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This paper develops a general theory on rates of convergence of pe-
nalized spline estimators for function estimation when the likelihood func-
tional is concave in candidate functions, where the likelihood is interpreted
in a broad sense that includes conditional likelihood, quasi-likelihood and
pseudo-likelihood. The theory allows all feasible combinations of the spline
degree, the penalty order and the smoothness of the unknown functions. Ac-
cording to this theory, the asymptotic behaviors of the penalized spline esti-
mators depends on interplay between the spline knot number and the penalty
parameter. The general theory is applied to obtain results in a variety of con-
texts, including regression, generalized regression such as logistic regression
and Poisson regression, density estimation, conditional hazard function esti-
mation for censored data, quantile regression, diffusion function estimation
for a diffusion type process and estimation of spectral density function of
a stationary time series. For multidimensional function estimation, the the-
ory (presented in the Supplementary Material) covers both penalized tensor
product splines and penalized bivariate splines on triangulations.

1. Introduction. Since the publication of the Statistical Science discussion paper of
Eilers and Marx (1996), penalized spline estimators (or penalized splines for short) have
gained much popularity and have become a standard general-purpose method for function
estimation. Many applications of penalized splines are presented in the monograph Ruppert,
Wand and Carroll (2003). As an indication of popularity of penalized splines, a google search
on “penalized splines” yields more than 200,000 results, and the Eilers and Marx (1996) pa-
per has more than 3000 citations. Despite the popularity of penalized splines, theoretical
understanding of the method falls much behind. Existing results on asymptotic behaviors of
penalized splines have focused on the nonparametric regression setting. Since application of
penalized splines has gone far beyond nonparametric regression, there is a big gap between
theory and practice that needs to be filled in.

Hall and Opsomer (2005) obtained the asymptotic mean squared error of penalized spline
estimators under a white noise model. Li and Ruppert (2008), Wang, Shen and Ruppert (2011)
and Schwarz and Krivobokova (2016) showed that penalized spline estimators are approxi-
mately equivalent to kernel regression estimators and used this connection to obtain asymp-
totic properties of penalized spline estimators. Claeskens, Krivobokova and Opsomer (2009)
and Xiao (2019a) obtained asymptotic results for penalized splines under weaker conditions
than previously used in the literature, and identified a breakpoint in rates of convergence to
classify two asymptotic situations for penalized splines: one close to smoothing splines, and
one close to polynomial splines. Results on estimation of bivariate functions have been ob-
tained by Lai and Wang (2013) for penalized bivariate splines on triangulations, and by Xiao,

Received February 2021; revised April 2021.
MSC2020 subject classifications. Primary 62G20; secondary 62G05, 62G07, 62G08.
Key words and phrases. Basis expansion, multivariate splines, nonparametric regression, polynomial splines,

smoothing splines.

3383

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/21-AOS2088
http://www.imstat.org
mailto:jianhua@stat.tamu.edu
mailto:suyaf@vcu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


3384 J. Z. HUANG AND Y. SU

Li and Ruppert (2013) and Xiao (2019b) for penalized tensor product splines with differ-
ent choices of penalty functionals. Holland (2017) studied asymptotic behaviors of penalized
tensor product splines for estimating multidimensional functions. While the above papers fo-
cused on least squares regression, Kauermann, Krivobokova and Fahrmeir (2009) obtained
asymptotic behaviors of penalized spline estimators for generalized regression when the re-
gressor is univariate.

Most of the works mentioned above have used closed-form expressions of penalized spline
estimators, which are only available in the regression setting. When such expressions are not
available in other estimation contexts, such as estimation of density functions or conditional
quantile functions, existing asymptotic approaches cannot be easily extended, imposing a
challenge on studying the asymptotic behaviors of penalized splines beyond nonparametric
regression.

The goal of this article is to develop a new asymptotic approach to penalized spline estima-
tors that allows us to obtain general rates of convergence results in a broad range of contexts,
called concave extended linear models (Huang (2001)). We use the term “concave extended
linear models” because in all these contexts, the unknown function is searched over a linear
function space using a maximum-likelihood-type criterion, while the “likelihood” is a con-
cave functional of candidate functions. As we shall see later, the family of concave extended
linear models is rich, covers many useful contexts of function estimation as special cases, in-
cluding regression, generalized regression such as logistic regression and Poisson regression,
density estimation, conditional hazard function estimation for censored data, diffusion func-
tion estimation for a diffusion process, quantile regression, and estimation of spectral density
function of a stationary time series. For readability of the paper, we present only results
for univariate function estimation in the main paper. Results for multidimensional function
estimation are obtained in the same theoretical framework, but will be presented in the Sup-
plementary Material (Huang and Su (2021)) since they involve more complicated notations
and background on multivariate splines.

1.1. Concave extended linear models. Suppose we are interested in estimating an un-
known function η0 that is associated with the distribution of a random variable or vector W.
This function is defined on a compact set U , which for concreteness is assumed to be an in-
terval [a, b]. We have available an i.i.d. sample of W of size n, denoted as W1, . . . ,Wn. For
a candidate function h of estimating η0, the (scaled) log-likelihood is

(1) �(h;W1, . . . ,Wn) = 1

n

n∑
i=1

l(h;Wi ),

where l(h;Wi ) is the contribution to the log-likelihood from Wi , and the scaling is given by
the factor 1/n. The expected log-likelihood is

�(h) = E
{
�(h;W1, . . . ,Wn)

} (= E
{
l(h;Wi )

}
if Wi are i.i.d.

)
,

where the expectation is taken with respect to the distribution of W1, . . . ,Wn. For the rest
of the paper, when there is no confusion, we will omit W1, . . . ,Wn in the log-likelihood
expression and write �(η) to simplify notation.

Assume that the set of functions for which both the log-likelihood and the expected log-
likelihood are well defined is a convex set. We say that we have a concave extended linear
model if:

(i) �(h;W1, . . . ,Wn) is a concave in h for all possible values of W1, . . . ,Wn, that is, for
0 ≤ α ≤ 1,

�
(
αh1 + (1 − α)h2;W1, . . . ,Wn

)
≥ α�(h1;W1, . . . ,Wn) + (1 − α)�(h2;W1, . . . ,Wn);
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(ii) �(h) is strictly concave in h, that is, for 0 ≤ α ≤ 1,

�
(
αh1 + (1 − α)h2

) ≥ α�(h1) + (1 − α)�(h2),

and if 0 < α < 1, the strict inequality holds only when it does not hold that h1 = h2, a.e.

In our framework, the functional �(h) can be something more general than the log-
likelihood function. All we need is that the function of interest, η0, maximizes �(h). For
example, for the regression problem, our goal is to estimate the conditional mean η0(x) =
E(Y |X = x), by setting Wi = (Xi, Yi) and

�(h;W1, . . . ,Wn) = −1

n

n∑
i=1

{
Yi − h(Xi)

}2
,

we obtain a concave extended linear model. If the conditional distribution of Yi given Xi is
Gaussian, �(h;W1, . . . ,Wn) can be interpreted (up to a scale factor) as the log-conditional
likelihood, but this distribution assumption is not needed when applying our results in this
paper. For the problem of estimating a probability density function η0, by setting Wi = Xi

and

�(h;W1, . . . ,Wn) = 1

n

n∑
i=1

h(Xi) − log
∫
U

exph(x) dx,

we also obtain a concave extended linear model. More detailed discussions of log-likelihood
function for a variety of contexts can be found in Sections 6–10 and Sections S.2–S.3 in the
Supplementary Material.

1.2. Penalized spline estimators. For sample size n, consider a finite-dimensional space
Gn of spline functions with degree m. The penalized spline estimator η̂n is defined as the
maximizer among g ∈ Gn of the following penalized likelihood

(2) p�(g;W1, . . . ,Wn) = �(g;W1, . . . ,Wn) − λnJq(g),

where �(g;W1, . . . ,Wn) is the log-likelihood defined in (1), Jq(g) is a penalty term, and
λn is a penalty parameter. The penalty term Jq(g) = Jq(g, g) is chosen to be a quadratic
functional that quantifies the roughness of a candidate function g, and we use the following
specific form in this paper:

(3) Jq(g) =
∫
U

{
g(q)(x)

}2
dx.

We let q be an integer and refer to it as the order of the penalty. This kind of estimator was first
introduced in O’Sullivan (1986, 1988) and later popularized by Eilers and Marx (1996) where
a modified penalty functional is used. A multidimensional analog of the penalty functional
(3) is given in the Supplementary Material.

If we do not restrict the maximization to a finite-dimensional space in the optimization
problem (2), we perform the optimization over the set of all functions such that the penalty
functional is finite, which is the usual Sobolev space of order q ,

Wq[a, b] = {
h : h(q−1) is absolutely continuous and Jq(h) < ∞}

,

where h(l) denotes the lth derivative of h, then the resulting estimator is a smoothing spline
(Wahba (1990), Gu (2013)). If there is no penalty term in (2) (or λn = 0), we call the resulting
estimator a polynomial spline estimator. In the literature, a polynomial spline function esti-
mator is usually called a regression spline estimator mainly because the regression problem
is where such an estimator was first applied to, but we prefer the former name because its
application goes far beyond the regression problem. There is an extensive literature on the
asymptotic theory of the smoothing spline estimators and the polynomial spline estimators,
which is reviewed in the Supplementary Material.
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1.3. Overview of results in this paper. For the penalized spline estimator η̂n, we obtain
a probabilistic bound on the quantity ‖η̂n − η0‖2 + λnJ (η̂n), where ‖ · ‖ is a norm that is
equivalent to the usual L2-norm. Our result not only gives the L2 rate of convergence of η̂n

to the true function η0, but also gives a bound on J (η̂n), which measures the roughness of the
estimator.

