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Modern statistical applications often involve minimizing an objective
function that may be nonsmooth and/or nonconvex. This paper focuses on
a broad Bregman-surrogate algorithm framework including the local linear
approximation, mirror descent, iterative thresholding, DC programming and
many others as particular instances. The recharacterization via generalized
Bregman functions enables us to construct suitable error measures and es-
tablish global convergence rates for nonconvex and nonsmooth objectives in
possibly high dimensions. For sparse learning problems with a composite ob-
jective, under some regularity conditions, the obtained estimators as the sur-
rogate’s fixed points, though not necessarily local minimizers, enjoy provable
statistical guarantees, and the sequence of iterates can be shown to approach
the statistical truth within the desired accuracy geometrically fast. The paper
also studies how to design adaptive momentum based accelerations without
assuming convexity or smoothness by carefully controlling stepsize and re-
laxation parameters.

1. Introduction. Many statistical learning problems can be formulated as minimizing a
certain objective function. In shrinkage estimation, the objective can often be represented as
the sum of a loss function and a penalty function, neither of which is necessarily smooth or
convex. For example, when the number of variables is much larger than the number of obser-
vations (p � n), sparsity-inducing penalties come into play and result in nondifferentiability.
Furthermore, many popular penalties are nonconvex [16, 18, 53], making the computation
and analysis more challenging. Although in low dimensions there are ways to tackle nons-
mooth nonconvex optimization, statisticians often prefer easy-to-implement algorithms that
scale well in big data applications. Therefore, first-order methods, gradient-descent type al-
gorithms in particular, have recently attracted a great deal of attention due to their lower
complexity per iteration and better numerical stability than Newton-type algorithms.

In this work, we study a class of algorithms in a Bregman surrogate framework. The idea
is that instead of solving the original problem minβ f (β), one constructs a surrogate function

(1) g
(
β;β−) = f (β) + �ψ

(
β,β−)

,

and generates a sequence of iterates according to

(2) β(t+1) ∈ arg min
β

g
(
β;β(t)).

The generalized Bregman function �ψ will be rigourously defined in Section 2.1, and we
will call g a (generalized) Bregman surrogate. Note that �ψ is not necessarily the standard
Bregman divergence [8] because we do not restrict ψ to be smooth or strictly convex or even
convex. Bregman divergence does not seem to have been widely used in the statistics com-
munity, but see [52]. The generalized Bregman surrogate framework has a close connection
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to the majorization-minimization (MM) principle [22, 23]. But the surrogate here as a func-
tion of β matches f (β) to a higher order when β− is set to β (cf. Lemma 4) and we do not
always invoke the majorization condition g(β;β−) ≥ f (β); the benefits will be seen in step
size control and acceleration.

A variety of algorithms can be recharacterized by Bregman surrogates, including DC pro-
gramming [44], local linear approximation (LLA) [55] and iterative thresholding [7, 38]. In
contrast to the large body of literature in convex optimization, little research has been done
on the rate of convergence of nonconvex optimization algorithms when p > n, and there is a
lack of universal methodologies. Instead of proving local convergence results for some care-
fully chosen initial points, this work aims to establish global convergence rates regardless
of the specific choice of the starting point, where a crucial element is the error measure. We
will see that the most natural measures are unsurprisingly problem-dependent, but can be
conveniently constructed via generalized Bregman functions.

Another perhaps more intriguing question to statisticians is how the statistical accuracy
improves or deteriorates as the cycles progress, and whether the finally obtained estimators
can enjoy provable guarantees in a statistical sense. See, for example, [1, 17, 51]; in partic-
ular, [29], one of the main motivations of our work, showed that for a composite objective
composed of a loss and a regularizer that enforces sparsity, the sequence of iterates β(t) gen-
erated by gradient-descent type algorithms can approach a minimizer βo at a linear rate even
when p > n, if the problem under consideration satisfies some regularity conditions. This
article reveals broader conclusions when using generalized Bregman surrogate algorithms in
the composite setting: the more straightforward statistical error between the t th iterate β(t)

and the statistical truth β∗ enjoys fast convergence, and the convergent fixed points, though
not necessarily local minimizers, let alone global minimizers, possess the desired statistical
accuracy in a minimax sense. The studies support the practice of avoiding unnecessary over-
optimization in high-dimensional sparse learning tasks. Our theory will make heavy use of
the calculus of generalized Bregman functions—in fact, the proofs become readily on hand
with some nice properties of � established. Again, a wise choice of the discrepancy measure
can facilitate theoretical analysis and lead to less restrictive regularity conditions.

Finally, we would like to study and extend Nesterov’s first and second accelerations
[33, 34]. Accelerated gradient algorithms [4, 26, 46] have lately gained popularity in high-
dimensional convex programming because they can attain the optimal rates of convergence
among first-order methods. However, since convexity is indispensable to these theories, how
to adapt the momentum techniques to nonsmooth nonconvex programming is largely un-
known. Ghadimi and Lan [20] studied how to accelerate gradient descent type algorithms
when the objective function is nonconvex but strongly smooth; the obtained convergence
rate is of the same order as gradient descent for nonconvex problems. We are interested in
more general Bregman surrogates with a possible lack of smoothness and convexity, most
notably in high-dimensional nonconvex sparse learning. This work will come up with two
momentum-based schemes to accelerate Bregman-surrogate algorithms by carefully control-
ling the sequences of relaxation parameters and step sizes.

Overall, this paper aims to provide a universal tool of generalized Bregman functions in the
interplay between optimization and statistics, and to demonstrate its active roles in construct-
ing error measures, formulating less restrictive regularity conditions, characterizing strong
convexity, deriving the so-called basic inequalities in nonasymptotic statistical analysis, de-
vising line search and momentum-based updates, and so on. The rest of this paper is orga-
nized as follows. In Section 2, we introduce the generalized Bregman surrogate framework
and present some examples. Section 3 gives the main theoretical results on computational
accuracy and statistical accuracy. Section 4 proposes and analyzes two acceleration schemes.
We conclude in Section 5. Simulation studies and all technical details are provided in the
Appendices (in the Supplementary Material [43]).
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Notation. Throughout the paper, we use C, c to denote positive constants. They are not
necessarily the same at each occurrence. The class of continuously differentiable functions is
denoted by C1. Given any matrix A, we denote its (i, j)-th element by Aij . The spectral norm
and the Frobenius norm of A are denoted by ‖A‖2 and ‖A‖F , respectively. The Hadamard
product of two matrices A and B of the same dimension is denoted by A ◦ B and their inner
product is 〈A,B〉 = tr{A
B}. If A − B is positive semidefinite; we also write A � B . Let
[p] := {1, . . . , p}. Given J ⊂ [p], we use AJ to denote the submatrix of A formed by the
columns indexed by J . Given a set A ⊂ R

n, we use A◦, ri(A), A to denote its interior, relative
interior and closure, respectively [36]. When f is an extended real-valued function from
D ⊂ R

p to R∪ {+∞}, its effective domain is defined as dom(f ) = {β ∈ R
p : f (β) < +∞}.

Let R+ = [0,+∞).

2. Basics of generalized Bregman surrogates.

2.1. Generalized Bregman functions. Bregman divergence [8], typically defined for con-
tinuously differentiable and strictly convex functions, plays an important role in convex anal-
ysis. An extension of it based on “right-hand” Gateaux differentials helps to handle nons-
mooth nonconvex optimization problems. We begin with one-sided directional derivative.

DEFINITION 1. Let ψ : D ⊂ R
p →R be a function. The one-sided directional derivative

of ψ at β ∈ D with increment h is defined as

(3) δψ(β;h) = lim
ε→0+

ψ(β + εh) − ψ(β)

ε
,

provided h is admissible in the sense that β + εh ∈ D for sufficiently small ε : 0 < ε < ε0.
When ψ : D →R

n is a vector function, δψ is defined componentwise.

In the following, ψ is called (one-sided) directionally differentiable at β if δψ(β;h) as
defined in (3) exists and is finite for all admissible h, and if this holds for all β ∈ D, we say
that ψ is directionally differentiable.

When a > 0, δψ(β;ah) = aδψ(β;h), but δψ is not necessarily a linear operator with re-
spect to h. Definition 1 is a relaxed version of the standard Gateaux differential, which studies
the limit when ε → 0. In high-dimensional sparse problems where nonsmooth regularizers
and/or losses are widely used, (3) is more convenient and useful.

DEFINITION 2 (Generalized Bregman Function (GBF)). The generalized Bregman func-
tion associated with a function ψ is defined by

(4) �ψ(β,γ ) = ψ(β) − ψ(γ ) − δψ(γ ;β − γ ),

assuming β,γ ∈ dom(ψ) and δψ(γ ;β − γ ) is meaningful and finite. In particular, when
ψ is differentiable and strictly convex, the generalized Bregman function �ψ becomes the
standard Bregman divergence:

(5) Dψ(β,γ ) := ψ(β) − ψ(γ ) − 〈∇ψ(γ ),β − γ
〉
.

When ψ is a vector function, a vector version of � is defined componentwise.

When ∇ψ exists at β , δψ(β,h) reduces to 〈∇ψ(β),h〉, which is linear in h. So if ψ is the
restriction of a function ϕ ∈ C1 to a convex set, �ψ(β,γ ) = �ϕ(β,γ ) for all β,γ ∈ dom(ψ).
For simplicity, all functions in our paper are assumed to be defined on a whole vector space
(Rp , typically) unless otherwise mentioned, although most results can be formulated in the
case of extended real-valued functions under the convexity of their effective domains.
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The generalized Bregman �ψ(·,γ ) can be seen as the difference between the function ψ

and its radial approximations made at γ . A simple but important example is D2(β,γ ) :=
D‖·‖2

2/2(β,γ ) = ‖β − γ ‖2
2/2. In general, �ψ or Dψ may not be symmetric. The following

symmetrized version turns out to be useful:

(6) �̄ψ(β,γ ) := 1

2
(�ψ+ �

�ψ)(β,γ ) = 1

2

{
�ψ(β,γ ) + �ψ(γ ,β)

}
,

where
�
�(β,γ ) denotes �(γ ,β). If ψ is smooth, �̄ψ(β,γ ) = 〈∇ψ(β) − ∇ψ(γ ),β − γ 〉.

To simplify the notation, we use �ψ ≥ �φ to denote �ψ(β,γ ) ≥ �φ(β,γ ) for all β , γ ,
and so �ψ ≥ 0 stands for �ψ(β,γ ) ≥ 0,∀β,γ . Some basic properties of � are given as
follows.

