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In transfer learning, we wish to make inference about a target population
when we have access to data both from the distribution itself, and from a dif-
ferent but related source distribution. We introduce a flexible framework for
transfer learning in the context of binary classification, allowing for covariate-
dependent relationships between the source and target distributions that are
not required to preserve the Bayes decision boundary. Our main contribu-
tions are to derive the minimax optimal rates of convergence (up to poly-
logarithmic factors) in this problem, and show that the optimal rate can be
achieved by an algorithm that adapts to key aspects of the unknown transfer
relationship, as well as the smoothness and tail parameters of our distribu-
tional classes. This optimal rate turns out to have several regimes, depending
on the interplay between the relative sample sizes and the strength of the
transfer relationship, and our algorithm achieves optimality by careful, deci-
sion tree-based calibration of local nearest-neighbour procedures.

1. Introduction. Transfer learning refers to statistical problems in which we wish to
make inference about a test data population, but where some (typically, the large majority) of
our training data come from a related but distinct distribution. Such problems arise in many
natural, practical settings: for instance, we may wish to understand the effectiveness of a treat-
ment on a particular subgroup of a population, but still wish to exploit information about its
efficacy on the wider population under study. In medical applications, we may be interested in
making predictions in a given experimental setting, or using a particular piece of equipment,
but also have data obtained under different scenarios or measured with different devices.
Closely related problems have recently been of interest to many communities, sometimes
studied under the banner of label noise (Blanchard et al. (2016), Cannings, Fan and Sam-
worth (2020), Frénay and Verleysen (2014)), multi-task learning (Caruana (1997), Maurer,
Pontil and Romera-Paredes (2016)) or distributional robustness (Christiansen et al. (2020),
Sinha, Namkoong and Duchi (2018), Weichwald and Peters (2021)). For recent survey papers
on transfer learning, see Pan and Yang (2009), Storkey (2009) and Weiss, Khoshgoftaar and
Wang (2016).

We focus here on transfer learning in the context of binary classification, both due to
the latter’s fundamental importance as a canonical problem in modern statistics and machine
learning, and because, as we shall see, its structure is particularly amenable to algorithms that
seek to exploit relationships between the training and test distributions. To set the scene for
our contributions, let P and Q denote two distributions on R

d × {0,1}, with corresponding
generic random pairs (XP ,YP ) and (XQ,YQ), respectively. We think of P as a source dis-
tribution, from which most of our training data are generated, and Q as a target distribution,
from which we may have some training data, and about which we wish to make inference. Let

Received July 2020; revised June 2021.
MSC2020 subject classifications. Primary 62G99; Secondary 62C20, 62G20.
Key words and phrases. Transfer learning, classification, decision trees, nearest neighbours, nonparametric,

minimax.

3618

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/21-AOS2102
http://www.imstat.org
mailto:henry.reeve@bristol.ac.uk
mailto:timothy.cannings@ed.ac.uk
mailto:r.samworth@statslab.cam.ac.uk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


ADAPTIVE TRANSFER LEARNING 3619

ηP , ηQ : Rd → [0,1] denote the source and target regression functions, respectively, defined
by

ηP (x) := P
(
YP = 1|XP = x

)
and ηQ(x) := P

(
YQ = 1|XQ = x

)
.(1)

Our main working assumption on the relationship between P and Q will be that our feature
space R

d can be partitioned into finitely many cells X ∗
� , and for each cell there exists a

transfer function g� : [0,1] → [0,1] such that ηP can be approximated by g� ◦ηQ on X ∗
� . We

will further assume that the cells arise from a decision tree partition (Breiman et al. (1984)),
and that each transfer function satisfies

g�(z) − g�(1/2)

z − 1/2
≥ φ(2)

for some φ > 0, and all z ∈ [0,1/2) ∪ (1/2,1]. Thus, in the simplest case where we have just
a single cell, P and Q are connected via the fact that the propensity under the source dis-
tribution to have a Class 1 label at x ∈ R

d only depends on x through ηQ(x), which reflects
the propensity under the target distribution to have a Class 1 label at x. Our condition (2) is
of course satisfied if each g� is differentiable with g′

�(z) ≥ φ for z ∈ [0,1], and ensures in
particular that when ηP = g� ◦ ηQ holds exactly on X ∗

� , we have sgn{ηP (x) − g�(1/2)} =
sgn{ηQ(x) − 1/2} on that cell. Importantly, though, condition (2) does not require that
g�(1/2) = 1/2.