In the framework of concave extended linear models, we establish asymptotic results for
penalized spline estimators under a set of high level conditions. These high level conditions
help us identify the essential factors governing the asymptotic behaviors; namely, the property
of the likelihood, the approximation property of the spline space, and the eigenstructure of
the penalty functional. Using high level conditions allows us to obtain results in a unified
manner for a wide range of problems, including the following:

• regression (Section 6),
• generalized regression (Section 7),
• estimation of probability density function (Section 8),
• hazard regression for censored data (Section 9),
• quantile regression (Section 10),
• estimation of drift coefficient of diffusion type process (Section S.2),
• spectral density estimation for a stationary time series (Section S.3).

To our knowledge, our treatment of rates of convergence for the penalized spline estimators
is the most comprehensive in its ability to handle a variety of estimation contexts under weak
assumptions. Using high level conditions allow us to obtain results without making the strong
assumption of equally-spaced knots as used by some existing works. Our results for the later
five contexts are entirely new to the literature.

Our theory shows that the asymptotic behaviors of penalized splines are governed by the
spline degree m, penalty order q , degree of smoothness of the unknown function p (usu-
ally denoting the number of derivatives) and the interplay between the number of knots and
the penalty parameter. Our results cover all feasible combinations of m, p and q , while all
existing works only cover selected combinations and are obtained only in the regression or
generalized regression setting. Following our main results (Sections 3), the rates of conver-
gence of penalized splines can be classified into seven scenarios and in six of these scenarios
the optimal rate of convergence can be achieved when the spline knot number and the penalty
parameter are appropriately chosen (Table 1 and its discussion, Section 3.3).

Our technical approach uses functional analysis tools and avoids the detailed calculations
that involve explicit expressions of penalized spline estimators as typically used in previous
works. This functional analysis approach is particularly powerful in dealing with new chal-
lenges encountered when obtaining asymptotic behaviors of penalized splines beyond the
regression setting. For example, one needs to handle the integration-to-one constraints for
density estimation, the nonnegative constraint for hazard function estimation, and nondiffer-
entiability of the “log-likelihood” for quantile regression. Since penalized spline estimators
do not have a closed-form expression in general settings, the asymptotic approaches previ-
ously used for the regression setting do not apply. The functional analysis approach also al-
lows us to treat penalized univariate splines, penalized (multivariate) tensor product splines,
and penalized bivariate splines on triangulations in a unified framework.

Our technical approach has its roots in previous works for obtaining asymptotic behaviors
of (unpenalized) polynomial spline estimators, as originated by Charles J. Stone in a series
of works, synthesized in Stone (1994) and Hansen (1994), and matured in Huang (2001). As
such, we are able to obtain existing results for polynomial spline estimators as a special sim-
plification of our approach. On the other hand, considering a penalized likelihood in extended
linear models with a roughness penalty is a substantial advancement over existing works. We
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obtain a rich collection of new results that reveal interesting asymptotic behaviors of penal-
ized spline estimators that were not anticipated by Huang (2001). We also extended previous
theory to deal with some contexts that were not covered by the framework of Huang (2001),
such as quantile regression and spectral density estimation.

The rest of the paper is organized as follows. (Sections labeled with S are in the Sup-
plementary Material.) Section 2 collects some known facts on the properties of univariate
spline functions and the penalty functional to make this paper self-contained. Sections 3 and
4 present respectively two master theorems and their proofs. Section 5 gives several lem-
mas for assisting verification of the conditions used in the master theorems. Sections 6–10
and S.2–S.3 verify those conditions under primitive conditions in a variety of contexts. Sec-
tion S.1 provides a literature review on the asymptotic theory of smoothing spline estimators
and polynomial spline estimators. Sections S.4 and S.5, respectively, present our theory for
penalized tensor-product splines and for penalized bivariate splines on triangulations.

1.4. Notation. For two real numbers a and b, let a ∧ b and a ∨ b denote respectively the
smaller and larger one of the two. Given two sequences of positive numbers an and bn, we
write an � bn and bn � an if the ratio an/bn is bounded for all n and an 	 bn if and only if
an � bn and bn � an, we write an ≺ bn and bn � an if an/bn → 0 as n → ∞. Let ‖g‖2 denote
the L2-norm (relative to the Lebesgue measure) and ‖g‖∞ the L∞-norm of the function g.
Throughout the paper, we use C, M , and possibly with subscripts to denote constants whose
values may vary from contexts to contexts.

2. Preliminaries: Splines and penalty functionals. This section provides the necessary
background about spline functions and penalty functionals, introduces notation and presents
some general assumptions. In particular, it summarizes some key results from the literature
about spline functions and the penalty functionals, which are essential for our study of asymp-
totic properties of the penalized spline estimators.

2.1. Splines. A spline function is a numerical function that is piecewise-defined by poly-
nomial functions, and the polynomial pieces are connected smoothly. More precisely, a func-
tion f defined on a compact interval [a, b] is called a spline of degree m with k interior knots
tj , j = 1, . . . , k (satisfying a = t0 < t1 < · · · , tk < tk+1 = b), if f is a polynomial of degree
m ≥ 0 on [tj , tj+1], j = 0, . . . , k, and f globally has m−1 continuous derivatives (no deriva-
tive if m = 0). Note that, for a given sequence of knots, the collection of all degree-m splines
on [a, b] forms a linear vector space with dimension N = m + k + 1, denoted as G.

When we study the asymptotic properties of penalized spline estimators, we allow the
number of knots to increase with the sample size. We write N = Nn and G = Gn to make
this dependence explicit. We assume that the knot sequence has the bounded mesh ratio.
More precisely, we assume that the ratio of the maximum and minimum distance between
two neighboring knots is bounded from above and below by two positive numbers that do not
depend on n, that is,

C1 ≤ maxj (tj+1 − tj )

minj (tj+1 − tj )
≤ C2, for some C1,C2 > 0.

Let δn be the largest distance between all the neighboring knots, that is,

(4) δn = max
j

|tj+1 − tj |.
Under the assumption of bounded mesh ratio, we have δn 	 1/Nn.

The rationale for using splines in function estimation is that splines have a good approx-
imation property; namely, they can approximate smooth functions very well when the knot
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number increases to infinity, as shown in the next result (Theorem 6.25 and Corollary 6.26 of
Schumaker (1981)). (Please note difference in notation. We state the result in terms of spline
degree, while the result in the cited book is stated using the order of splines.)

PROPOSITION 2.1. Assume η0 ∈ Wp[a, b] and m ≥ p − 1. There exist a function η∗
n ∈

Gn and constants C1-C3, depending on p and η0 such that∥∥η∗
n − η0

∥∥
2 ≤ C1δ

p
n ,

∥∥η∗
n − η0

∥∥∞ ≤ C2δ
p−1/2
n ,

and moreover, if q ≤ m, then Jq(η∗
n) ≤ C3δ

2(p−q)∧0
n .

If m < p − 1, since η0 ∈ Wp[a, b] implies that η0 ∈ Wm+1[a, b], the conclusion of this
theorem holds by replacing p with m + 1. This approximation rate is the best one can ex-
pect: the approximation error rate cannot be better than δm+1

n even when the function η0 has
smoothness p > m + 1, as shown in Theorem 6.42 of Schumaker (1981). Because of the
saturation phenomenon of the spline approximation, we define p′ = p ∧ (m + 1) and use p′
to measure the rate of approximation error. Moreover, we will require later that p > 1/2 in
order to guarantee ‖η∗

n − η0‖∞ = o(1).
Following Huang (1998a), Huang (1998b), we introduce a measure of the complexity of a

spline space,

(5) An = sup
g∈Gn,‖g‖2 �=0

{‖g‖∞
‖g‖2

}
.

This measure will play an important role in the asymptotic analysis. The next result, which
follows from Theorem 5.1.2 of DeVore and Lorentz (1993), gives the rate of increase of An.

PROPOSITION 2.2. Under the bounded mesh ratio condition, An 	 δ
−1/2
n .

The asymptotic analysis of spline estimators relies on an important property of spline
spaces, namely, the uniformly closeness of a data-driven norm to its expectation over the
entire spline space for a fixed degree and fixed knot sequence (they vary with n). Let
X,X1, . . . ,Xn be i.i.d. random variables. Define the empirical and theoretical inner prod-
ucts as

〈g1, g2〉n = En

[
g1(X)g2(X)w(X)

] = 1

n

n∑
i=1

g1(Xi)g2(Xi)w(Xi),

〈g1, g2〉 = E
[
g1(X)g2(X)w(X)

]
,

where w(x) is a weight function bounded away from zero and infinity, that is, there exists
C1,C2 > 0 such that

C1 ≤ w(x) ≤ C2, for any a ≤ x ≤ b.