LEMMA 1. Let ψ and ϕ be directionally differentiable functions. Then for any α, β , γ ,
we have the following properties:

(i) �aψ+bϕ(β,γ ) = a�ψ(β,γ ) + b�ϕ(β,γ ), ∀a, b ∈R.
(ii) If ψ is convex, it is directionally differentiable and �ψ ≥ 0; conversely, if ψ is direc-

tionally differentiable and �ψ ≥ 0 then ψ is convex.
(iii) If ψ : Rn → R is differentiable and ϕ : Rp → R

n is continuous and direction-
ally differentiable, then �ψ◦ϕ(β,γ ) = �ψ(ϕ(β), ϕ(γ )) + 〈�ϕ(β,γ ),∇ψ(ϕ(γ ))〉. Also, if
ψ : Rn → R is directionally differentiable and ϕ : Rp → R

n is linear, then �ψ◦ϕ(β,γ ) =
�ψ(ϕ(β), ϕ(γ )).

(iv) �ψ(β,γ ) = ∫ 1
0 [δψ(γ + t (β − γ );β − γ ) − δψ(γ ;β − γ )]dt , provided δψ(γ +

t (β − γ );β − γ ) is integrable over t ∈ [0,1].
The properties will be frequently used in the rest of the paper. For instance, for ψ =

ρ‖ · ‖2
2/2 − f , by (i) we can write �ψ = ρD2 − �f . Sometimes, though f is not neces-

sarily convex, f + ν‖ · ‖2
2/2 is so for some ν ∈ R, which means �f ≥ −νD2, owing to

(ii). For l(β) = l0(Xβ +α), commonly encountered in statistical applications, (iii) states that
�l(β,γ ) = �l0(Xβ +α,Xγ +α). For (iv), the integrability condition is met when the direc-
tional derivative restricted to the interval [β,γ ] is bounded by a constant (or more generally
a Lebesgue integrable function); in particular, if ψ is L-strongly smooth, that is, ∇ψ exists
and is Lipschitz continuous: ‖∇ψ(β) − ∇ψ(γ )‖∗ ≤ L‖β − γ ‖ for any β,γ , where ‖ · ‖∗ is
the dual norm of ‖ · ‖, �ψ(β,γ ) ≤ L‖β − γ ‖2/2 and for the Euclidean norm, �ψ ≤ LD2
results.

Moreover, the GBF operator satisfies some interesting “idempotence” properties under
some mild assumptions, which is extremely helpful in studying iterative optimization algo-
rithms.

LEMMA 2.

(i) When ψ is convex, ��ψ(·,α)(β,γ ) ≤ �ψ(β,γ ), and when ψ is concave, ��ψ(·,α)(β,

γ ) ≥ �ψ(β,γ ) for all α, β , γ .
(ii) When ψ is directionally differentiable, for all α = (1 − θ)γ + θβ with θ /∈ (0,1),

��ψ(·,α)(β,γ ) = �ψ(β,γ ) and in particular,

��ψ(·,β)(β,γ ) = ��ψ(·,γ )(β,γ ) = �ψ(β,γ ).(7)

(iii) When δψ(·;β − γ ) is bounded in a neighborhood of α and has restricted radial
continuity at α: limε→0+ δψ(α + εh;β − γ ) = δψ(α;β − γ ) for any h ∈ [β − α,γ − α],
or when δψ(α; ·) has restricted linearity δψ(α;h) = 〈g(α),h〉 for some g and all h ∈ [β −
α,γ − α], we have

��ψ(·,α)(β,γ ) = �ψ(β,γ ).(8)

In particular, (8) holds when ψ is differentiable at α or δψ(·;β − γ ) is continuous at α.
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We refer to (ii) as the weak idempotence property and (iii) as the strong idempotence
property. When �ψ becomes a legitimate Bregman divergence, (8) can be rephrased into the
three-point property Dψ(β,γ ) = Dψ(β,α) + Dψ(α,γ ) − 〈β − α,∇ψ(γ ) − ∇ψ(α))〉 [12].
It is worth mentioning that although from (iii), differentiability can be used to gain strong
idempotence, the weak idempotence (7) is often what we need, which always holds under
just directional differentiability.

At the end of the subsection, we give some important facts of GBFs for canonical gener-
alized linear models (GLMs) that are widely used in statistics modeling. Here, the response
variable y ∈ Yn ⊂ R

n has density pη(·) = exp{(〈·,η〉 − b(η))/σ 2 − c(·, σ 2)} with respect
to measure ν0 defined on Yn (typically the counting measure or Lebesgue measure), where
η ∈ R

n represents the systematic component of interest, and σ is the scale parameter; see
[24]. Since σ is not the parameter of interest, it is more convenient to define the density
exp{(〈·,η〉 − b(η))/σ 2} (still written as pη(·) with a slight abuse of notation) with respect to
the base measure dν = exp(−c(·, σ 2))dν0. The loss for η can be written as

l0(η;y) = {−〈y,η〉 + b(η)
}
/σ 2.(9)

That is, l0 corresponds to a distribution in the exponential dispersion family with cumu-
lant function b(·), dispersion σ 2 and natural parameter η. In the Gaussian case, l0(η) =
−〈η,y〉/σ 2 + ‖y‖2

2/(2σ 2).
Following [50], we define the natural parameter space � = dom(b) = {η ∈ R

n : b(η) <

∞} (always assumed to be nonempty) and the mean parameter space M = {μ ∈ R
n : μ =

Ey, where y ∼ p for some density p defined on Yn with respect to ν}, and call pη minimal
if 〈a,z〉 = c for almost every z ∈ Yn with respect to ν implies a = 0. When � is open,
pη is called regular, and b can be shown to be differentiable to any order and convex, but
not necessarily strictly convex; if, in addition, pη is minimal, b is strictly convex and the
canonical link g = (∇b)−1 is well defined on M◦. These can all be derived from, say, the
propositions in [50].

LEMMA 3. Assume the exponential dispersion family setup with the associated loss de-
fined in (9).

(i) If � is an open set or pη is regular, then

l0(η;z) = �b

(
η, ∂b∗(z)

)
/σ 2 − b∗(z)/σ 2(10)

for all η ∈ �, z ∈ ri(M), where b∗ is the Fenchel conjugate of b, and ∂b∗(z) can take any
subgradient of b∗ at z. If pη is also minimal, �b becomes Db, ∂b∗(z) becomes g(z) (which
is unique), and ri(M) becomes M◦.

(ii) As long as � is open,

l0(η;z) = �b∗
(
z,∇b(η)

)
/σ 2 − b∗(z)/σ 2(11)

for all η ∈ �, z ∈ ri(M). If pη is also minimal, �b∗ = Db∗ and ri(M) = M◦.
(iii) Given any η1 ∈ �◦ and η2 ∈ �, the Kullback–Leibler (KL) divergence of pη2 from

pη1 relates to the GBF of l0 or b by

KL(pη1,pη2) = �l0(η2,η1) = �b(η2,η1)/σ
2.(12)

Property (i) shows the importance of GBF in maximum likelihood estimation. A Breg-
man version of Property (ii) was first described in [3], while our conclusions based on �b,
�b∗ are more general, as they do not require the strict convexity of b or the differentia-
bility of b∗. Consider for instance the multinomial GLM under a symmetric parametriza-
tion: for [y1, . . . , ym] ∈ Y = {yk ∈ {0,1},1 ≤ k ≤ m,

∑
yk = 1} (n = 1), Eyk ∝ exp(ηk) or
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Eyk = exp(ηk)/
∑

exp(ηk) gives b = log
∑

exp(ηk), and thus b∗(μ) takes
∑

μk logμk for
[μ1, . . . ,μm] ∈ M = {[μk] : ∑

μk = 1,μk ≥ 0} and +∞ otherwise. Clearly, b∗ is not dif-
ferentiable (given any z ∈ ri(M), ∂b∗(z) = {logz + t1 : t ∈ R}), but nicely our two GBF
representations still hold. In addition, if the right-hand side of (10) or (11), as a function of
z, is continuous on M, which is the case for Bernoulli, multinomial and Poisson, (i) and (ii)
hold for any z ∈ M from [50], Theorem 3.4.

Property (iii) (notice the exchange of η1 and η2 in the generalized Bregman expressions)
can be used to formulate and verify model regularity conditions in minimax studies of sparse
GLMs, which are of great interest in high-dimensional statistical learning [47]. More con-
cretely, consider a general signal class

(13) B
(
s∗,M

) = {
β∗ ∈ R

p : ∥∥β∗∥∥
0 ≤ s∗,

∥∥β∗∥∥∞ ≤ M
}
,

where s∗ ≤ p, 0 ≤ M ≤ +∞. Some applications limit the magnitude of the coefficients βj

via a constraint or a penalty, resulting in a finite M . Let I (·) be any nondecreasing function
with I (0) = 0, I �≡ 0. Some particular examples are I (t) = t and I (t) = 1t≥c. Recall the
regular exponential dispersion family with systematic component η = Xβ and loss l(β) =
l0(η) defined by (9).

THEOREM 1. In the regular exponential dispersion family setup (with dom(b) a
nonempty open set), assume p ≥ 2, 1 ≤ s∗ ≤ p/2. Let

P
(
s∗) = s∗ log

(
ep/s∗)

.(14)

(i) If

�l0(0,Xβ)σ 2 ≤ κD2(0,β) ∀β ∈ B
(
s∗,M

)
(15)

where κ > 0, there exist positive constants c, c̃, depending on I (·) only, such that

inf
β̂

sup
β∗∈B(s∗,M)

E
{
I
(
D2

(
β∗, β̂

)
/
[
c̃ min

{
σ 2P

(
s∗)

/κ,M2s∗}])} ≥ c > 0,

where β̂ denotes any estimator of β∗.
(ii) If

(16)

{
κD2(β1,β2) ≤ D2(Xβ1,Xβ2),

�l0(0,Xβ1)σ
2 ≤ κD2(0,β1),

∀βi ∈ B
(
s∗,M

)
,

where κ, κ ≥ 0, then there exist positive constants c, c̃ depending on I (·) only such that

inf
β̂

sup
β∗∈B(s∗,M)

E
{
I
(
D2

(
Xβ∗,Xβ̂

)
/
[
c min

{
(κ/κ)σ 2P

(
s∗)

, κM2s∗}])} ≥ c > 0.

The GBF-form conditions (15), (16) can be viewed as an extension of restricted isome-
try [10], and are often easy to check using the Hessian. For example, from Lemma 1, we
immediately know that if l0 is L-strongly smooth, (15) is satisfied with κ = L‖X‖2

2 even
when M = +∞. This is the case for regression and logistic regression, and accordingly, no
estimation algorithms can beat the minimax rate s∗ log(ep/s∗) (ignoring trivial factors). The
optimal lower bounds provide useful guidance in establishing sharp statistical error upper
bounds of Bregman-surrogate algorithms in Section 3.2.
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2.2. Examples of Bregman surrogates.

