03 0.94
600 6 5 0.20 0.14 0.88 0.15 −0.05 0.93 0.11 −0.02 1.00 0.15 0.00 0.93
600 12 4 0.23 0.15 0.86 0.18 −0.09 0.88 0.14 −0.04 0.96 0.17 −0.01 0.91
600 12 5 0.24 0.17 0.82 0.19 −0.09 0.89 0.13 −0.05 0.97 0.17 −0.01 0.94

1200 6 4 0.13 0.09 0.90 0.10 −0.03 0.94 0.07 −0.01 1.00 0.10 0.00 0.96
1200 6 5 0.14 0.08 0.91 0.11 −0.05 0.94 0.08 −0.01 1.00 0.11 0.00 0.94
1200 12 4 0.14 0.08 0.88 0.13 −0.07 0.88 0.08 −0.02 0.98 0.11 −0.00 0.94
1200 12 5 0.14 0.09 0.87 0.13 −0.07 0.90 0.08 −0.02 1.00 0.11 −0.00 0.96

error, our simple AML estimator already performs well relative to the main baseline (i.e.,
plug-in doubly robust estimation), and the AML+ estimator does better yet. Perhaps more
surprisingly, our methods sometimes also beat the doubly robust oracle, achieving compara-
ble control of bias with a substantial decrease in variance. This reduction in variance arises
from shrinkage due to the penalty term in (8). It costs us little bias then because, although the
oracle weights must be large to control bias for all square integrable regression errors m̂ − m

(i.e., to solve (4)), large weights are not necessary to control bias for m̂ − m in F (i.e., to
solve (5)).

In terms of coverage, some of our simulation designs are extremely difficult and all nono-
racle estimators have substantial relative bias. However, in settings 1 and 4, the asymptotics
appear to kick in and our estimators get close to nominal coverage.

4. The effect of lottery winnings on earnings. To test the behavior of our method in
practice, we revisit a study of Imbens, Rubin and Sacerdote (2001) on the effect of lottery
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winnings on long-term earnings. It is of considerable policy interest to understand how peo-
ple react to reliable sources of unearned income; such questions come up, for example, in
discussing how universal basic income would affect employment. In an attempt to get some
insight about this effect, Imbens, Rubin and Sacerdote (2001) study a sample of people who
won a major lottery whose prize is paid out in installments over 20 years. The authors then
ask how $1 in yearly lottery income affects the earnings of the winner.

To do so, the authors consider n = 194 people who all won the lottery, but got prizes of
different sizes ($1000–$100,000 per year).11 They effectively use a causal model E[Yi(w) |
Xi = x] = m(x) + τw for observations Yi = Yi(Wi) of the average yearly earnings in the six
years following winning Wi in yearly lottery payoff, where Xi denotes a set of p = 12 pre-
win covariates (year won, number of tickets bought, age at win, gender, education, whether
employed at time of win, earnings in six years prior to win). Here, Yi(w) represents the
average yearly earnings that would have occurred had, possibly contrary to fact, unit i won a
prize paying w dollars annually (e.g., Imbens and Rubin (2015)). The authors also consider
several other model specifications.

As discussed at length by Imbens, Rubin and Sacerdote (2001), although the lottery
winnings were presumably randomly assigned, we cannot assume exogeneity of the form
Wi ⊥⊥ {Yi(w) : w ∈ R} because of survey nonresponse. The data was collected by mailing out
surveys to lottery winners asking about their earnings, etc., so there may have been selection
effects in who responded to the survey. A response rate of 42% was observed, and older peo-
ple with big winnings appear to have been relatively more likely to respond than young people
with big winnings. For this reason, the authors only assume exogeneity conditionally on the
covariates, that is, Wi ⊥⊥ {Yi(w) : w ∈ R}|Xi , which suffices to establish that the aforemen-
tioned causal model is identified as a regression model m(x)+τw = E[Yi | Xi = x,Wi = w].