The corresponding squared empirical and theoretical norms are ‖g‖2
n = 〈g,g〉n and ‖g‖2 =

〈g,g〉. We assume that X has a density function, which is bounded away from 0 and infinity,
and consequently the theoretical norm ‖ · ‖ is equivalent to ‖ · ‖2, the usual L2-norm relative
to the Lebesgue measure, that is„ there are constants C3 and C4 such that C3‖g‖2 ≤ ‖g‖ ≤
C4‖g‖2 for all square-integrable function g.

PROPOSITION 2.3. Under the bounded mesh ratio condition, if limn Nn log(n)/n = 0,
then the empirical and theoretical norms are asymptotically equivalent, that is,

sup
g∈Gn,‖g‖�=0

∣∣∣∣‖g‖n

‖g‖ − 1
∣∣∣∣ = oP (1).
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Huang (1998a) proved Proposition 2.3 for an arbitrary finite dimensional function space
under the stronger condition that limn A2

nNn/n = 0. Huang (2003) relaxed the condition to
limn Nn log(n)/n = 0 for splines. Both papers proved the results for w(x) = 1 but the same
argument applies to a general weight function that is bounded away from zero and infinity.

2.2. The penalty functional. The asymptotic properties of the penalized spline estimator
rely heavily on the eigenanalysis of the quadratic penalty functional Jq(h) = ∫

U {h(q)(x)}2 dx

with respect to the quadratic functional V (h) = ‖h‖2 = ∫
U h2(x)ω(x) dx. Such eigenanalysis

also plays a critical role in studying the asymptotic properties of the smoothing splines; see,
that is, Gu (2013).

A quadratic functional B is said to be completely continuous with respect to another
quadratic functional A, if for any ε > 0, there exists a finite number of linear functionals
L1, . . . ,Lk such that L1(h) = · · · = Lk(h) = 0 implies that B(h) ≤ εA(h). See Weinberger
(1974), Section 3.3.

Applying Theorem 3.1 of Weinberger (1974), it can be shown that, if V is completely
continuous with respect to J , then V and J can be simultaneously diagonalized in the fol-
lowing sense (see Section 9.1 of Gu (2013)). There exists a sequence of eigenfunctions φν ,
ν = 1,2, . . . , and the associated sequence of eigenvalues ρν ≥ 0 of J with respect to V such
that

V (φν,φμ) = δνμ, Jq(φν,φμ) = ρνδνμ,

where δνμ is the Kronecker delta,

V (φν,φμ) =
∫
U

φν(x)φμ(x)ω(x) dx, Jq(φν,φμ) =
∫
U

φ(q)
ν (x)φ(q)

μ (x) dx.

See also Silverman (1982). Furthermore, any function h satisfying Jq(h) < ∞ has a Fourier
series expansion with the eigenbasis {φν},

h = ∑
ν

hνφν, hν = V (h,φν),

and

V (h) = ∑
ν

h2
ν, Jq(h) = ∑

ν

ρνh
2
ν.

Therefore,

‖h‖2 + λnJq(h) = (V + λnJ )(h) = ∑
ν

(1 + λnρν)h
2
ν.

The next result (see (3.17) of Utreras (1981)) gives the rate of divergence to infinity of the
eigenvalues.

PROPOSITION 2.4. Assume V (h) = ‖h‖2 = ∫
U h2(x)ω(x) dx for a weight function ω

that is bounded away from zero and infinity, that is, there exist constants C1,C2 > 0 such that

C1 ≤ ω(x) ≤ C2, for any a ≤ x ≤ b.

Then V is completely continuous with respect to Jq . Moreover, we have 0 ≤ ρν ↑ ∞, and
ρν 	 ν2q for all sufficiently large ν.

The following result, which is part of Lemma 9.1 of Gu (2013), will be used when studying
the rate of convergence of the estimation error (see Lemma 5.2).

PROPOSITION 2.5. Assume there is a constant C > 0 such that ρν ≥ Cν2q(q > 1/2), for
all large ν. If λn → 0, as n → ∞, then

(6)
∑
ν

1

1 + λnρν

= O
(
λ−1/(2q)

n

)
.
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3. Statement of the master theorems. The rate of convergence of a penalized spline
estimator depends on three quantities:

• p—the smoothness p of the unknown function (i.e., we assume η0 ∈ Wp[a, b]);
• m—the degree of the splines in Gn;
• q—the order of the penalty functional Jq(g) = ∫

U {g(q)(x)}2 dx.

Here, m + 1 is also called the order of the spline functions.
We make several (natural) restrictions on the choice of p, m, q , as follows:

• q ≤ m. Since the mth derivative of a spline function of degree m is piecewise constant, the
(m + 1)th derivative of the spline function contains Dirac delta functions, therefore, the
(m + 1)th order penalty functional is not defined, thus it is natural to require that q ≤ m.

• p > 1/2. This is to ensure that the spline space has desired approximation properties (see
Proposition 2.1).

• q > 1/2. This is to ensure the eigenvalues of the penalty functional have desired rate of
divergence (see Proposition 2.5).

In this paper, we also restrict p and q to be integer-valued, which is the most relevant in
practical applications. To relax this restriction, one needs only to supply a version of Propo-
sitions 2.1 and 2.4 that allow noninteger values of p and q . The rest of technical arguments
is not affected.

The expected value of the penalized log-likelihood p�(η) appeared in (2) is

p�(η) = �(η) − λnJq(η).

Denote its maximizers as

(7) η̄n = argmax
g∈Gn

p�(g) = argmax
g∈Gn

{
�(g) − λnJq(g)

}
.

We can think that η̄n is an approximation of η0, and the penalized spline estimator η̂n directly
estimates η̄n. Therefore, we have the decomposition

(8) η̂n − η0 = η̂n − η̄n + (η̄n − η0),

where η̂n − η̄n and η̄n −η0 are referred to as the estimation error and the approximation error,
respectively.

3.1. Approximation error.

CONDITION 3.1. There are constants B > 0 and constants M1,M2 > 0 such that

(9) −M1‖h‖2 ≤ �(η0 + h) − �(η0) ≤ −M2‖h‖2

whenever ‖h‖∞ ≤ B .

This condition says that the expected log-likelihood behaves like a quadratic functional
around its maximal point.

Recall p′ = p ∧ (m + 1), as defined after Proposition 2.1.

THEOREM 3.1. Assume Condition 3.1 holds. If limn δn ∨ λn = 0 and

lim
n

A2
n

{
δ2p′
n ∨ (

λnδ
2(p′−q)∧0
n

)} = 0,

then η̄n exists and ‖η̄n‖∞ = O(1). Moreover, ‖η̄n − η0‖∞ = o(1) and

‖η̄n − η0‖2 + λnJq(η̄n) = O
{
δ2p′
n ∨ (

λnδ
2(p′−q)∧0
n

)}
.
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3.2. Estimation error. To simplify notation, we shall omit W1, . . . ,Wn when we write
the log-likelihood functional in �(h;W1, . . . ,Wn).

Because l(η̄n + αg) is a concave function of α, it admits left and right derivatives and is
differentiable at all but countable many points. Denote the directional derivative at η̄n along
the direction of g as

l̇[η̄n;g] = d

dα
l(η̄n + αg)

∣∣∣∣
α=0+

,

where the dependence l̇[η̄n;g] on Wi is suppressed in our notation for simplicity. Using the
mild assumption that we can exchange differentiation and expectation, we have E{l̇[η̄n;g]} =
(d/dα)�(η̄n + αg)|α=0+ .

Since η̄n maximizes the concave functional p�(·) over Gn, it satisfies the first-order con-
dition

d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

−2λnJq(η̄n, g) = 0, g ∈Gn.

Thus, for any g ∈Gn, we have that

d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

−2λnJq(η̄n, g) = d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

− d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

.

Consequently, we have

(10)
d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

−2λnJq(η̄n, g) = (En − E)l̇[η̄n;g].

CONDITION 3.2.
(i)

sup
g∈Gn

|(En − E)l̇[η̄n;g]|2
‖g‖2 + λnJq(g)

= OP

(
1

nλ
1/(2q)
n

∧ 1

nδn

)
.

(ii) There are constants B > 0 and M > 0 such that, with probability tending to one as
n → ∞, we have that for all g ∈ Gn with ‖g‖∞ ≤ B ,

d

dα
�(η̄n + αg)

∣∣∣∣
α=1+

− d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

≤ −M‖g‖2.

THEOREM 3.2. Assume Condition 3.2 holds. If limn δn ∨ λn = 0 and

lim
n

A2
n

(
1

nλ
1/(2q)
n

∧ 1

nδn

)
= 0,

then ‖η̂n − η̄n‖∞ = oP (1) and

‖η̂n − η̄n‖2 + λnJq(η̂n − η̄n) = Op

(
1

nλ
1/(2q)
n

∧ 1

nδn

)
.

3.3. Summary. Combining the results of Theorems 3.1 and 3.2, we obtain the following
result that gives the rate of convergence of ‖η̂n − η0‖2 to zero. The result also gives a bound
for the size of Jq(η̂n).