EXAMPLE 1 (Gradient descent and mirror descent). Gradient descent is a simple first-
order method to minimize a function f ∈ C1 which may be nonconvex. Starting with β(0),
the algorithm proceeds as follows:

(17) β(t+1) = β(t) − α∇f
(
β(t)),

where α > 0 is a step size parameter. Its rationale can be seen by formulating a Bregman-
surrogate algorithm using �ψ = ρD2 − �f :

β(t+1) = arg min
β

g
(
β;β(t)) = f (β) + (ρD2 − �f )

(
β,β(t))(18a)

= β(t) − 1

ρ
∇f

(
β(t)),(18b)

where f (·) − �f (·,β(t)) gives a linear approximation of f and 1/ρ amounts to the step
size. We call ρ the inverse step size parameter. (The generalized Bregman surrogate in (18a)
extends the class of algorithms to a directionally differentiable f , with the update given by
β(t+1) = β(t) + (0 ∨ −δf (β(t);h◦))h◦/ρ and h◦ ∈ arg max‖h‖2=1[δf (β(t);h)]−, where [ ]−
denotes the negative part (t− = (|t | − t)/2).)

More generally, we can use a strictly convex ϕ ∈ C1 to construct

(19) g
(
β;β(t)) = f (β) + (ρDϕ − �f )

(
β,β(t)).

Minimizing (19) with respect to β gives the renowned mirror descent [31]: β(t+1) =
(∇ϕ)−1(∇ϕ(β(t)) − ∇f (β(t))/ρ), where (∇ϕ)−1 is the inverse of ∇ϕ. Mirror descent is
widely used in convex programming, but this work does not restrict f to be convex.

EXAMPLE 2 (Iterative thresholding). Sparsity-inducing penalties are widely used in
high-dimensional problems (see, for example, �0, �1 [45]), bridge penalties [18], SCAD [16],
capped-�1 [54] and MCP [53]. There is a universal connection between thresholding rules and
penalty functions [39], and the mapping from penalties to thresholdings is many-to-one. This
makes it possible to apply an iterative thresholding algorithm to solve a general penalized
problem of the form minβ l(β) + ∑

j P (�βj ;λ) [7, 38]:

(20) β(t+1) = �
(
�β(t) − ∇l

(
β(t))/�;λ)

/�,

where � is a thresholding function inducing P , and � > 0 is an algorithm parameter for
the sake of scaling and convergence control. This class of iterative algorithms is called the
Thresholding-based Iterative Selection Procedures (TISP) in [38] and is scalable in compu-
tation. For the rigorous definition of � and the �-P coupling formula, see Section 3.1 for
detail. Some examples of � include: (i) soft-thresholding �S(t;λ) = sgn(t)(|t | − λ)1|t |>λ,
which induces the �1 penalty, (ii) hard-thresholding �H(t;λ) = t1|t |>λ, which is associated
with (infinitely) many penalties, with the capped-�1 penalty, (55), and the discrete �0 penalty
as particular instances. The nonconvex SCAD and MCP penalties also have their correspond-
ing thresholding rules. In this sense, thresholdings extend proximity operators. One can re-
gard (20) as an outcome of minimizing the following Bregman surrogate:

(21) g
(
β;β(t)) = l(β) + ∑

P(�βj ;λ) + (
�2D2 − �l

)(
β,β(t)).

Here, we linearize l only, as minβ g(β;β(t)) has (20) as its globally optimal solution. Inter-
estingly, the set of fixed points under the g-mapping enjoys provable guarantees that may not
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hold for the set of local minimizers to the original objective (Section 3.2.1). This is particu-
larly the case when � has discontinuities and P(t;λ) is given by P�(t;λ) + q(t;λ), where
P� is defined by (48) and q is a function satisfying q(t;λ) ≥ 0 for all t ∈ R and q(t;λ) = 0
if t = �(s;λ) for some s ∈ R [40].

A closely related iterative quantile-thresholding procedure [39, 42] proceeds by β(t+1) =
�#(β(t) − ∇l(β(t))/�2;q) for the sake of feature screening: min l(β) s.t. ‖β‖0 ≤ q , and uses
a similar surrogate g(β;β(t)) = l(β)+ (�2D2 −�l)(β,β(t)). Here, the quantile thresholding
�#(α;q), as an outcome of ming(β;β−), keeps the top q elements of αj after ordering them
in magnitude, |α(1)| ≥ · · · ≥ |α(p)|, and zero out the rest. To avoid ambiguity, we assume no
ties occur in performing �#(α;q) throughout the paper, that is, |α(q)| > |α(q+1)|.

EXAMPLE 3 (Nonnegative matrix factorization). Nonnegative Matrix Factorization
(NMF) [28] provides an effective tool for feature extraction and finds widespread ap-
plications in computer vision, text mining and many other areas. NMF approximates a
nonnegative data matrix X ∈ R

n×p
+ by the product of two nonnegative low-rank matrices

W ∈ R
n×r+ and H ∈ R

r×p
+ . The KL divergence is often used to make a cost function, that is,

min
W∈Rn×r+ ,H∈Rr×p

+
KL(X,WH ) := ∑

i,j [Xij log(Xij /(WH )ij ) − Xij + (WH )ij ], which

gives a nonconvex optimization problem. The following multiplicative update rule (MUR)
shows good scalability in big data applications [13]:

H
(t+1)
kj = H

(t)
kj exp

[
− 1

ρ

∑
i

(
Wik − WikXij

(WH (t))ij

)]
,(22)

W
(t+1)
ik = W

(t)
ik exp

[
− 1

ρ

∑
j

(
Hkj − HkjXij

(W (t)H )ij

)]
.(23)

The update formulas can be explained from a Bregman surrogate perspective. Since the prob-
lem is symmetric in W and H , �KL(X,WH ) = �KL(X
,H
W
), we take (22) for in-
stance to illustrate the point. Noticing that the criterion is separable in the column vectors of
H , it suffices to look at minh∈Rr+ f (h) = KL(x,Wh) = ∑

i[xi log(xi/(Wh)i)−xi +(Wh)i],
where x can be any column of X. Then it is easy to verify that the following Bregman surro-
gate:

(24) g
(
h;h(t)) = f (h) + (ρDϕ − Df )

(
h,h(t)), ϕ(h) = ∑

(hi loghi − hi),

leads to the multiplicative update formulas.

EXAMPLE 4 (DC programming). DC programming [44] is capable of tackling a large
class of nonsmooth nonconvex optimization problems; see, for example, [19, 35]. A “differ-
ence of convex” (DC) function f is defined by f (β) = d1(β) − d2(β), where d1 and d2 are
both closed convex functions. To minimize f (β), a standard DC algorithm generates two
sequences {β(t)} and {γ (t)} that obey

(25) γ (t) ∈ ∂d2
(
β(t)), β(t+1) ∈ ∂d∗

1
(
γ (t)),

where ∂d(β) is the subdifferential of d(·) at β , and d∗
1 (·) is the Fenchel conjugate of d1(·).

(As before, d1, d2 are assumed to be real-valued functions defined on R
p , so the sequences

are well defined and finite.) This elegant algorithm does not involve any line search and
guarantees global convergence given any initial point. Many popular nonconvex algorithms
can be derived from (25) [2].

Focusing on the β-update, we know that β(t+1) must be a solution to minβ d1(β) −
〈β,γ (t)〉 or minβ d1(β) − 〈β − β(t),γ (t)〉. Due to the convexity of d2, 〈β − β(t),γ (t)〉 ≤
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supγ∈∂d2(β
(t))

〈β − β(t),γ 〉 = δd2(β
(t);β − β(t)) for all γ (t) ∈ ∂d2(β

(t)), β ∈ R
p . Thus

minβ d1(β) − 〈β − β(t),γ (t)〉 should be no lower than minβ d1(β) − δd2(β
(t);β − β(t)).

Choosing β(t+1) ∈ arg mind1(β) − δd2(β
(t);β − β(t)) and γ (t) = δd2(β

(t);β(t+1) − β(t)) ×
(β(t+1) − β(t))/‖β(t+1) − β(t)‖2

2 ensures (25), which simply amounts to using a Bregman
surrogate

(26) g
(
β;β(t)) = f (β) + �d2

(
β,β(t)).

For the γ -updates, a Bregman surrogate g(γ ;γ (t)) = (d∗
2 − d∗

1 )(γ ) + �d∗
1
(γ ,γ (t)) can be

similarly constructed.

EXAMPLE 5 (Local linear approximation). Zou and Li [55] proposed an effective local
linear approximation (LLA) technique to minimize penalized negative log-likelihoods. In
their paper, the loss function is assumed to be convex and smooth, and the penalty is concave
on R+. We give a new characterization of LLA by use of a Bregman surrogate.

Let l be a directionally differentiable loss function but not necessarily continuously differ-
entiable, and P be a function that is concave and differentiable over (0,+∞), and satisfies
P(t) = P(−t) for any t ∈R, P(0) = 0. Consider the problem minβ l(β) + ∑

j P (βj ). Using
the generalized Bregman notation �‖·‖1(β,γ ), or �1(β,γ ) for short, define

(27) g
(
β;β(t)) = l(β) + ∑

P(βj ) + ∑[
αj�1

(
βj ,β

(t)
j

) − �P

(
βj ,β

(t)
j

)]
.

In contrast to (21), (27) linearizes P instead of l. Simple calculation shows

�1
(
βj ,β

(t)
j

) =
{|βj | − sgn

(
β

(t)
j

)
βj , β

(t)
j �= 0,

0, β
(t)
j = 0,

(28)

�P

(
βj ,β

(t)
j

) =
{
P(βj ) − P

(
β

(t)
j

) − P ′(β(t)
j

)(
βj − β

(t)
j

)
, β

(t)
j �= 0,

P (βj ) − P ′+(0)|βj |, β
(t)
j = 0,

(29)

where sgn(·) is the sign function and P ′+(β) denotes the right derivative of P(·) at β . Inter-

estingly, with αj = |P ′+(β
(t)
j )|, the �1-based surrogate (27) can be shown to be

l(β) + ∑
j

[
P

(∣∣β(t)
j

∣∣) + P ′+
(∣∣β(t)

j

∣∣)(|βj | −
∣∣β(t)

j

∣∣)],
which is exactly the surrogate constructed by Zou and Li. To the best of our knowledge, the
generalized Bregman formulation is new.

LLA requires solving a weighted lasso problem at each step. We can further linearize l

as in Example 2 to improve its scalability. LLA is popular among statisticians, but to our
knowledge, there is a lack of global convergence-rate studies in large-p applications. We will
see that reformulating LLA from the generalized Bregman surrogate perspective leads to a
convenient choice of the convergence measure in analyzing the algorithm.

EXAMPLE 6 (Sigmoidal regression). We use the univariate-response sigmoidal regres-
sion to illustrate this type of nonconvex problems that is commonly seen in artificial neural
networks. The formulation carries over to multilayered networks and recurrent networks [41].