Here, we examine the robustness of the conclusions of Imbens, Rubin and Sacerdote
(2001) to potential effect heterogeneity. Instead of assuming that the slope τ in this model is a
constant, we let it vary with x and seek to estimate ψ = E[τ(X)]; this corresponds exactly to
an average partial effect in the conditionally linear model, which we studied in Section 3. In
our comparison, we consider 3 estimators that implicitly assume constant slope and estimate
τ , and 6 that allow τ(x) to vary and estimate E[τ(X)].

Among methods that assume constant slope, the first runs ordinary least squares for Yi

on Wi , ignoring potential confounding due to nonresponse. The second, which most closely
resembles the method used by Imbens, Rubin and Sacerdote (2001), controls for the Xi using
ordinary least squares, that is, it regresses Yi on (Xi,Wi) and considers the coefficient on
Wi . The third uses the method of Robinson (1988) with cross-fitting as in Chernozhukov
et al. (2018): it first estimates the marginal effect of Xi on Wi and Yi via a nonparametric
adjustment and then regresses residuals Yi − Ê[Yi |Xi] on Wi − Ê[Wi |Xi]. In each case, we
report robust standard errors obtained via the R-package sandwich (Zeileis (2004)).

The six methods that allow for treatment effect heterogeneity correspond to the five meth-
ods discussed in Section 3, along with a pure weighting estimator using the estimated Riesz
representer, ψ̂ = n−1 ∑n

i=1 γ̂ψ(Xi)Yi , with the same choice of γ̂ψ(·) as used in (24). For all
nonparametric regression adjustments, we run penalized regression as in Section 3, on a ba-
sis obtained by taking order-3 Hermite interactions of the 10 continuous features, and then
creating full interactions with the two binary variables (gender and employment), resulting in
a total of 1140 basis elements. For AML+, we include propensity strata of widths 0.05, 0.1
and 0.2 in the class H+.

11The paper also considers some people who won very large prizes (more than $100k per year) and some who
won smaller prizes (not paid in installments); however, we restrict our analysis to the smaller sample of people
who won prizes paid out in installments worth $1k–$100k per year.
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TABLE 2
Various estimates, estimators, and estimands for the effect of unearned income on earnings, using the data set of

Imbens, Rubin and Sacerdote (2001). The first three methods are justified under the assumption of no
heterogeneity in τ (x) (i.e., τ (x) = τ ), and estimate τ , while the latter six allow for heterogeneity and estimate

E[τ (X)]

Estimand Estimator Estimate std. err

partial effect OLS without controls −0.176 0.039
partial effect OLS with controls −0.106 0.032
partial effect residual-on-residual OLS −0.110 0.032
avg. partial effect plug-in Riesz weighting −0.175 —
avg. partial effect doubly robust plugin −0.108 0.042
avg. partial effect minimax linear weighting −0.074 —
avg. partial effect augm. minimax linear −0.091 0.044
avg. partial effect minimax linear+ weighting −0.083 —
avg. partial effect augm. minimax linear+ −0.097 0.045

Table 2 reports results using the nine estimators described above, along with standard error
estimates. We do not report standard errors for the three pure weighting methods, as these
may not be asymptotically unbiased and so confidence intervals should also account for bias.
The reported estimates are unitless; in other words, the majority of the estimators suggest
that survey respondents on average respond to a $1 increase in unearned yearly income by
reducing their yearly earnings by roughly $0.10.

Substantively, it appears reassuring that most point estimates are consistent with each
other, whether or not they allow for heterogeneity in τ(x). The only two divergent estimators
are the one that does not control for confounding at all, and the one that uses pure plug-in
weighting (which may simply be unstable here). From a methodological perspective, it is en-
couraging that our method (and here, also the plug-in doubly robust method) can rigorously
account for potential heterogeneity in τ(x) without excessively inflating uncertainty.
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SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/21-AOS2080SUPP; .pdf). We provide complete proofs for the
results in the main text, details about our simulation study, and a discussion of computational
issues.
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