COROLLARY 3.3. Assume Conditions 3.1 and 3.2 hold. If limn δn ∨ λn = 0 and

(11) lim
n

A2
n

(
δ2p′
n ∨ (

λnδ
2(p′−q)∧0
n

) + 1

nλ
1/(2q)
n

∧ 1

nδn

)
= 0,
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TABLE 1
Seven scenarios for rate of convergence (‖η̂n − η0‖2 + λnJq(η̂n)) of penalized spline estimators

Rate of convergence Parameters for achieving the best rate Best rate

I. q < p′ (i.e., q < p and q < m + 1)

1. λn � δ
2p′
n

δ
2p′
n + (nδn)−1 δn 	 n−1/(2p′+1) n−2p′/(2p′+1) (*)

2. δ
2p′
n � λn � δ

2q
n

λn + (nδn)−1 λn 	 δ
2p′
n , δn 	 n−1/(2p′+1) n−2p′/(2p′+1) (*)

3. λn � δ
2q
n

λn + (nλ
1/(2q)
n )−1 λn 	 n−2q/(2q+1) n−2q/(2q+1)

II. q = p′(= p) (i.e., p = q ≤ m)

1. λn � δ
2p
n

δ
2p
n + (nδn)−1 δn 	 n−1/(2p+1) n−2p/(2p+1) (**)

2. λn � δ
2p
n

λn + (nλ
1/(2p)
n )−1 λn 	 n−2p/(2p+1) n−2p/(2p+1) (**)

III. q > p′(= p) (i.e., p < q ≤ m)

1. λn � δ
2q
n

δ
2p
n + (nδn)−1 δn 	 n−1/(2p+1) n−2p/(2p+1) (**)

2. λn � δ
2q
n

λnδ
2p−2q
n + (nλ

1/(2q)
n )−1 δn 	 λ

1/(2q)
n , λn 	 n−2q/(2p+1) n−2p/(2p+1) (**)

(*) achieving Stone’s optimal rate when p′ = p, (**) achieving Stone’s optimal rate.

then ‖η̂n − η0‖∞ = oP (1) and

‖η̂n − η0‖2 + λnJq(η̂n) = Op

(
δ2p′
n ∨ (

λnδ
2(p′−q)∧0
n

) + 1

nλ
1/(2q)
n

∧ 1

nδn

)
.

This result covers all practical combinations of p, q and m with the only restriction being
the necessary requirement q ≤ m (otherwise the penalty functional is not defined). Follow-
ing this result, the asymptotic behavior of the penalized splines can be classified into seven
scenarios as shown in Table 1. Cases II.1 and II.2 contain a typical application scenario of
using penalized cubic splines with a second-order penalty (m = 3, q = 2) to estimate a func-
tion with a continuous second derivative p = 2. Using Proposition 2.2, Condition (11) can be
simplified in each scenario as follows:

• Cases I.1, II.1, III.1: p′ > 1/2, nδ2
n → ∞.

• Case I.2: nδ2
n → ∞, λn/δn → 0.

• Cases I.3, II.2, III.2: nδnλ
1/(2q)
n → ∞ (or its sufficient condition nδ2

n → ∞), λn/δn → 0.

An overall sufficient condition for all these conditions to hold is p′ > 1/2, nδ2
n → ∞ and

λn/δ
1+2(q−p)∧0
n → 0.

From Table 1, we observe that the asymptotic behavior of the penalized spline estimators
depend on the interplays among the smoothness of unknown function, spline degree, penalty
order, spline knot number and penalty parameter.

In Cases I.1, I.2, II.1. III.1, λn � δ
2q
n . Since using a small λn indicates light penalization,

we may refer to these cases as the light penalty scenarios. Alternatively, since δ−1
n � λ

1/(2q)
n
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and δ−1
n essentially quantifies the number of knots, we may also refer to these cases as the

small knot number scenarios. The behavior of the penalized splines in these scenarios is
similar to that of an unpenalized polynomial spline estimator (e.g., Huang (2003)). In Cases
I.1 (if p ≤ m + 1), II.1, III.1, the penalized spline estimator achieves Stone’s optimal rate
of convergence n−2p/(2p+1) (Stone (1982)), if the tuning parameter δn is chosen such that
δn 	 n−1/(2p+1). In Case I.2 (if p ≤ m + 1), Stone’s optimal rate can be achieved if we tune
both parameters so that δn 	 n−1/(2p+1) and λn 	 δ

2p
n . If p > m + 1 (Cases I.1 and I.2), the

best rate of convergence of penalized spline estimator is controlled by the spline order m+ 1,
Stone’s optimal rate of convergence cannot be achieved, as for the unpenalized polynomial
spline estimators; this is due to the saturation of spline approximation (see the discussion
following Proposition 2.1).

In Cases I.3, II.2, III.2, λn � δ
2q
n . We may refer to these cases as the heavy penalty scenar-

ios. Alternatively, since δ−1
n � λ

1/(2q)
n , we may also refer to these cases as the large knot num-

ber scenarios. The behavior shown in Case II.2 is similar to that of a smoothing spline esti-
mator (e.g., Gu (2013)) and Stone’s optimal rate of convergence n−2p/(2p+1) can be achieved
by choosing λn 	 n−2p/(2p+1). The results for Cases I.3 and III.2 show different behaviors
of the penalized spline estimators in the heavy penalty scenarios when the penalty order q

differs from the smoothness p of the unknown function. If q < p (Case I.3), the best rate
of convergence of penalized spline estimator is controlled by q , which is n−2q/(2q+1) and
is slower than Stone’s optimal rate n−2p/(2p+1). This result suggests that, in heavy penalty
scenarios, using a penalty with order smaller than the true smoothness will hurt the ability
of penalized splines to achieve the optimal rate of convergence. On the other hand, if q > p

(Case III.2), the penalized spline estimator can achieve Stone’s optimal rate if we tune both
parameters so that λn 	 n−2p/(2p+1) and δn 	 λ

1/(2q)
n .

In the context of least squares regression, rates of convergence for penalized spline estima-
tors have been extensively studied when q ≤ p (corresponding to Cases I and II in Table 1);
the best available results are given in Claeskens, Krivobokova and Opsomer (2009), Holland
(2017), Xiao (2019a). Our results match the best available results for Cases I.1, I.3, II.2,
II.3. For Case I.2, the best available result for rate of convergence is λ2

nδ
−2q
n + (nδn)

−1 (e.g.,
Theorem 1(a) of Claeskens, Krivobokova and Opsomer (2009) for p = m + 1, Theorem 5.1
of Xiao (2019a)), which is always no larger than the rate shown in Table I, λn + (nδn)

−1.
When p ≤ m + 1 so that p′ = p, to achieve Stone’s optimal rate, one needs to choose
δn 	 n−1/(2p+1) in λ2

nδ
−2q
n + (nδn)

−1, and also require that λ2
nδ

−2q
n � n−2p/(2p+1), or equiv-

alently λn � n−(p+q)/(2p+1). This requirement on λn is slightly looser than our requirement
λn � n−2p/(2p+1) in Cases I.1 and I.2 of Table 1.

It is worthwhile to point out that our result in Corollary 3.3 not only bound the squared
L2-norm ‖η̂n − η0‖2 but also bound the penalty functional Jq(η̂n), and thus it is stronger
than existing results which bound only the L2-norm. For this reason, we believe our rate of
convergence in Case I.2, λn + (nδn)

−1, cannot be improved to match the best available result
of squared L2-norm rate λ2

nδ
−2q
n + (nδn)

−1 mentioned above. To see this, suppose otherwise,
that is,

‖η̂n − η0‖2 + λnJq(η̂n) = O
(
λ2

nδ
−2q
n + (nδn)

−1)
.

When λ2
nδ

−2q
n ≥ (nδn)

−1, the first term dominates the rate of convergence, and we have

Jq(η̂n) = O(λnδ
−2q
n ). If λn/δ

2q
n → 0 (which falls in Case I.2), then we obtain Jq(η̂n) → 0,

which is generally implausible. For instance, Jq(η̂n) = 0 for q = 2 means that η̂n is a straight
line, and J2(η̂n) → 0 suggests that η̂n becomes closer and closer to a straight line when the
sample size n → ∞.
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We are not aware any existing results for Cases III.1 and III.2. Our results for these two
scenarios answer the following question: When the smoothness of the unknown function is
not given, if one uses a penalty that assumes more derivatives than the unknown function, how
will the penalized spline estimator behave asymptotically? Our answer is that it does not hurt
the ability of penalized spline estimator to achieve Stone’s optimal rate of convergence. This
question is of interest because in practice prior knowledge about the degree of smoothness of
the unknown function is usually unavailable.

4. Proof of the master theorems. This section gives the proof of the main theorems
of convergence rates of the penalized spline estimator, that is, Theorems 3.1 and 3.2. The
argument makes use of the convexity and is an extension of that in Huang (2001). We first
present a lemma that will play an important role in our proof.

LEMMA 4.1 (Convexity lemma). Suppose C(·) is a convex functional and L(·) is a con-
tinuous functional defined on a convex set C of functions.

If there exists a function η† ∈ C and a real number s with L(η†) < s such that for all η ∈ C
satisfying L(η) = s, we have either

(12) C
(
η†)

< C(η),

or

(13)
∂

∂β
C

(
η† + β

(
η − η†))|β=1+ > 0,

then any minimizer ηmin of C(·) in C satisfies L(ηmin) ≤ s.