Let X = [x1,x2, . . . ,xn]
 ∈ R
n×p be the data matrix, and y = [y1, . . . , yn]
 be the re-

sponse vector. Define π(ν) = eν/(1 + eν); if ν is replaced by a vector, π is defined compo-
nentwise. The sigmoidal regression solves

(30) min
β

f (β) = 1

2

n∑
i=1

(
yi − π

(
x


i β
))2

.
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Then ∇2f (β) = ∑n
i=1[(−2μ3

i + 3μ2
i − μi)yi + (3μ4

i − 5μ3
i + 2μ2

i )]xix


i , where μi =

π(x

i β). Because μi ∈ [0,1], we get ∇2f (β) � X
 diag{|0.1yi | + 0.08}ni=1X, which mo-

tivates a Bregman surrogate

g
(
β;β(t)) = f (β) + Dψ−f

(
β,β(t)), ψ(β) = 1

2
β
X
 diag

{|0.1yi | + 0.08
}
Xβ.

Solving minβ g(β;β(t)) yields β(t+1) = β(t) +B−1X
(u(t) −u(t) ◦u(t)) ◦ (y −u(t)), where
B = X
 diag{|0.1yi | + 0.08}ni=1X, u(t) = π(X
β(t)) and ◦ denotes the Hadamard product.
This type of surrogate functions is closely related to proximal Newton-type methods [37] and
signomial programming [27].

3. Bregman-surrogate algorithm analysis. Motivated by the examples in Section 2,
we study a generalized Bregman-surrogate algorithm family for solving minβ f (β), with the
sequence of iterates defined by

(31) β(t+1) ∈ arg min
β

g
(
β;β(t)) := f (β) + �ψ

(
β,β(t)), t ≥ 0

The objective function f and the auxiliary function ψ are assumed to be directionally differ-
entiable but need not be smooth or convex. ψ has flexible options as seen from the previous
examples.

Equation (31) does not necessarily give an MM procedure, as the majorization condition
g(β;β−) ≥ f (β) may not hold. But we have the following zeroth-order and first-order de-
generacies when β− = β , which provides rationality of investigating the accuracy of fixed
points under the g-mapping (31).

LEMMA 4. Let g(β;β−) = f (β) + �ψ(β,β−) with f and ψ directionally differ-
entiable. Then (i) g(β;β) = f (β), and (ii) δg(β;β−,h)|β−=β = δf (β;h),∀β,h, where
δg(β;β−,h) is the directional derivative of g(·;β−) at β with increment h.

The lemma relates the set of fixed points of the algorithm mapping,{
β : β ∈ arg min

β
g
(
β;β−)∣∣∣

β−=β

}
,(32)

which we will call the fixed points of g for short, to the set of directional stationary points of
f (under directional differentiability),{

β : δf (β;h) ≥ 0 for any admissible h
}
,(33)

which becomes the set of stationary points when f ∈ C1. The link is general for any gener-
alized Bregman surrogate in (31) regardless of the specific form of ψ . An important impli-
cation is that in studying convergence it is legitimate to measure how β(t+1) and β(t) differ,
as widely used in practice. Later we will see that it is indeed possible to provide provable
guarantees for the fixed points of this type of surrogates. In contrast, a general MM algo-
rithm does not always have the first-order degeneracy and so attaining β(t+1) = β(t) does not
necessarily ensure a good-quality solution, especially in nonconvex scenarios.

3.1. Computational accuracy. We first study the optimization error of (31), then turn to
its statistical error in Section 3.2. This subsection aims to derive universal rates of conver-
gence under no regularity conditions.
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• General setting. In this part, the objective f (β) does not have any known structure. To
better connect with some conventional results in convex optimization, we first present two
propositions for (31) on the function-value convergence and iterate convergence. While the
resultant rates are encouraging, the error bounds are most informative under certain smooth-
ness and convexity assumptions. This suggests the necessity of choosing a proper conver-
gence measure in order to avoid stringent or awkward technical conditions in nonconvex
optimization.

PROPOSITION 1. Given an arbitrary initial point β(0), let β(t) be the sequence generated
according to (31) where ψ is differentiable. Then

(34) avg
0≤t≤T

f
(
β(t+1)) − f (β̄) ≤ 1

T + 1

[
�ψ

(
β̄,β(0)) − �ψ

(
β̄,β(T +1))]

for any β̄ satisfying

(35) �ψ

(
β(t+1),β(t)) + �f

(
β̄,β(t+1)) ≥ 0, 0 ≤ t ≤ T .

Here, avg0≤t≤T f (β(t+1)) denotes the average of f (β(1)), . . . , f (β(T +1)).
In particular, if both f and ψ are convex, then f (β(t)) is nonincreasing and

(36) f
(
β(T +1)) − f (β) ≤ �ψ(β,β(0))

T + 1
∀β.

Equation (34) shows a convergence rate of O(1/T ) under (35) that amounts to step size
control. For example, for �ψ = ρDϕ − �f in mirror descent, (35) shows that ρ should be
sufficiently large, which in turns gives a small stepsize 1/ρ:

ρ ≥ (
�f

(
β(t+1),β(t)) − �f

(
β̄,β(t+1)))/Dϕ

(
β(t+1),β(t)),

or ρ ≥ �f (β(t+1),β(t))/Dϕ(β(t+1),β(t)) when f is convex. In nonconvex scenarios, the
condition may be hard to verify, but one has reason to believe that with a properly small step
size, a generalized Bregman-surrogate algorithm should not be much slower than gradient
descent.

Actually, a faster rate of convergence may be obtained under some GBF comparison con-
ditions, (37) and (39) below, which can be viewed as substitutes for conventional strong
convexity in a more general sense. (The corresponding geometric decay of the errors is moti-
vating in high dimensional statistical learning, in light of the “restricted” strongly convexity
often possessed by such a type of problems [29].)

PROPOSITION 2. Consider the iterative algorithm defined by (31) starting at an arbi-
trary point β(0) with ψ differentiable, and let βo be a minimizer of f (β).

(i) If for some κ > 1, �φ = �ψ + �f satisfies

(37) �̄φ ≥ κ

κ − 1
�ψ,

then for any T ≥ 0, we have

(38) �̄φ

(
βo,β(T +1)) ≤

(
κ − 1

κ + 1

)T +1
�̄φ

(
βo,β(0)) − κ

2
min

0≤t≤T
�ψ

(
β(t+1),β(t)).
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(ii) Alternatively, if

(39) 2�̄f ≥ ε�ψ

for some ε > 0, then

(40) �ψ

(
βo,β(T +1)) ≤

(
1

1 + ε

)T +1
�ψ

(
βo,β(0)) − 1

ε
min

0≤t≤T
�ψ

(
β(t+1),β(t))

for any T ≥ 0.

REMARK 1. We give an illustration of (i) and (ii) to compare their assumptions and
conclusions. In gradient descent with �φ = ρD2, (37) becomes ρD2 ≥ (ρD2 −�f )κ/(κ −1)

or �f ≥ (ρ/κ)D2 and when f is μ-strongly convex and ρ-strongly smooth, κ = ρ/μ. Then
(38) reads

(41) D2
(
βo,β(T +1)) ≤

(
ρ − μ

ρ + μ

)T +1
D2

(
βo,β(0)).

The D2-form bound is classical for problems with strong convexity; see, for example, Theo-
rem 2.1.15 in [32]. Yet it is worth mentioning that our Bregman comparison conditions do not
require ψ to be strongly convex to attain the linear rate. (40) gives a linear convergence result,
too, in terms of yet another measure. In the same setup, (39) holds for ε : ερ/(2 + ε) = μ and
similarly

(42) �ψ

(
βo,β(T +1)) ≤

(
ρ − μ

ρ + μ

)T +1
�ψ

(
βo,β(0)).

A careful examination of the proof in Section A.8 shows that (39) is applied once, while
(37) is applied twice on both sides of (A.13), and so (ii) appears less technically demanding.
Picking a suitable error function can assist analysis and relax regularity assumptions. The
same �ψ will be used in studying the statistical error convergence in Theorem 5.

Instead of naively comparing f (β(t)) with f o, or β(t) with βo, which may be unattainable
or nonunique in nonconvex optimization, one can measure the algorithm convergence in a
wiser manner. Ben-Tal and Nemirovski [5] pointed out that with an inappropriate measure of
discrepancy, the convergence rate of gradient descent for minimizing a nonconvex objective
can be arbitrarily slow, and a common choice is to bound

min
t≤T

∥∥∇f
(
β(t))∥∥2

.(43)

This is reasonable since when ∇f (β(t)) = 0, gradient descent stops iterating and delivers a
stationary point. (43) can be rewritten as ρ2 times

min
t≤T

D2
(
β(t+1),β(t))(44)

as β(t+1) −β(t) = −∇f (β(t))/ρ. The idea of checking stationarity by the difference between
two successive iterates generalizes, thanks to Lemma 4, and eventually leads to an error bound
that can get rid of condition (35).

THEOREM 2. Any generalized Bregman surrogate algorithm defined by (31) satisfies the
following bound for all T ≥ 1,

(45) avg
0≤t≤T

(2�̄ψ + �f )
(
β(t),β(t+1)) ≤ 1

T + 1

[
f

(
β(0)) − f

(
β(T +1))].
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(45) obtains the same rate of convergence as Proposition 1, but is free of any conditions
other than directional differentiability, because only the weak idempotence is needed to derive
the bound. A proper stepsize control can often make the GBF error nonnegative (e.g., (50)).
But even when β(t) diverges, (45) still applies.

Notice the factor ‘2’ proceeding the symmetrized Bregman �̄ψ on the left-hand side of
(45). This gives a relaxed stepsize control than MM. We use mirror descent �ψ = ρDϕ −�f

to exemplify the point without requiring f to be convex; cf. Example 1.

COROLLARY 1. In the mirror descent setup with a possibly nonconvex objective, suppose
that �f ≤ LD̄ϕ for some L > 0, infβ f (β) ≥ 0, and the inverse stepsize parameter ρ is taken
such that ρ > L/2. Then any accumulation point of β(t) is a fixed point of g and

avg
0≤t≤T

D̄ϕ

(
β(t),β(t+1)) ≤ f (β(0))

(T + 1)(2ρ − L)
.(46)

Hence in the special case of gradient descent, (46) recovers min0≤t≤T ‖∇f (β(t))‖2
2 =

O(1/T ) [5] when ρ > L/2. In comparison, MM algorithms always require �ψ ≥ 0, or
ρ ≥ L. A smaller value of ρ means a larger step size with which the algorithm converges
faster.

• Composite setting. High-dimensional statistical learning often has an additive objective
f (β) = l0(Xβ) + P(�β;λ), where X ∈ R

n×p is the predictor or feature matrix, l0(·) is the
loss defined on Xβ (and so l(β) = l0(Xβ)), P(·;λ) is a sparsity-inducing regularizer and
� is a controllable parameter, typically taking ‖X‖2 to match the scale. Unless otherwise
mentioned, P(β;λ) denotes

∑
j P (βj ;λ) with a little abuse of notation.