PROOF. Fix any η̃ ∈ C with L(η̃) > s. Consider the convex combination of η† and η̃,

ηα = αη̃ + (1 − α)η†, 0 ≤ α ≤ 1.

Define f (α) = L(ηα). It is a continuous function of α. Since f (0) = L(η†) < s and f (1) =
L(η̃) > s, by the intermediate value theorem, there exists an ᾰ ∈ (0,1) such that f (ᾰ) = s.
Denote η̆ = ᾰη̃ + (1 − ᾰ)η†. Immediately L(η̆) = f (ᾰ) = s.

If (12) holds, from the convexity of C(·), we have

C
(
η†)

< C(η̆) ≤ ᾰC(η̃) + (1 − ᾰ)C
(
η†)

,

which implies

(14) C
(
η†)

< C(η̃).

On the other hand, we can write η̃ = η† + β̆(η̆ − η†), where β̆ = ᾰ−1 > 1. If (13) holds, then

C(η̃) − C(η̆) = C
(
η† + β̆

(
η̆ − η†)) − C

(
η† + (

η̆ − η†))
≥ (β̆ − 1)

∂

∂β
C

(
η† + β

(
η̆ − η†)) ∣∣∣∣

β=1+
> 0.

(15)

Both (14) and (15) imply that η̃ with L(η̃) > s cannot be the minimizer of C(·). �

PROOF OF THEOREM 3.1. We assume p ≤ m + 1 without loss of generality, since we
can replace p by p′ = p ∧ (m + 1) otherwise. For η∗

n as in Proposition 2.1, we have that

‖η∗
n − η0‖ ≤ C1δ

p
n and Jq(η∗

n) ≤ C3δ
2(p−q)∧0
n . Therefore,

(16)
∥∥η∗

n − η0
∥∥ + λ1/2

n J 1/2
q

(
η∗

n

) ≤ C1δ
p
n + C

1/2
3 λ1/2

n δ(p−q)∧0
n .
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In the following, we will repeatedly use the inequality

(17)
1

2
(u + v)2 ≤ u2 + v2 ≤ (u + v)2, u, v > 0

to bound (δ
p
n + λ

1/2
n δ

(p−q)∧0
n )2 and δ

2p
n + λnδ

2(p−q)∧0
n by each other.

We apply the convexity lemma (Lemma 4.1) to the convex functional

C(g) = −�(g) + λnJq(g)

and the continuous functional

L(g) = ∥∥g − η∗
n

∥∥ + λ1/2
n J 1/2

q

(
g − η∗

n

)
,

both defined on C = Gn. The continuity of L(g) follows from the fact that∣∣L(g1) − L(g2)
∣∣ ≤ ‖g1 − g2‖ + λ1/2

n J 1/2
q (g1 − g2).

When applying the lemma, take s = a(δ
p
n + λ

1/2
n δ

(p−q)∧0
n ), where a > 0 is a constant to be

determined later.
Take η† = η∗

n in Lemma 4.1. We have L(η∗
n) = 0. We will show that

(18) C
(
η∗

n

)
< C(g), g ∈ Gn with L(g) = s.

Then the convexity lemma implies that the minimizer η̄n of C(g) in Gn satisfies L(η̄n) < s.
Consequently, by the triangle inequality and (16),

‖η̄n − η0‖ + λ1/2
n J 1/2

q (η̄n) ≤ L(η̄n) + ∥∥η∗
n − η0

∥∥ + λ1/2
n J 1/2

q

(
η∗

n

)
≤ a

(
δp
n + λ1/2

n δ(p−q)∧0
n

) + C1δ
p
n + C

1/2
3 λ1/2

n δ(p−q)∧0
n .

By using (17), we have that

(19) ‖η̄n − η0‖2 + λnJq(η̄n) = O
(
δ2p
n ∨ λnδ

2(p−q)∧0
n

)
,

which is the desired result.
It remains to show (18). By Proposition 2.1, ‖η∗

n − η0‖∞ ≤ C2δ
p−1/2
n . For g ∈ Gn with

L(g) ≤ s, we have

(20)
∥∥g − η∗

n

∥∥∞ ≤ An

∥∥g − η∗
n

∥∥ ≤ AnL(g) ≤ Ana
(
δp
n + λ1/2

n δ(p−q)∧0
n

)
,

and, therefore,

‖g − η0‖∞ ≤ ∥∥g − η∗
n

∥∥∞ + ∥∥η∗
n − η0

∥∥∞
≤ Ana

(
δp
n + λ1/2

n δ(p−q)∧0
n

) + C3δ
p−1/2
n = o(1)

(21)

(since p > 1/2). Thus, ‖g − η0‖∞ ≤ B when n is large, for B in Condition 3.1. Then use
Condition 3.1 to obtain

C(g) + �(η0) = −�(g) + �(η0) + λnJq(g)

≥ M1‖g − η0‖2 + λnJq(g)

≥ 1

2
(M1 ∧ 1)

{‖g − η0‖ + λ1/2
n J 1/2

q (g)
}2

,

(22)

and

C
(
η∗

n

) + �(η0) = −�
(
η∗

n

) + �(η0) + λnJq

(
η∗

n

)
≤ M2

∥∥η∗
n − η0

∥∥2 + λnJq

(
η∗

n

)
≤ (M2 ∨ 1)

{∥∥η∗
n − η0

∥∥ + λ1/2
n J 1/2

q

(
η∗

n

)}2
.

(23)
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For g ∈ Gn with L(g) = s, by the triangle inequality and (16), we have that

a
(
δp
n + λ1/2

n δ(p−q)∧0
n

) = ∥∥g − η∗
n

∥∥ + λ1/2
n J 1/2

q

(
g − η∗

n

)
≤ ‖g − η0‖ + λ1/2

n J 1/2
q (g) + ∥∥η∗

n − η0
∥∥ + λ1/2

n J 1/2
q

(
η∗

n

)
≤ ‖g − η0‖ + λ1/2

n J 1/2
q (g) + C1δ

p
n + C

1/2
3 λ1/2

n δ(p−q)∧0
n .

Using the above inequality and (16), we obtain that, by taking a large enough, the right-hand
side of (22) is strictly greater than the right-hand side of (23). This proves (18).

It follows from (21) that, for any g ∈ Gn with L(g) ≤ s, we have

(24) ‖g‖∞ ≤ ‖g − η0‖∞ + ‖η0‖∞ < M‖η0‖∞
for large n. Since L(η̄n) < s, (24) implies that ‖η̄n‖∞ ≤ M‖η0‖∞ < ∞. It follows again
from (21) that ‖η̄n − η0‖∞ = o(1). The proof is complete. �

PROOF OF THEOREM 3.2. We apply the convexity lemma (Lemma 4.1) to the convex
functional

C(g) = −�(g) + λnJq(g)

and the continuous functional

L(g) = ‖g − η̄n‖ + λ1/2
n J 1/2

q (g − η̄n),

both defined on C = Gn. We take

s2 = a2
(

1

nλ
1/(2q)
n

∧ 1

nδn

)

when applying this lemma, where a > 0 is a constant to be determined later.
Take η† = η̄n in Lemma 4.1. We have L(η̄n) = 0 < s. We will show that

(25)
∂

∂α
C

(
η̄n + α(g − η̄n)

)|α=1+ > 0, g ∈ Gn with L(g) = s.

Then the convexity lemma implies that the minimizer η̂n of C(g) in Gn satisfies L(η̂n) ≤ s.
Hence,

(26) ‖η̂n − η̄n‖2 + λnJq(η̂n − η̄n) ≤ s2 = a2
(

1

nλ
1/(2q)
n

∧ 1

nδn

)

which is the desired result.
It remains to show (25). Because Jq(·) is a quadratic functional, we have the expansion

Jq

(
η̄n + α(g − η̄n)

) = Jq(η̄n) + 2αJq(η̄n, g − η̄n) + α2Jq(g − η̄n).

This together with the definition of C(·) imply that

∂

∂α
C

(
η̄n + α(g − η̄n)

)|α=1+ = I + II

where (using (10))

I = − d

dα
�
(
η̄n + α(g − η̄n)

)|α=0+ + 2λnJq(η̄n, g − η̄n) = −(En − E)l̇[η̄n;g − η̄n],
and

II = − d

dα
�
(
η̄n + α(g − η̄n)

)|α=1+ + d

dα
�
(
η̄n + α(g − η̄n)

)|α=0+ + 2λnJq(g − η̄n).
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Now consider g ∈ Gn with L(g) ≤ s. By Condition 3.2(i),

|I| = {‖g − η̄n‖2 + λnJq(g − η̄n)
}1/2

OP

((
1

nλ
1/(2q)
n

∧ 1

nδn

)1/2)

≤ sOP

(
s

a

)
= OP

(
s2

a

)
.

(27)

On the other hand, by the definition of An,

‖g − η̄n‖∞ ≤ An‖g − η̄n‖ = Ana

(
1

nλ
1/(2q)
n

∧ 1

nδn

)1/2
= o(1).