Such a composite setup is widely assumed in convex optimization [15, 46]. But among the
abundant choices of l0 and P in the literature, many of them are nonconvex. The good news
is that the main theorem proved in the previous subsection adapts to the composite setting
and we give some results for iterative thresholding and LLA as an illustration (cf. Examples
2, 5).

Iterative thresholding. Many popularly used penalty functions are associated with thresh-
oldings rigorously defined as follows.

DEFINITION 3 (Thresholding function). A threshold function is a real-valued function
�(t;λ) defined for −∞ < t < ∞ and 0 ≤ λ < ∞ such that

(i) �(−t;λ) = −�(t;λ);
(ii) �(t;λ) ≤ �(t ′;λ) for t ≤ t ′;

(iii) limt→∞ �(t;λ) = ∞;
(iv) 0 ≤ �(t;λ) ≤ t for 0 ≤ t < ∞.

Given �, a critical concavity number L� ≤ 1 can be introduced such that d�−1(u;λ)du ≥
1 −L� for almost every u ≥ 0, or

(47) L� = 1 − ess inf
{
d�−1(u;λ)/du : u ≥ 0

}
,

with ess inf the essential infimum and �−1(u;λ) := sup{t : �(t;λ) ≤ u}, ∀u > 0. For
the widely used soft-thresholding �S(t;λ) = sgn(t)(|t | − λ)1|t |>λ and hard-thresholding
�H(t;λ) = t1|t |>λ, L� equals 0 and 1, respectively. In fact, when L� > 0, the penalty in-
duced by � via (48) is nonconvex, and L� gives a concavity measure of it according to
Lemma A.3. The Bregman surrogate characterization of iterative thresholding in (21) yields
a general conclusion for any � in possibly high dimensions.
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PROPOSITION 3. Given any thresholding � and directionally differentiable l(·), con-
sider the iterative thresholding procedure (20): β(t+1) = �(�β(t) − ∇l(β(t))/�;λ)/� with
� > 0. Construct

(48) P�(t;λ) =
∫ |t |

0

(
�−1(u;λ) − u

)
du ∀t ∈ R,

and define f (β) = l(β)+P�(�β;λ), g(β,β−) = l(β)+P�(�β;λ)+ (�2D2 −�l)(β,β−).
Then β(t) ∈ arg minβ g(β,β(t−1)) and for all T ≥ 1

(49) avg
0≤t≤T

(
�2(2 −L�)D2− �

�l

)(
β(t),β(t+1)) ≤ 1

T + 1

[
f

(
β(0)) − f

(
β(T +1))].

When the loss satisfies �l ≤ LD2, a reasonable choice of � is

(50) �2 > L/(2 −L�).

So when L� > 0, the step size upper bound will be smaller than that as L� = 0. This is often
the price to pay for nonconvex optimization. On the other hand, (49) still ensures the universal
rate of convergence of O(1/T ), in spite of the high dimensionality and nonconvexity.

Local linear approximation. Next, we study the computational convergence of LLA for
solving the penalized estimation problem minf (β) = l(β)+P(�β), assuming l is direction-
ally differentiable, P(0) = 0, P ′+(0) < +∞, P(t) = P(−t) ≥ 0 and P(t) is differentiable for
any t > 0. Recall its Bregman form surrogate

(51) g
(t)
LLA

(
β;β(t)) = l(β) + P(�β) + �‖α(t)◦(·)‖1−P(·)

(
�β, �β(t)),

where α(t) = [α(t)
j ] with α

(t)
j = |P ′+(β

(t)
j )|, 1 ≤ j ≤ p. We abbreviate �‖α(t)◦(·)‖1−P(·) to

�
(t)
LLA, which does not satisfy strong idempotence. By combining �̄

(t)

LLA and �f to evaluate
LLA’s optimization error, we obtain a convergence result without any additional assumptions.

PROPOSITION 4. Given any starting point β(0), the LLA iterates satisfy the following
bound for all T ≥ 1:

avg
0≤t≤T

[
2�̄

(t)

LLA
(
�β(t), �β(t+1)) + �f

(
β(t),β(t+1))] ≤ 1

T + 1

[
f

(
β(0)) − f

(
β(T +1))].

Ignoring the cost difference per iteration, the convergence rate of LLA is no slower
than that of gradient descent. If l is a negative log-likelihood function associated with

a log-concave density and P is concave on R+, as assumed in [55], 2�̄
(t)

LLA(�β, �β ′) +
�f (β,β ′) = �l(β,β ′) + �−P (�β ′, �β) + 2

∑
j α

(t)
j �̄1(�βj , �β

′
j ) ≥ 0,∀β,β ′. But Propo-

sition 4 holds even when P is nonconcave on R+ and l is nonconvex.
The global convergence-rate results presented in this subsection are free of any regularity

conditions on sparsity, sample size, initial point and design incoherence. High-dimensional
learning algorithms may however show a better convergence rate when the problems under
consideration are “regular” in a certain sense.

3.2. Statistical accuracy. To statisticians, the statistical accuracy of Bregman-surrogate
algorithms with respect to a statistical truth (denoted by β∗) is perhaps more meaningful than
the optimization error to a certain local or global minimizer, since real world data are always
noisy. Section 3.2.1 and Section 3.2.2 will study the statistical error of the final estimate β̂
and the t th iterate β(t), respectively, where combining the generalized Bregman calculus and
the empirical process theory eases the treatment of a nonquadratic loss.
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The techniques based on GBFs apply to a general problem (see, e.g., Theorem A.1 in
Section A.18), but here we focus on the aforementioned sparse learning in the composite
setting: minβ l(β) + P�(�β;λ), where l(β) = l0(η) = l0(Xβ) is directionally differentiable
and P�(·;λ) is induced by a thresholding � via (48). Since l0 is placed on Xβ , we include
here a scaling parameter � (often ‖X‖2) in the penalty; this will yield a universal choice of the
regularization parameter λ that does not vary with the sample size. Throughout Section 3.2,
we assume that � satisfies � ≥ ‖X‖2. Note that neither the loss nor the penalty needs to be
convex or smooth.

Give any directionally differentiable ψ , the sequence of iterates is generated by

(52) β(t+1) ∈ arg min
β

g
(
β;β(t)) := l(β) + P�(�β;λ) + �ψ

(
β,β(t)).

Nonconvex iterative thresholding and LLA are particular instances.
First, we must characterize the notion of noise in this nonlikelihood setting, to take into

account the randomness of samples. Assume l0 is differentiable at point Xβ∗ (but not neces-
sarily differentiable on all of Rn) and define the effective noise by

(53) ε = −∇l0
(
Xβ∗)

.

(An alternative assumption is that δl0(Xβ∗;h) is a sub-Gaussian random variable with mean
0 and scale bounded by cσ for any unit vector h, but we will not pursue further in the current
paper.)

Typically, E[ε] should be 0, and so ∇{E[l0(Xβ∗)]} = 0 assuming the differentiation and
expectation are exchangeable, which means the statistical truth makes the gradient of its risk
vanish. For a GLM with yi (1 ≤ i ≤ n) following a distribution in the exponential family
that has cumulant function b and canonical link function g = (b′)−1, the loss is then l(β) =
l0(Xβ) = −〈y,Xβ〉 + 〈1, b(Xβ)〉 (cf. (9) with σ = 1), and so

(54) ε = y − g−1(
Xβ∗) = y −E(y).

Our effective noise, as a joint outcome of the loss and the response, does not depend on
the regularizer, and may differ from the raw noise. For example, under y = Xβ∗ + εraw,
l(β) = lHuber(r) = ∑

i:|ri |≤aσ r2
i /2 + ∑

i:|ri |>aσ (a|ri | − a2σ 2/2) with r = y − Xβ [21], sim-
ple calculation gives εi = εraw

i 1|εraw
i |≤aσ + aσ1|εraw

i |>aσ , which is bounded by aσ , thereby
sub-Gaussian, no matter what distribution the raw noise follows. This nonparametricness is
apparent for any l0 that is (globally) Lipschitz, for example, the logistic deviance and hinge
loss for classification.

In this section, we assume that ε is a sub-Gaussian random vector with mean zero and scale
bounded by σ (cf. Definition A.1), where εi are not required to be independent. Examples
include Gaussian random variables and bounded random variables such as Bernoulli.

The support of β is denoted by J (β) = {j : βj �= 0}, and its cardinality is J (β) =
|J (β)| = ‖β‖0. We abbreviate J (β∗) to J ∗ and J (β̂) to Ĵ . In sparse learning, J ∗ � n � p is
typically true. The sparsity suggests the possibility of obtaining a fast rate of convergence in
statistical error. The following penalty induced by the hard-thresholding �H(t;λ) = t1|t |>λ

by (48) turns out to play a key role in the analysis

(55) PH(t;λ) = (−t2/2 + λ|t |)1|t |<λ + (
λ2/2

)
1|t |≥λ.

An important fact is that P�(t;λ) ≥ PH(t;λ) for any t ∈R and any thresholding rule �. This
is simply because in shrinkage estimation, any �(t;λ) with λ as the threshold is identical to
zero as t ∈ [0, λ) and is bounded above by the identity line for t ≥ λ.
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3.2.1. Statistical accuracy of fixed-point solutions. The finally obtained solutions from a
Bregman surrogate algorithm can be described as the fixed points of g (recall (32)),

(56) β̂ ∈ arg min
β

g(β; β̂).

We denote the set by F , and call such solutions the F -estimators. When the objective function
is convex, an F-estimator is necessarily a globally optimal solution to the original problem by
Lemma 4, thus an M-estimator. In general, however, the lack of convexity and smoothness
may make β̂ neither an M-estimator nor a Z-estimator [49], which poses new and intriguing
challenges to statistical algorithmic analysis. It is also worth mentioning that another impor-
tant class of “A-estimators” that have alternative optimality, typically arising from block co-
ordinate descent (BCD) algorithms like in Example 3, can often be converted to F-estimators;
see Section A.17.

Nicely, if the problem is regular, all F-estimators defined through g can achieve essentially
the best statistical precision in possibly high dimensions. This is nontrivial since even f ’s
locally optimal solutions do not all have the provable guarantee (cf. Remark 4). Theorem 3
and Theorem 4 below only make use of the weak idempotence property; another notable
feature is that the conditions and conclusions below are regardless of the form of �ψ .

THEOREM 3. Suppose there exist δ > 0, ϑ > 0 and large enough K ≥ 0 so that the
following inequality holds for any β ∈ R

p:

�2L�D2
(
β,β∗) + δD2

(
Xβ,Xβ∗) + ϑPH

(
�
(
β − β∗);λ) + P�

(
�β∗;λ)

≤ 2�̄l

(
β,β∗) + P�(�β;λ) + Kλ2J

(
β∗)

,
(57)

where λ = Aσ
√

log(ep)/
√

(δ ∧ ϑ)ϑ with A a sufficiently large constant. Then

D2
(
Xβ̂,Xβ∗) ≤ 2KA2

(δ ∧ ϑ)δϑ
σ 2J ∗ log(ep),(58)

PH

(
�
(
β̂ − β∗);λ) ≤ 4KA2

(δ ∧ ϑ)ϑ2 σ 2J ∗ log(ep),(59)

with probability at least 1 − Cp−cA2
, where C, c are positive constants.

Moreover, an oracle inequality [14, 25] can be built to justify the estimators even when
β∗ is not exactly sparse. Toward this goal, recall the notion of a pseudo-metric d (cf. Def-
inition A.2), that is, d is nonnegative, symmetric and satisfies the triangle inequality, and
suppose without loss of generality that

αd2(
η,η′) ≤ �l0

(
η,η′) ≤ Ld2(

η,η′) ∀η,η′

for some pseudo-metric d with −∞ ≤ α ≤ L ≤ +∞. For regression l(β) = l0(η) = ‖y −
η‖2

2/2, α = L = 1 > 0.

THEOREM 4. Assume for given β ∈ R
p , there exist r : 0 ≤ r < 1, αr/L ≥ 0, positive δ, ϑ

and a large enough K ≥ 0 so that

�2L�D2(β,γ ) + δD2(Xβ,Xγ ) + ϑPH

(
�(β − γ );λ) + P�(�β;λ)

≤
(

1 + α

L
r

)
�l(β,γ ) + P�(�γ ;λ) + Kλ2J (β)

(60)
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for any γ ∈ R
p , where λ = Aσ

√
log(ep)/

√
(δ ∧ ϑ)ϑ with A a sufficiently large constant.

The oracle inequality below holds for some constant C > 0,

E�l

(
β̂,β∗) ≤ E

{(
1 + r

1 − r

)2
�l

(
β,β∗) + (1 + r)KA2

(1 − r)(2ϑ ∧ δ)ϑ
σ 2J (β) log(ep)

}

+ C(1 + r)

(1 − r)(2ϑ ∧ δ)
σ 2.

(61)

Compared with (57) which fixes γ at β∗, (60) has (1 + α
L
r)�l in place of 2�̄l as the first

term on the right-hand side. Nonrigorously, these conditions ask 2�̄l or (1 + α
L
r)�l to dom-

inate �2L�D2 in a restricted sense; Remark 2 argues that (60) is not technically demanding
compared with many other regularity conditions in the literature.

When r = 0, the multiplicative constant proceeding �l(β,β∗) in (61) is as small as 1,
resulting in a sharp oracle inequality [25]. If one sets β = β∗ in (61), the Bregman error
�l(β̂,β∗) is of the order σ 2J ∗ log(ep) for any thresholding (when δ, ϑ , K are treated as
constants). But the bias term �l(β,β∗) or �l0(Xβ,Xβ∗) helps to handle approximately
sparse signals: when β∗ contains a number of small nonzero elements, rather than taking β =
β∗, a reference β with a reduced support will yield an even smaller error bound benefiting
from the bias-variance tradeoff.

Unlike the optimization error bounds, the statistical error bounds never vanish (unless
σ → 0). We can similarly analyze the set of global minimizers, in which case the term
�2L�D2(β,β∗) is dropped from the regularity conditions, but the error bounds remain of
the same order (cf. Remark A.1 in Section A.12). In fact, for sparse GLMs, by Theorem 1,
the rate σ 2J ∗ log(ep) is essentially minimax optimal (thus unbeatable) up to a logarithmic
factor.

REMARK 2 (Regularity condition comparison). The GBF-based regularity conditions
(57), (60) are no more demanding than some commonly used regularity conditions. As-
sume that P� is subadditive: P�(t + s) ≤ P�(t) + P�(s), which holds when it is con-
cave on R+. Let J = J (β), J = |J (β)|, γ = β ′ − β . Then, from P�(�β ′

J ;λ) −
P�(�βJ ;λ) ≤ P�(�(β ′ − β)J ;λ) and P�(�β ′

J c;λ) = P�(�(β ′ − β)J c;λ), (60) is im-
plied by P�(�γ J ;λ)+ϑPH (�γ J ;λ)+L�D2(�β, �β ′)+ δ‖Xγ ‖2

2/2 ≤ (2− ε)�l(β,β ′)+
Kλ2J + P�(�γ J c;λ) − ϑPH(�γ J c;λ), or (1 + ϑ)P�(�γ J ;λ) + L�D2(�β, �β ′) +
δ‖Xγ ‖2

2/2 ≤ (2 − ε)�l(β,β ′) + Kλ2J + (1 − ϑ)P�(�γ J c;λ) since PH ≤ P�.
To get more intuition, let l(β) = ‖Xβ − y‖2

2/2. Then the above condition simplifies to
(1+ϑ)P�(�γ J ;λ)+L�‖�γ ‖2

2/2 ≤ (2−ε′)‖Xγ ‖2
2/2+Kλ2J + (1−ϑ)P�(�γ J c;λ) with

ε′ = ε + δ, or the following sufficient condition (with K redefined) for all γ ∈ R
p:

(62) (1 + ϑ)P�(�γ J ;λ) + L�

2
‖�γ ‖2

2 ≤ K
√

Jλ‖Xγ ‖2 + (1 − ϑ)P�(�γ J c;λ).

For lasso, where P�(β;λ) = λ‖β‖1, there is a rich collection of regularity conditions in the
literature. In this convex case, L� = 0 and � can be arbitrarily large. (62) reduces to (with ϑ

and K redefined and λ canceled)

(1 + ϑ)�‖γ J ‖1 ≤ K
√

J‖Xγ ‖2 + �‖γ J c‖1 ∀γ(63)

for some K ≥ 0, ϑ > 0. Taking � = c‖X‖2 results in scale invariance with respect to X. Let
us compare (63) with the restricted eigenvalue (RE) condition and the compatibility condition
[6, 48]. For given J , the two conditions assume that there exist positive numbers κ , ϑRE such
that J‖Xγ ‖2

2 ≥ κ‖γ J ‖2
1 (compatibility) or more restrictively, ‖Xγ ‖2

2 ≥ κ‖γ J ‖2
2 (RE), for
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all γ : (1 + ϑRE)‖γ J ‖1 ≥ ‖γ J c‖1. Therefore, (1 + ϑ)�‖γ J ‖1 ≤ K
√

J‖Xγ ‖2 ∨ �‖γ J c‖1

with K = (1 + ϑRE)/(�
√

κ), ϑ = ϑRE. That is, the RE-type conditions are more demanding
than (63) (and (60)). Another popular set of regularity conditions is based on restricted strong
convexity (RSC). Under a version of RSC condition (and assuming f is differentiable), [29],
Theorem 1, showed that ‖β̃ − β∗‖2

2 has a bound of order σ 2(J ∗ logp)/n for any stationary
point β̃ . In the lasso case, the condition becomes ‖Xγ ‖2

2 ≥ α‖γ ‖2
2 − τ logp‖γ ‖2

1/n for some
constant α > 0 and τ ≥ 0, from which it follows that for any γ : (1 + ϑRE)‖γ J ‖1 ≥ ‖γ J c‖1,

‖Xγ ‖2
2 ≥ α‖γ ‖2

2 −τ(2+ϑRE)2 logp
n

‖γ J ‖2
1 ≥ α‖γ ‖2

2 −τ(2+ϑRE)2 J logp
n

‖γ J ‖2
2 ≥ κ ′‖γ J ‖2

2,
where κ ′ = α − τ(2 + ϑRE)2(J logp/n). Therefore, when n � J logp, RSC implies RE and
so is more restrictive than (63). See Remark A.1 in Section A.12 for an extension to general
penalties.

REMARK 3 (Technical treatment). A big difference between our work and [29] is that the
latter enforces an �1-type side constraint, for example, ‖β‖1 ≤ R, in addition to the sparsity-
inducing penalty P . The use of the constraint is a necessary ingredient of the proofs and the
constraint parameter R appears in the minimum sample size condition and the error bounds
implicitly. However, few practically used algorithms seem to include such an additional �1

constraint.
Our analysis does not need any side constraint, and the resulting error bounds and the

oracle inequality hold with no minimum sample size requirement. In fact, in dealing with
a general penalty that may be nonconvex, our treatment of the stochastic term is distinctive
from the conventional “�1 fashion” via Hölder’s inequality: 〈ε,Xβ〉 ≤ ‖X
ε‖∞‖β‖1 (see,
e.g., [6, 9, 30]). More concretely, applying the union bound to ‖X
ε‖∞ will lead to a further
upper bound ‖β‖2

2 + P(β;λ) up to multiplicative factors [29], while we can bound 〈ε,Xβ〉
by the sum of ‖Xβ‖2

2/a and a light penalty PH(β;λ)/b for any a, b > 0, with a proper choice
of λ.

REMARK 4 (Fixed points vs. local minimizers). Targeting at the fixed points of the Breg-
man surrogate instead of the local minimizers of the original objective seems more reasonable
from a statistical perspective. Certainly, if f is smooth, F contains more valid solutions (cf.
Lemma 4). But a more important reason is that F can adaptively exclude bad local solutions
for some statistical learning problems with severe nonsmoothness and nonconvexity.

For instance, each bridge �q -penalty (q : 0 ≤ q < 1) [18] determines a thresholding �q ,
which is however the solution for infinitely many penalties; picking the particular one con-
structed from (48) that is the lowest and directionally differentiable [40], one can repeat
the analysis in Theorems 3, 4 to show provable guarantees for all the fixed points of the
iterative �q procedure. In contrast, as pointed out by [29], the original optimization prob-
lem may contain “faulty” local minimizers. In fact, when q = 0, the �0-penalized problem
minβ ‖Xβ − y‖2

2/2 + (λ2/2)‖β‖0 (not directionally differentiable) always has 0 as a local
minimizer, which is however a poor estimator as β∗ is large. Switching to the surrogate’s
fixed points successfully addresses the issue: β̂ = 0 is a valid fixed point only when X
y is
properly small: ‖X
y‖∞ ≤ λ, or the true signal is inconsequential relative to the maximum
noise level.

3.2.2. Statistical analysis of the iterates from Bregman surrogates. We show a nice result
for (52) in the composite setting: under a regularity condition similar to those in Section 3.2.1,
with high probability, the t th iterate can approach the statistical target within the desired
precision geometrically fast, even when p > n. Specifically, we add a mild multiple of �ψ to
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the left-hand side of (57) and assume that for some δ > 0, ε > 0, ϑ > 0 and large K ≥ 0,

ε�ψ

(
β∗,β

) + δD2
(
Xβ,Xβ∗) + ϑPH

(
�
(
β − β∗);λ) + P�

(
�β∗;λ)

≤ (
2�̄l − �2L�D2

)(
β,β∗) + P�(�β;λ) + Kλ2J

(
β∗) ∀β

(64)

and ψ is differentiable for simplicity. Recall that (39) in Proposition 2 requires 2�̄f to dom-
inate ε�ψ ; (64) gives a large-p extension of it.