Thus, ‖g − η̄n‖∞ ≤ B for large n where B is as in Condition 3.2(ii). It then follows from this
condition that, for g ∈ Gn with L(g) = s,

II ≥ M‖g − η̄n‖2 + 2λnJq(g − η̄n)

≥ 1

2
(M ∧ 2)

{‖g − η̄n‖ + λ1/2
n J 1/2

q (g − η̄n)
}2 = 1

2
(M ∧ 2)s2.

(28)

Therefore, by taking a sufficient large a,

I + II ≥ 1

2
(M ∧ 2)s2 − OP

(
s2

a

)
> 0.

Thus we have proved (25). This completes the proof of the theorem. �

5. Useful lemmas for verifying the conditions of the master theorems. This section
develops three lemmas that provide sufficient conditions for Conditions 3.1 and 3.2(i), (ii),
respectively.

LEMMA 5.1. Suppose ‖h1‖∞ ≤ C for some constant C > 0. If there are constant B > 0
and constants M1,M2 > 0 such that

(29) −M1‖h2‖2 ≤ d2

dα2 �(h1 + αh2) ≤ −M2‖h2‖2, 0 ≤ α ≤ 1,

whenever ‖h2‖∞ ≤ B , then Condition 3.1 holds if ‖η0‖ ≤ C.

This is Lemma A.1 of Huang (2001), which is proved easily by a Taylor expansion at the
maximal point of the expected log-likelihood and noticing that the first-order term is zero. As
we will show later in this paper that (29) can be verified easily in various contexts.

LEMMA 5.2. If there exists a constant M such that Var{l̇[η̄n;h]} ≤ M for any h satisfy-
ing ‖h‖2 = 1, then Condition 3.2(i) holds.

This lemma is a generalization of Lemma A.2 of Huang (2001), which gives a similar
result for polynomial spline estimators.

PROOF OF LEMMA 5.2.. Consider an orthonormal basis {ψk, k = 1, . . . ,Nn} of Gn. We
have Nn 	 δ−1

n . Any g ∈ Gn can be represented by this basis as g = ∑
k gkψk , where gk =

〈g,ψk〉. It follows that l̇[η̄n;g] = ∑
k gkl̇[η̄n;ψk]. By the Cauchy–Schwarz inequality and

‖g‖2 = ∑
k g2

k ,

(30)
|(En − E)l̇[η̄n;g]|2

‖g‖2 + λnJq(g)
≤ |(En − E)l̇[η̄n;g]|2

‖g‖2 ≤ ∑
k

{
(En − E)l̇[η̄n;ψk]}2
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Since ‖ψk‖ = 1, by the assumption of the lemma, the expectation of the right-hand side of the
above is bounded by

∑
k{M/n} ≤ M/(nδn). On the other hand, take the eigendecomposition

g = ∑
ν gνφν . We have l̇[η̄n;g] = ∑

ν gν l̇[η̄n;φν]. By the Cauchy–Schwarz inequality and

‖g‖2 + λnJq(g) = ∑
ν

g2
ν(1 + λnρν),

we have that

(31)
|(En − E)l̇[η̄n;g]|2

‖g‖2 + λnJq(g)
≤ ∑

ν

{(En − E)l̇[η̄n;φν]}2

1 + λnρν

.

Since ‖φν‖ = 1, by the assumption of this lemma and Proposition 2.5, the expectation of the
right hand side of the above is bounded by

M

n

∑
ν

1

1 + λnρν

= O

(
1

nλ
1/(2q)
n

)
.

The conclusion now follows from (30)–(31) and the Markov inequality. �

LEMMA 5.3. The following provides a sufficient condition for Condition 3.2(ii):
(i) ‖η̄n‖∞ = O(1);
(ii) For g ∈ Gn, �(η̄n + αg) as a function of α is twice continuously differentiable; more-

over, there are constants B > 0 and M > 0 such that

d2

dα2 �(η̄n + αg) ≤ −M‖g‖2, 0 ≤ α ≤ 1,

holds for g ∈Gn with ‖g‖∞ ≤ B , with probability tending to one as n → ∞.

When using this lemma, we only need to verify Part (ii) of the condition, since Part (i) is a
consequence of Theorem 3.1. Part (ii) of the condition has been used in Huang (2001) when
studying rates of convergence of polynomial spline estimators.

PROOF OF LEMMA 5.3.. Since

d

dα
�(η̄n + αg)

∣∣∣∣
α=1

− d

dα
�(η̄n + αg)

∣∣∣∣
α=0

=
∫ 1

0

d2

dα2 �(η̄n + αg)dα,

the result is straightforward. �

6. Application I: Regression. Consider the problem of estimating the conditional mean
function η0(x) = E(Y |X = x) based on an i.i.d. sample of W = (X,Y ), denoted as Wi =
(Xi, Yi), i = 1, . . . , n. For a candidate function h of the unknown function η0, define the
“log-likelihood” functional as

�(h;W1, . . . ,Wn) = −1

n

n∑
i=1

{
Yi − h(Xi)

}2
.

This can be interpreted as a (conditional) log-likelihood (up to a scale factor) when the con-
ditional distribution of yi given xi is Gaussian or a pseudo log-likelihood without the distri-
bution assumption.

We verify conditions used in the master theorems under the following primitive assump-
tions.
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ASSUMPTION (REG). (i) The function η0 is bounded on U .
(ii) There is a constant D > 0 such that Var(Y |X = x) ≤ D for all x.
(iii) The distribution of X is absolutely continuous and its density function is bounded

away from zero and infinity on U , that is, there exist constants C1,C2 > 0 such that

C1 ≤ fX(x) ≤ C2, for x ∈ U .

The expected log-likelihood is

�(η) = −E
[{

Yi − h(Xi)
}2]

.

Define the empirical and theoretical norms as in Section 2.1 with the weight function being
w(x) ≡ 1. It is easy to see that

d2

dα2 �(h1 + αh2) = −2‖h2‖2,

and thus (29) holds with M1 = M2 = 2. Condition 3.1 then follows from Lemma 5.1.
Note that

l̇[η̄n;h](W1) = {
η̄n(X1) − Y1

}
h(X1).

Since we apply Theorem 3.2 after we apply Theorem 3.1, we can use the conclusion of
Theorem 3.1 and assume that ‖η̄n‖∞ ≤ M for some constant M > 0 when n is large enough.
Suppose ‖h‖2 = 1. Let ε1 = Y1 − η0(X1). We have that

Var
[{

η̄n(X1) − Y1
}
h(X1)

] ≤ E
[{

η̄n(X1) − Y1
}2

h(X1)
2]

= E
[{

η̄n(X1) − η0(X1)
}2

h(X1)
2] + E

[
ε2

1h(X1)
2]

≤ ‖η̄n − η0‖2∞ + D ≤ (
M + ‖η0‖∞

)2 + D,

which is the condition needed for applying Lemma 5.2. Condition 3.2(i) then follows from
Lemma 5.2.

Finally,

d2

dα2 �(η̄n + αg;W1, . . . ,Wn) = −2

n

n∑
i=1

g2(Xi) = −2‖g‖2
n.

Proposition 2.3 implies that Part (ii) of the condition in Lemma 5.3 holds if limn Nn log(n)/

n = 0, and thus Condition 3.2(ii) holds according to this lemma.
Verification of conditions is complete.

7. Application II: Generalized regression. Our setup of generalized regression follows
Stone (1986), Stone (1994) and Huang (1998b). In a generalized regression model, the con-
ditional distribution of Y given X is characterized by an exponential family of distributions

(32) P(Y ∈ dy|X = x) = exp
{
B

(
η0(x)

)
y − C

(
η0(x)

)}
�(dy),

where �(·) is a nonzero measure on R that is not concentrated on a single point, and
C(η) = log

∫
R

exp{B(η)y}�(dy) is a well-defined normalizing constant for each η in an
open subinterval I of R. Define A(η) = C′(η)/B ′(η) if the derivatives exist. The standard
theory of exponential family of distributions gives that E(Y |X = x) = A(η0(x)).

The goal is to estimate the unknown function η0 based on an i.i.d . sample of (X,Y ),
denoted as W1 = (X1, Y1), . . . ,Wn = (Xn,Yn). The scaled (conditional) log-likelihood at a
candidate function h is given by

�(h;W1, . . . ,Wn) = 1

n

n∑
i=1

{
B

(
h(Xi)

)
Yi − C

(
h(Xi)

)}
,
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and its expectation is

�(h) = E
{
B

(
h(X1)

)
A

(
η0(X1)

) − C
(
h(X1)

)}
.

Define the empirical and theoretical norms as in Section 2.1 with the weight function being
w(x) ≡ 1.

We verify conditions used in the master theorems under the following primitive assump-
tions.

ASSUMPTION (GR). (i) B(·) is twice continuously differentiable and its first derivative
is strictly positive on I .

(ii) There is a subinterval S of R such that � is concentrated on S and

(33) B ′′(ξ)y − C′′(ξ) < 0, y ∈ S̊, ξ ∈ I

where S̊ is the interior of S. If S is bounded, (33) holds for at least one of its endpoints.
(iii) P(Y ∈ S) = 1 and E(Y |X = x) = A(η0(x)) for x ∈ U .
(iv) There is a compact subinterval K0 of I such that range(η0) ⊂ K0.
(v) There is a constant D > 0 such that Var(Y |X = x) ≤ D for all x.
(vi) The distribution of X is absolutely continuous and its density function is bounded

away from zero and infinity on U , that is, there exist constants C1,C2 > 0 such that

C1 ≤ fX(x) ≤ C2, for x ∈ U .

The same set of assumptions was used is Huang (1998b), where one can find more de-
tailed discussions. In particular, Assumptions GR(i)(ii) are satisfied by many familiar expo-
nential families of distributions, including Normal, Binomial-probit, Binomial-logit, Poisson,
gamma, geometric and negative binomial distribution; see Stone (1986). By relaxing the re-
striction that I = R, the identity link is allowed for Poisson regression and Binomial regres-
sion. It is important to point out that using this set of assumptions, the conditional distribution
of Y given X = x does not necessarily belong to the exponential family, we only need that the
conditional mean of Y given X = x is A(η0(x)), as stated in GR(iii). As explained in Huang
(1998b), this means that η0(·) maximizes the expected log-likelihood functional �(h).

Luckily, Huang (1998b) has already verified for us all the conditions used in our master
theorems under the above assumptions. In particular, Lemma 4.1 of Huang (1998b) verified
Condition 3.1; Proof of Claim 2 given on page 68 of Huang (1998b) verified the condition
in our Lemma 5.2, and thus verified Condition 3.2(i); Lemma 4.3 of Huang (1998b) verified
Part (ii) of the condition in our Lemma 5.3, and thus verified Condition 3.2(ii).

8. Application III: Probability density estimation. Suppose X is a random variable
defined on a bounded interval U and has a density function f0(x). The goal is to estimate
the unknown function f0(x) based on an i.i.d. sample of X, denoted as Xi, i = 1, . . . , n. One
difficulty for density estimation using penalized splines is that the density estimator has to sat-
isfy two intrinsic constraints that f0 satisfies, namely, the positivity constraint that f0 ≥ 0 and
the unity constraint that

∫
U f0(x) dx = 1. Assuming f0(x) > 0 on U , by making the transform

f0(·) = expη0(·)/ ∫
U expη0(x) dx we convert the problem to the estimation of η0, which is

free of the two constraints on f0. However, this transformation creates an identifiability prob-
lem, that is, η0 + c and η0 give the same density function for any constant c. To fix this
problem, we require that

∫
U η0(x) dx = 0, which ensures a one-to-one correspondence be-

tween f0 and η0. To define a penalized spline estimator of η0, we need to slightly modify our
framework by restricting our attention to a subspace of Gn, Gn1 = {g ∈ Gn : ∫

U g(x) dx = 0}.
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We have a concave extended linear model with W = X. The scaled log-likelihood at a
candidate function h based on the sampled data is

�(h;W1, . . . ,Wn) = 1

n

n∑
i=1

(
h(xi) − log

∫
U

exph(x) dx

)
.

The expected log-likelihood is

�(h) = E
{
h(X)

} − log
∫
U

exph(x) dx.

We verify conditions used in the master theorems under the following primitive assump-
tions. We make the additional assumption

∫
U h(x) dx = 0 when verifying Condition 3.1 and

replace Gn by Gn1 when verifying Condition 3.2.

ASSUMPTION (DEN). The density function f is bounded away from zero and infinity
on U , or equivalently, η0 is bounded on U .

Let U be a random variable that has a uniform distribution on U . Under the above assump-
tion, we have that, for h satisfying

∫
U h(x) dx = 0,

E
{
h2(U)

} = Var
{
h(U)

} = inf
c

E
[{

h(U) − c
}2]

	 inf
c

Eη0

[{
h(X) − c

}2] = Varη0

{
h(X)

}
,

(34)

where the subscript η0 emphasizes the fact that the distribution of X is determined by η0.
Therefore,

(35) Eη0

{
h2(X)

}
� E

{
h2(U)

} 	 Varη0

{
h(X)

} ≤ Eη0

{
h2(X)

}
.

Define the empirical and theoretical norms as in Section 2.1 with the weight function being
w(x) ≡ 1. Under Assumption (DEN), the theoretical norm ‖h‖ is equivalent to ‖h‖2, the L2
norm with respect to the Lebesgue measure. It is easy to see that

d2

dα2 �(h1 + αh2) = −Var
{
h2(Xα)

}
,

where Xα has the density fXα(x) = exphα(x)/
∫
U exphα(x) dx and hα = h1 +αh2, 0 ≤ α ≤

1. For B,C > 0, if ‖h1‖∞ ≤ C, ‖h2‖∞ ≤ B , then ‖hα‖∞ ≤ B + C and, therefore, there are
constants M1,M2 > 0 such that M2/|U || ≤ fXα(x) ≤ M1/|U |. Using the same argument for
proving (34), we obtain that

M2 Var
{
h2(U)

} ≤ Var
{
h2(Xα)

} ≤ M1 Var
{
h2(U)

}
,

where U has a uniform distribution on U . Since Var{h2(U)} is equivalent to ‖h2‖2
2 and

also ‖h2‖2 when h2 satisfies
∫
U h2(x) dx = 0, (29) holds. Condition 3.1 then follows from

Lemma 5.1.
To verify Condition 3.2(i), note that

(36) l̇[η̄n;h](W1) = h(X1) − Eη̄n

{
h(X)

}
,

where the subscript η̄n indicates that the expectation is taken as if the distribution of X is
determined by η̄n. It follows that

Var
{
l̇[η̄n;h](W1)

} = Var
{
h(X1)

} ≤ ‖h‖2,

indicating that the condition in our Lemma 5.2 holds. (The restriction
∫
U h(x) dx = 0 is taken

care of by noticing that the constant function is the eigenfunction corresponds to the zero
eigenvalue.) Condition 3.2(i) follows from Lemma 5.2.
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Finally, because

(37)
d2

dα2 �(η̄n + αg;W1, . . . ,Wn) = d2

dα2 �(η̄n + αg),

the verification of Condition 3.1 implies Part (ii) of the condition in our Lemma 5.3, which
in turn implies Condition 3.2(ii) using the lemma.

9. Application IV: Counting process regression. The counting process regression pro-
vides a general framework for survival analysis with censored data (Andersen et al. (1993)).
Here, we adopt the setup used in Section 3 of Huang (2001). Let T = [0, τ ] for some τ > 0.
Suppose (�,F,P ) is a complete probability space and {Ft : t ∈ T } is a filtration satisfying
the “usual conditions,” that is, Ft ⊂ F is a family of right continuous, increasing σ -algebras
and F0 contains the P -null sets of F . Let {N(t) : t ∈ T } be an adapted (Andersen et al.
(1993)) counting process with intensity

(38) E
[
N(dt)

∣∣Ft−
] = Y(t) expη0

(
X(t)

)
dt,

where Y(t) is a {0,1}-valued, predictable process, indicating the times at which the process
N(t) is under observation, and X(t) is an U -valued, predictable covariate process. Our goal is
to estimate the log-hazard function η0 based on an i.i.d. sample of W = {(N(t), Y (t),X(t)) :
t ∈ T }, denoted as Wi = {(Ni(t), Yi(t),Xi(t)) : t ∈ T }, 1 ≤ i ≤ n.

The marker dependent hazard model (Nielsen and Linton (1995)) of hazard regression
with right-censored survival data is a special case of this setup. Specifically, one observes
(T ∧C, I (T ≤ C)), where T is the survival time of a subject and C is the censoring time. (To
avoid notational confusion, we do not use C to denote a constant throughout this section.)
Suppose T and C are conditional independent given the process X(t), and the conditional
hazard of T given {X(s), s ≤ t} is expη0(X(t)). Let N(t) = I (T ≤ C ∧ t) be the counting
process with a single jump at the survival time T if uncensored. Then N(t) has the intensity
given by (38), with Y(t) = I (T ∧ C ≥ t) being the indicator that the subject is observed to
be at risk at time t .

This is a concave extended linear model. The scaled log-likelihood for a candidate function
h of η0 is

�(h;W1, . . . ,Wn) = 1

n

n∑
i=1

(∫
T

h
(
Xi(t)

)
Ni(dt) −

∫
T

Yi(t) exph
(
Xi(t)

)
dt

)
.

The expected log-likelihood is

�(h) = E

(∫
T

h
(
X(t)

)
N(dt) −

∫
T

Y(t) exph
(
X(t)

)
dt

)
.

For the marker dependent hazard model, the above log-likelihood reduces to the usual form

�(h) = 1

n

∑
i

(
h
(
X(Ti)

)
I {Ti ≤ C} −

∫ Ti∧C

0
exph

(
Xi(t)

)
dt

)
,

and similarly for the expected log-likelihood.
We verify conditions used in the master theorems under the following primitive assump-

tions.