THEOREM 5. Under the above regularity condition, for λ = Aσ
√

log(ep)/
√

(δ ∧ ϑ)ϑ

with A sufficiently large and κ = 1/(1 + ε), we have

(65) �ψ

(
β∗,β(t)) ≤ κt�ψ

(
β∗,β(0)) + κ

1 − κ

(
Kλ2J ∗ − min

1≤s≤t
�ψ

(
β(s),β(s−1)))

for any t ≥ 1 with probability at least 1 − Cp−cA2
, where C, c are universal positive con-

stants.

The error measure �ψ(β∗,β(t)) in (65) has β∗ as its first argument and differs from the
�l(β̂,β∗) used in (61). According to the proof, (64) only needs to hold for β = β(s) (0 ≤
s ≤ t), and so different starting values may give different values of κ . With �ψ ≥ 0 (which
can be realized by stepsize control), the fast converging statistical error to O(σ 2J ∗ log(ep))

implies that over-optimization may be unnecessary. As an example, consider the iterative
thresholding procedures with �l ≤ LD2 and �2 > L. Then (65) yields

∥∥β∗ − β(t)
∥∥2

2 ≤ κt �2

�2 − L

∥∥β∗ − β(0)
∥∥2

2 + 2κK

(1 − κ)(�2 − L)
λ2J ∗.

So it is possible to terminate the iterative algorithm before full computational convergence
without sacrificing much statistical accuracy. The simulations in Section C.2 support this
point.

REMARK 5. Theorem 5 reveals the fast decay of the direct statistical error between β(t)

and β∗. [1] and [29] argued a similar point for gradient descent type algorithms, in a somehow
indirect manner: (i) β(t) can approach any globally optimal solution β̃ geometrically fast in
computation under a combination of an RSC condition and an RSM condition, and (ii) under
some regularity conditions, every local minimum point is close enough to the authentic β∗.
In the RSC condition for (i), the factor proceeding the dominant term �̄l is 1 (there are two
different sets of RSC conditions used in Theorem 1 and Theorem 3 of [29], the factor α1 in
the second set corresponding to half of the α1 used in the first set). But (64) allows it to be 2.
Moreover, Theorem 5 does not need the extra RSM condition and applies to a broader class of
algorithms. For example, we can show that the statistical error of the LLA algorithm reduces
at a linear rate to the desired precision under some regularity conditions; see Proposition 1
and Lemma A.7 in Section A.16.

4. Two acceleration schemes for generalized Bregman surrogates. How to accelerate
first-order algorithms without incurring much additional cost per iteration has lately attracted
lots of attention in big data applications. In convex optimization, Nesterov’s momentum tech-
niques prove to be quite effective in that the rate of convergence can be improved from O(1/t)

to O(1/t2), which is optimal when using first-order methods on smooth problems [4, 26, 32,
46]. This section attempts to extend Nesterov’s first and second accelerations [33, 34] to
Bregman-surrogate algorithms. With a possible lack of smoothness or convexity, carefully
choosing the relaxation parameters and step sizes is the key, and we will see the benefit
of maximizing a quantity Rt/(θ

2
t ρt ) at the t th iteration, with Rt appropriately defined via

generalized Bregman notation. We consider the following two broad scenarios to devise the
acceleration schemes.
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Scenario 1. g(β;γ ) = f (β) − �ψ0(β,γ ) + ρD2(β,γ ). This surrogate family includes
gradient descent type algorithms. Often, if minβ f (β) + �ψ(β,γ ) is easy to solve, so is
minβ f (β) + �ψ(β,γ ) + ρD2(β,γ ), in which case ψ0 = −ψ .

Scenario 2. g(β;γ ) = f (β) − �ψ0(β,γ ) + ρ�φ(β,γ ). This gives a more general class
than the first one.

This section assumes that f , ψ0, φ, �ψ0(·,γ ), �ψ0(·,γ ) are directionally differentiable
given any γ . We introduce a convenient notation Cψ defined for any ψ as follows;

(66) Cψ(α,β, θ) = θψ(α) + (1 − θ)ψ(β) − ψ
(
θα + (1 − θ)β

)
,

where 0 ≤ θ ≤ 1. Like �, C is a linear operator of ψ and its nonnegativity means convexity.
Some connections between � and C are given below.

LEMMA 5. Let ψ be directionally differentiable.

(i) Cψ(α,β, θ) = (1 − θ)�ψ(β,α)−�ψ(θα + (1 − θ)β,α) for any α, β and θ ∈ [0,1].
(ii) C�ψ(·,α) = Cψ if ψ is differentiable at α.

An acceleration scheme of the second kind. Scenario 2 is of our primary interest since it
applies more broadly. Below, we modify the surrogate and define an iterative algorithm (not
a descent method) that involves three sequences α(t), β(t), γ (t) starting at α(0) = β(0):

γ (t) = (1 − θt )β
(t) + θtα

(t),(67a)

α(t+1) = argminf (β)−�ψ0

(
β,γ (t))+μ0�φ

(
β,γ (t))+θtρt�φ

(
β,α(t)),(67b)

β(t+1) = (1 − θt )β
(t) + θtα

(t+1),(67c)

for some μ0 ≥ 0, θt ∈ (0,1], ρt > 0 (∀t ≥ 0), to be chosen later. Notice the extra GBF term
μ0�φ(·,γ (t)) in (67b) in addition to �φ(·,α(t)). The design of relaxation parameters θt and
inverse step size parameters ρt , μ0 holds the key to acceleration. Let

ψ̄0 = ψ0 − μ0φ.(68)

We advocate the following line search criterion:

Rt := θ2
t ρt�φ

(
α(t+1),α(t)) − �ψ̄0

(
β(t+1),γ (t)) + (1 − θt )�ψ̄0

(
β(t),γ (t))

+ Cf (·)−�ψ̄0
(·,γ (t))

(
α(t+1),β(t), θt

)
≥ 0,

(69a)

θ2
t

1 − θt

= θt−1(ρt−1θt−1 + μ0)

ρt

, t ≥ 1.(69b)

The update of the relaxation parameter involves ρ and μ as well.
Theorem 6 presents two error bounds without assuming convexity or smoothness, and

shows in general the reasonability of (69a).

THEOREM 6. Let ρt be any positive sequence. Consider the algorithm defined by (67a)–
(67c) and (69b). Let Et (β) = �ψ̄0

(β,γ (t))+�f (·)−�ψ0 (·,γ (t))(β,α(t+1))+(μ0��φ(·,γ (t))−φ(·)
+ θtρt��φ(·,α(t))−φ(·))(β,α(t+1)).
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(i) When μ0 = 0, for any β and T ≥ 0,

f (β(T +1)) − f (β)

θ2
T ρT

+ T · avg
0≤t≤T

Et (β)

θtρt

+ T · avg
0≤t≤T

Rt

θ2
t ρt

≤ �φ

(
β,α(0)) − �φ

(
β,α(T +1)) + 1 − θ0

θ2
0 ρ0

[
f

(
β(0)) − f (β)

]
.

(70)

(ii) Moreover, given any μ0 ≥ 0,

f
(
β(T +1)) − f (β) + θ2

T

(
ρT + μ0

θT

)
�φ

(
β,α(T +1))

+
T∑

t=0

(
T∏

s=t+1

(1 − θs)

)(
Rt + θtEt (β)

)

≤
(

T∏
t=1

(1 − θt )

)[
(1 − θ0)

(
f

(
β(0)) − f (β)

) + θ2
0 ρ0�φ

(
β,β(0))]

(71)

for all β and T ≥ 0, where by convention,
∏u

s=l as = 1 as l > u.

First, we make a discussion of the results for convex optimization. Assume �φ ≥ σD2 for
some σ > 0. With the additional knowledge that f (·) − �ψ̄0

(·,γ (t)) is convex and �ψ̄0
≤

Lψ̄0
D2 for some Lψ̄0

≥ 0, (69a) is implied by

(72) θ2
t (ρt − Lψ̄0

/σ)�φ

(
α(t+1),α(t)) + (1 − θt )�ψ̄0

(
β(t),γ (t)) ≥ 0.

So when f is convex, criterion (69) is satisfied by ρt = ρ ≥ Lψ̄0
/σ , ψ0 = f , μ0 = 0 and

θt+1 = (

√
θ4
t + 4θ2

t − θ2
t )/2, degenerating to Nesterov’s second method [34, 46], and the

convergence rate is of order O(1/T 2) according to (70) and (75). The second conclusion
tells more when strong convexity (or restricted strong convexity) arises. Given a convex
f satisfying μDφ ≤ �f ≤ LDφ with 0 < μ ≤ L and φ differentiable, taking ψ0 = f ,
μ0 = μ, and ρt = L − μ ensures Et (β) = �f −μφ(β,γ (t)) + �f (·)−�f (·,γ (t))(β,α(t+1)) ≥
�f −μφ(β,γ (t)) ≥ 0 and Rt ≥ θ2

t ρtDφ(α(t+1),α(t)) − �ψ̄0
(β(t+1),γ (t)) ≥ θ2

t (ρt + μ0 −
L)σD2(α

(t+1),α(t)) = 0. According to (69b), the following choice

(73) θt = θ0 = 2√
4κ − 3 + 1

with κ = L/μ

suffices, and the optimization problem to solve in (67b) becomes

minf
(
γ (t)) + δf

(
β;β − γ (t)) + μDφ

(
β,γ (t))+ 2(L − μ)√

4κ − 3 + 1
Dφ

(
β,α(t)).(74)

From (71), both f (β(T +1)) − f (β) and Dφ(β,α(T +1)) enjoy a linear convergence with rate

parameter
√

4κ−3−1√
4κ−3+1

, or an iteration complexity of O(
√

κ log(1/ε)), significantly faster than
O(κ log(1/ε)) in Proposition 2. Hence (67), (69) can achieve rate-optimality in various con-
vex scenarios. To the best of our knowledge, this is the first “all-in-one” form of the second
acceleration that adapts.

The proposed algorithm can even go beyond convexity. As a demonstration, let us apply
the acceleration to the iterative quantile-thresholding procedure (cf. Example 2) for solving
the feature screening problem: min l(β) = ‖y − Xβ‖2

2/2 s.t. ‖β‖0 ≤ q , which is nonconvex.
Here, q is bounded above by p but may be larger than n. Take φ = ‖ · ‖2

2/2, μ0 = 0 and
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ψ0(β) = l(β)−Lφ(β) for some L ≥ 0. Given any s ≤ p and X, define the restricted isometry
number ρ+(s) [11] that satisfies ‖Xβ‖2

2 ≤ ρ+(s)‖β‖2
2, ∀β : ‖β‖0 ≤ s, which can be much

smaller than ‖X‖2
2 as s is small.

COROLLARY 2. Assume q is set larger than the target ‖β∗‖0 with the ratio denoted by r .
Then for any L ≥ ρ+(2q)/

√
r , there exists a universal ρt (ρt = ρ+(2q)(1 − 1/

√
r), say),

thereby θt+1 = (

√
θ4
t + 4θ2

t − θ2
t )/2, such that the accelerated iterative quantile-thresholding

according to (67a)–(67c) satisfies l(β(T +1)) − l(β∗) + min0≤t≤T �ψ0(β
∗,γ (t)) ≤ A/T 2 for

all T ≥ 0, where A is independent of T .

The proof of the corollary shows the power of an accumulative Rt -control, and applies
more generally: if the objective function f (β), possibly nonconvex, can be written as the
sum of a convex function l(β) with �l ≤ LD2 and a function P(β) that can be lifted: �P +
L0D2 ≥ 0 for some finite L0 ≥ 0, then one can utilize a ψ0 as l−0.6L0‖·‖2

2 and a universal ρt

to fulfill T · avgt≤T Rt/(θ
2
t ρt ) ≥ 0 in (70) (although not every Rt is necessarily nonnegative)

so as to attain an O(1/T 2) error bound. See Remark A.3 in Section A.14.
Of course, a time-varying ρt can provide finer control, and the theorem does not limit ρt

to be constant. In fact, under μ0 = 0, as long as ρt/ρt−1 ≥ 1 − (at + ab + 1)/(t + b − 1)2

(t ≥ 1) for some constants a, b: a > −2, b ≥ a + 1, induction based on (69b) gives θt ≤
(a + 2)/(t + b) and

∑T
t=0 ρT /(ρtθt ) ≥ (T + c1)

2/(a + 2)2 + c2 (with constants ci dependent
on a, b) for any t ≥ 1, from which it follows that

θ2
T = O

(
1/T 2)

and T · avg0≤t≤T

(
1/(ρtθt )

) ≥ O
(
T 2/ρT

)
.(75)

Now, under Rt ≥ 0 or just
∑T

t=0 Rt/(θ
2
t ρt ) ≥ 0, (70) gives f (β(T +1)) − f (β) +

min0≤t≤T Et (β) ≤ O(ρT /T 2) for any β . Typically, (69a) involves a line search. If the con-
dition fails for the current value of ρt , one can set ρt = αρt for some α > 1 and recalculate
θt , γ (t), α(t+1) and β(t+1) according to (69b) and (67) to verify it again. In implementation,
it is wise to limit the number of searches at each iteration (denoted by M) to control the
per-iteration complexity. If (69a) does not hold after m times of search, we simply pick the ρt

that gives the largest Rt/(θ
2
t ρt ) based on Theorem 6. Some details are in Algorithm B.1. In

simulation studies, letting M = 3, α = 2 already shows excellent performance; see Figure C.5
and Figure C.6.

An acceleration scheme of the first kind. For the algorithms falling into Scenario 1, we can
alternatively consider two sequences of iterates generated by

γ (t) = β(t) + {
ρt−1θt (1 − θt−1)/(ρt−1θt−1 + μ0)

}(
β(t) − β(t−1)),(76a)

β(t+1) = arg minf (β)−�ψ0

(
β,γ (t))+μ0D2

(
β,γ (t))+ρtD2

(
β,γ (t)),(76b)

for some μ0 ≥ 0, θt ∈ (0,1], ρt > 0 for all t ≥ 0, and we force γ (0) = β(0). (76a), (76b)
give a new first type acceleration, and notably, the novel update of γ (t) involves ρt−1. When
β(t+1) = γ (t) one stops the algorithm and obtains a fixed point with provable statistical guar-
antees as shown in Section 3.2.1.

Similar to (68), let ψ̄0 = ψ0 − μ0‖ · ‖2
2/2. Define the line search criterion

Rt := (ρtD2 − �ψ̄0
)
(
β(t+1),γ (t)) + (1 − θt )�ψ̄0

(
β(t),γ (t)) ≥ 0,(77a)

θ2
t

1 − θt

= θt−1(ρt−1θt−1 + μ0)

ρt

, θt ≥ 0, ρt > 0, t ≥ 1.(77b)

Note that Rt is defined differently from (69a). The following theorem reveals the importance
of maximizing Rt in each iteration step when performing possibly nonconvex optimization.
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THEOREM 7. Given any ρt > 0 (t ≥ 0), consider the algorithm defined by (76a), (76b)
and (77b). Let Et (β) = �ψ̄0

(β,γ (t))+{Cf (·)−�ψ0 (·,γ (t))(β,β(t), θt )+�f (·)−�ψ0 (·,γ (t))(θtβ +
(1 − θt )β

(t),β(t+1))}/θt .

(i) When μ0 = 0, we have

f (β(T +1)) − f (β)

θ2
T ρT

+ T · avg
0≤t≤T

Et (β)

θtρt

+ T · avg
0≤t≤T

Rt

θ2
t ρt

≤ D2
(
β,β(0)) + 1 − θ0

θ2
0 ρ0

[
f

(
β(0)) − f (β)

]
for any β and T ≥ 0.

(ii) Moreover, given any μ0 ≥ 0, for all β and T ≥ 0,

f
(
β(T +1)) − f (β) + θ2

T

(
ρT + μ0

θT

)
D2

(
β,

(
γ (T +1)−(1−θT +1)β

(T +1))/θT +1
)

+
T∑

t=0

(
T∏

s=t+1

(1 − θs)

)(
Rt + θtEt (β)

)

≤
(

T∏
t=1

(1 − θt )

)[
(1 − θ0)

(
f

(
β(0)) − f (β)

) + θ2
0 ρ0D2

(
β,β(0))].

Again, the new proposal of the iterate and parameter updates adapts to various situations,
with μ0 (which can be a sequence μt , cf. Remark A.2) measuring the degree of convex-
ity (or restricted convexity in a nonconvex composite problem). For example, when f is

convex and L-strongly smooth, μ0 = 0, ρt = L, ψ0 = f , and θt+1 = (

√
θ4
t + 4θ2

t − θ2
t )/2

make (77) hold, corresponding to Nesterov’s first method. Interestingly, if f is μ-strongly
convex, the associated standard momentum update γ (t) = β(t) + θt (θ

−1
t−1 − 1)(β(t) − β(t−1))

only attains a linear rate at 1 − 1/κ (κ = L/μ) (cf. Remark A.4), showing no theoretical
advantage over the plain gradient descent. (76) fixes the issue: with μ0 = μ, ρt = L − μ,
θt = 2/(

√
4κ − 3 + 1), an accelerated linear rate parameter is obtained as (

√
4κ − 3 − 1)/

(
√

4κ − 3 + 1)(≤ 1−√
3/(4κ)). (When μ0 is unknown, (76b) based on the split L = ρt +μt

is still advantageous over the classical acceleration with ρt = L.) We proved these error
bounds by use of GBFs, which is perhaps more straightforward than Nesterov’s ingenious
proof based on the notion of estimate sequence, and more importantly, (76), (77) provide a
universal “all-in-one” form, instead of separate schemes in different situations [32].

Theorem 7 accommodates diverse choices of the parameters ψ0, μ0, ρt , θt and is motivat-
ing in the nonconvex composite setup. Consider, for example, minf (β) = ‖y − Xβ‖2

2/2 +
P�(�β;λ). Because the objective is nonconvex when p > n and L� > 0, how to acceler-
ate the associated iterative thresholding procedure is an unconventional problem. From the
studies in Section 3.2, we have learned that a sparsity-inducing penalty with a properly large
threshold to suppress the noise can result in strong convexity in a restricted sense. We can then
use a surrogate f (β) + (ρD2 − �ψ0)(β,β−) where ψ0(β) = ‖y − Xβ‖2

2/2 − �2L�‖β‖2
2/2

and μ0 = 0. Since f (·)−�ψ0(·,γ ) is convex (cf. Lemma A.3), Et (β) ≥ �ψ0(β,γ (t)). More-
over, thanks to the sparsity in β(t), and thus γ (t), X(β(t) − γ (t)) involves just a small number
of features. So with an incoherent design, a properly small � can make �ψ0(β

(t),γ (t)) ≥ 0.
Now, taking a constant ρt as large as, for instance, ‖X‖2

2 − �2L�, may yield a convergence
rate of order O(1/t2). (Actually, linear convergence may result from the restricted strong
convexity under some regularity conditions.) More generally, different ρt ’s are allowed in the
theorem: (75) is still secured with just, say, ρt/ρt−1 ≥ 1 − (t + 3)/(t + 1)2. A line search can
be used to determine a proper sequence ρt ; see Algorithm B.2 for more details.
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The proposed accelerations of the first kind and of the second kind can be utilized in a
wide range of problems. Because they are momentum based, the original algorithms need
not be substantially modified to have an improved iteration complexity, and the two theo-
rems proved in this section apply in any dimensions with no design coherence restrictions.
Another delightful fact is that our “all-in-one” forms update the iterates adaptively according
to the degree of convexity μ0 ≥ 0, which can be relaxed to a sequence of local measures μt

(Remark A.2). With a line search to get properly large μt , this could be helpful in high di-
mensional sparse learning problems which may or may not have restricted strong convexity
(the associated parameter often hard to determine in theory).

5. Summary. This paper studied the class of iterative algorithms derived from GBF-
defined surrogates with a possible lack of convexity and/or smoothness. These surrogates
differ from the MM surrogates frequently used in statistical computation, in that they gain
additional first-order degeneracy and may drop the majorization requirement. GBFs have in-
teresting connections to the densities in the exponential family and possess some idempotence
properties that are useful for studying iterative algorithms.

The GBF calculus built by the lemmas not only facilitates optimization error analysis but
can be bound to the empirical process theory for nonasymptotic statistical analysis (cf. Sec-
tions 3.2 and A.18). In addition to obtaining some insightful results in the realm of convex
optimization, we were able to build universal global convergence rates for a broad class of
Bregman-surrogate algorithms for nonsmooth nonconvex optimization. Moreover, in the non-
convex composite setting that is of great interest in high dimensional statistics, we found that
the sequence of iterates generated by Bregman surrogates can approach the statistical truth
at a linear rate even when p > n, and the obtained fixed points enjoy oracle inequalities with
essentially the optimal order of statistical accuracy, under some regularity conditions less de-
manding than those used in the literature. Finally, we devised two “all-in-one” acceleration
schemes with novel updates of the iterates and relaxation and stepsize parameters, and some
sharp theoretical bounds were shown without assuming smoothness or convexity.
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plement contains technical details, algorithm outlines and computer experiments.
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