ASSUMPTION (CP). (i) The function η0 is bounded on U .
(ii) For fixed t ∈ T , the Radon–Nikodym derivative of the measure P(Y (t) = 1,X(t) ∈ ·)

w.r.t. the Lebesgue measure on U exists and is denoted as fY(t)=1,X(t)(t, x). As a function of
(t, x), fY(t)=1,X(t)(t, x) is bounded away from 0 and infinity uniformly in t ∈ T and x ∈ U .
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Define the empirical inner product and corresponding squared norm by

〈h1, h2〉n = En

∫
T

Y(t)h1
(
X(t)

)
h2

(
X(t)

)
dt

and ‖h1‖2
n = 〈h1, h1〉n. Define the theoretical inner product and the corresponding squared

norm by

〈h1, h2〉 = E

∫
T

Y(t)h1
(
X(t)

)
h2

(
X(t)

)
) dt

and ‖h1‖2 = 〈h1, h1〉. Under Assumption (CP)(ii), the theoretical inner and norm have the
forms generally given in Section 2.1 with a specific weight function that is bounded away
from 0 and infinity. In fact,

〈h1, h2〉 =
∫
U

h1(x)h2(x)wcp(x) dx

for wcp(x) = ∫
T fY(t)=1,X(t)(t, x) dt . The corresponding theoretical norm ‖h‖ is equivalent

to ‖h‖2, the L2-norm w.r.t. the Lebesgue measure. Under Assumption (CP)(ii), it is easy to
see that

d2

dα2 �(h1 + αh2) = −E

(∫
T

Yi(t)h
2
2
(
Xi(t)

)
exph1

(
Xi(t)

)
dt

)

= −
∫
T

h2
2(x) exph1(x)wcp(x) dx.

If ‖h1‖∞ ≤ C, the above quantity is bounded above and below by a constant multiple of
‖h2‖2

2, and also of ‖h2‖2. This indicates that (29) holds. Condition 3.1 then follows from
Lemma 5.1.

Note that

l̇[η̄n;h](W1) =
∫
T

h
(
X1(t)

)
N1(dt) −

∫
T

Y1(t) exp
[
η̄n

{
X1(t)

}]
h
(
X1(t)

)
dt.

Appendix B of Huang (2001) showed that

Var
(∫

T
h
(
X1(t)

)
N1(dt)

)
≤ M1‖h‖2.

Moreover, if ‖η̄n‖∞ ≤ M2,

Var
(∫

T
Y1(t) exp

[
η̄n

{
X1(t)

}]
h
(
X1(t)

)
dt

)

≤ |T | exp(2M2)E

(∫
T

Y1(t)h
2(

X1(t)
)
dt

)
= |T | exp(2M2)‖h‖2.

The above two displayed inequalities together imply the condition in our Lemma 5.2, and
thus Condition 3.2(i) follows from the lemma.

Finally, if ‖η̄n‖∞ ≤ C,

d2

dα2 �(η̄ + αg) = −1

n

n∑
i=1

(∫
T

Yi(t)g
2(

Xi(t)
)

exp η̄1
(
Xi(t)

)
dt

)

≤ − exp(−C)
1

n

n∑
i=1

(∫
T

Yi(t)g
2(

Xi(t)
)
dt

)
.

It follows from equivalence of the empirical and theoretical norms that Part (ii) of the condi-
tion in Lemma 5.3 holds, and thus Condition 3.2(ii) holds according to the lemma.
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10. Application V: Quantile regression. Fixing τ ∈ (0,1), let η0(x) be the τ th quantile
of the conditional distribution of Y |X = x. We would like to estimate η0 based on an i.i.d.
sample of W = (X,Y ), denoted as Wi = (Xi, Yi), i = 1, . . . , n. For a candidate function h of
the unknown function η0, define the “log-likelihood” functional as

�(h;W1, . . . ,Wn) = −1

n

n∑
i=1

ρτ

(
Yi − h(Xi)

)
,

where ρτ (u) = (τ − 1(u<0))u is the check function for quantile at the level τ . This can be
interpreted as a pseudo log-likelihood without making a distribution assumption on the con-
ditional distribution of Y given X. The quantile function η0 maximizes the expected log-
likelihood functional

(39) �(h) = −E
{
ρτ

(
Yi − h(Xi)

)}
.

We verify conditions used in the master theorems under the following primitive assump-
tions.

ASSUMPTION (QR).
(i) The function η0 is bounded on U .
(ii) There are constants B > 0 and M1,M2 > 0 such that for any interval A ⊂ [−B,B],

M1|A| ≤ P
(
Y − η0(x) ∈ A|X = x

) ≤ M2|A|,
where |A| denotes the length of interval A.

(iii) The distribution of X is absolutely continuous and its density function is bounded
away from zero and infinity on U , that is, there exist constants C1,C2 > 0 such that

C1 ≤ fX(x) ≤ C2, for x ∈ U .

Similar to the regression case, define the empirical and theoretical norms as in Section 2.1
with the weight function being w(x) ≡ 1. Using the Knight identity (Knight (1998)),

(40) ρτ (u − v) − ρτ (u) = v{1(u≤0) − τ } +
∫ v

0
{1(u≤s) − 1(u≤0)}ds,

we obtain

�(η0 + h) − �(η0) = −E
{
ρτ

(
Y − η0(X) − h(X)

) − ρτ

(
Y − η0(X)

)}
= −E

[
h(X){1(Y−η0(X)≤0) − τ }

+
∫ h(X)

0
{1(Y−η0(X)≤s) − 1(Y−η0(X)≤0)}ds

]
.

Note the first part of the expectation is zero by the definition of η0. By conditioning and then
changing the order of integration, we have

�(η0 + h) − �(η0)

= −E

[∫ h(X)

0
E{1(Y−η0(X)≤s) − 1(Y−η0(X)≤0)|X}ds

]

= −E

[∫ h(X)

0
sgn(s)P

{
Y − η0(X) is between 0 and s|X}

ds

]
.

If ‖h‖∞ ≤ B , by Assumption QR(ii), the above quantity is between −M2‖h‖2/2 and
−M1‖h‖2/2. This verifies Condition 3.1.
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Define ψ(u) = τ − 1 for u < 0, and ψ(u) = τ for u ≥ 0. Then ψ(u) is the derivative of
ρτ (u) when u �= 0 and the right derivative when u = 0. The directional derivative at η̄n along
the direction of g is

l̇[η̄;g](W1) = g(X1)ψ
(
Y1 − η̄(X1)

)
.

Since |ψ(u)| ≤ 1, Var{l̇[η̄;g](W1)} ≤ ‖g‖2. Condition 3.2(i) then follows from Lemma 5.2.
It remains to verify Condition 3.2(ii). Note that

d

dα
�(η̄n + αg)

∣∣∣∣
α=1+

− d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

= 1

n

n∑
i=1

g(Xi)
{
ψ

(
Yi − η̄n(Xi) − g(Xi)

) − ψ
(
Yi − η̄n(Xi)

)}
.

(41)

Let εi = Yi − η0(Xi). Then Yi − η̄n(Xi) = εi − {η̄n(Xi) − η0(Xi)}. By the definition of
ψ(·), the difference ψ(Yi − η̄n(Xi)− g(Xi))−ψ(Yi − η̄n(Xi)) is nonzero only when zero is
between

Yi − η̄n(Xi) − g(Xi) = εi − {
η̄n(Xi) − η0(Xi)

} − g(Xi)

and

Yi − η̄n(Xi) = εi − {
η̄n(Xi) − η0(Xi)

}
,

or equivalently, when εi is between η̄n(Xi) − η0(Xi) − g(Xi) and η̄n(Xi) − η0(Xi), and the
value is − sgn{g(Xi)}. Therefore,

(42) − d

dα
�(η̄n + αg)

∣∣∣∣
α=1+

+ d

dα
�(η̄n + αg)

∣∣∣∣
α=0+

= 1

n

n∑
i=1

∣∣g(Xi)
∣∣Ii

where

Ii = I(εi is between η̄n(Xi) − η0(Xi) − g(Xi) and η̄n(Xi) − η0(Xi)).

Applying the Hoeffding inequality, we obtain

P

(∣∣∣∣1

n

n∑
i=1

∣∣g(Xi)
∣∣{Ii − E(Ii |Xi)

}∣∣∣∣ ≥ t

∣∣∣∣∣Xi, i = 1, . . . , n

)
≤ 2 exp

(
− nt2

2‖g‖2
n

)
.

It follows that

(43)
1

n

n∑
i=1

∣∣g(Xi)
∣∣Ii − 1

n

n∑
i=1

∣∣g(Xi)
∣∣E(Ii |Xi) = ‖g‖no

(√
logn

n

)
.

We may focus on g ∈ G satisfying ‖g‖∞ ≤ B/2, where B is the constant in Assump-
tion QR(ii). Since ‖η̄n − η0‖∞ = o(1), both η̄n(Xi) − η0(Xi) − g(Xi) and η̄n(Xi) − η0(Xi)

are in the interval [−B,B]. Using the assumption, we have that P(Ii |Xi) ≥ M1|g(Xi)|. Thus,

(44)
1

n

n∑
i=1

∣∣g(Xi)
∣∣E(Ii |Xi) ≥ M1‖g‖2

n.

Combining (42)–(44) and using the equivalence between the empirical and theoretical norms
(i.e., Proposition 2.3), we obtain the desired validity of Condition 3.2(ii).
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic properties of penalized spline estimators in concave ex-
tended linear models: Rates of convergence” (DOI: 10.1214/21-AOS2088SUPP; .pdf). The
supplementary document contains the following materials: i. a literarture review of related
asymptotic theory for smoothing splines and polynomial splines; ii. additional examples to
illustrate the application of the general theory; iii. extension of the general theory in the main
paper to penalized tensor product splines and penalized bivariate splines on triangulations.
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