To give an example where such a relationship between P and Q might be expected, sup-
pose that we wish to predict At Risk individuals for a disease (e.g., breast cancer), on the basis
of a set of covariates x. Due to the difficulties and expense of large-scale testing, only a small
number of individuals in the general population are assessed (e.g., via a mammogram), but
those displaying symptoms have a much greater propensity to be tested. In this example, we
think of our (large) data set from P as being a set of individuals for whom we have recorded
relevant covariates, and for whom we record a label YP = 1 if and only if the individual has
both been tested, and has been assessed to be At Risk as a result. On the other hand, our
main interest is in whether individuals are At Risk, regardless of whether or not they have
been tested. Our (small) data set from Q then is obtained by testing a number of uniformly
randomly-chosen individuals from the general population, and we record YQ = 1 if and only
if the individual is assessed to be At Risk. We can think of our training data from both P and
Q as being generated from independent and identically distributed triples (T ,X,Y ), where T

is a binary indicator of whether or not a test has been conducted before the start of the study,
where X encodes covariates, and where Y indicates whether or not an individual is At Risk.
However, in our source sample, we only observe XP = X and YP = T Y , while in our target
sample, we see XQ = X and YQ = Y . Thus, in this example, the marginal distributions of
XP and XQ are the same, while the regression functions ηP and ηQ satisfy ηQ ≥ ηP . In fact,
in this formulation, we have

ηP (x) = P(T Y = 1|X = x) = P(T = 1|X = x,Y = 1)ηQ(x).

The relationship ηP = g ◦ ηQ then holds if T and (X,Y ) are conditionally independent given
ηQ(X). More generally in this example, we might construct a decision tree partition based
on geographical location and income, for instance, and ask only that this relationship hold
approximately for each cell of the partition.

As another example, in tax fraud detection, most individuals can only be subjected to a
simple screening procedure due to the administrative burden. Hence, in order to assess the
reliability of their detection algorithms, a government agency might draw a separate, smaller
sample of individuals, chosen uniformly at random from the population, for a more formal
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audit. Here, YP = 1 if the screening flags a potentially fraudulent return, YQ = 1 if the audit
detects fraud, and XP = XQ = X encodes covariates. Since

ηP (x) = P
(
YP = 1|X = x,YQ = 1

)
ηQ(x) + P

(
YP = 1|X = x,YQ = 0

){
1 − ηQ(x)

}
,

the modelling assumption ηP = g ◦ ηQ holds if the conditional probabilities above only de-
pend on x through ηQ(x). In practice, there may be additional dependencies, for example,
based on profession, income bracket and domicile status, but the modelling relationship may
still hold approximately on the cells of a suitable decision tree partition. Further examples
may be found in computer vision, precision medicine, natural language processing and many
other areas.

In line with the above examples, then we will assume a transfer learning setting where
we have access to independent data DP := ((XP

1 , Y P
1 ), . . . , (XP

nP
, YP

nP
)) from P and DQ :=

((X
Q
1 , Y

Q
1 ), . . . , (X

Q
nQ,Y

Q
nQ)) from Q, and wish to classify a new observation (XQ,YQ) ∼

Q. Our first contribution is to formalise the new, decision tree-based transfer framework to
incorporate the broad range of relationships between source and target distributions seen in
practical applications such as those mentioned above. In particular, in contrast to most other
work in this area, our highly flexible form of relationship between ηP and ηQ does not require
that the Bayes decision boundaries agree for the two populations; we also allow the marginal
distributions of XP and XQ to differ, and do not assume that these distributions have densities
that are bounded away from zero on their respective supports. The classes of distributions we
consider then combine local smoothness assumptions on ηP and ηQ with tail assumptions
on the marginal distribution of XQ and the marginal distribution of XP . To understand the
fundamental difficulty of the transfer learning problem, we derive a minimax lower bound
that comprises several regimes, according to the relative sample sizes and the strength of the
transfer relationship, as measured by the distributional parameters of our classes. The next
challenge is to introduce a new method for the transfer learning task; our basic idea is to use
DP to construct a local nearest-neighbour based estimate of ηP , and then perform empirical
risk minimisation with DQ to estimate the underlying decision tree partition and the values
of the transfer functions at 1/2. We derive a high-probability upper bound for the excess
test error of our procedure, which, together with our lower bound, reveals that our algorithm
attains the minimax optimal rate, up to a poly-logarithmic factor. A notable feature of our
methodology is that the only inputs required are DP and DQ; in particular, it is adaptive to
the unknown transfer relationship in the primary regime of interest, as well as the smoothness
and tail parameters of our distributional classes, and the confidence with which the test error
bound holds.

Interest in transfer learning has been growing considerably in recent years. One broad line
of work considers the setting where the practitioner only has access to labelled data from P ,
possibly with some additional unlabelled data from Q. A popular approach in that context
is to formulate a measure of discrepancy between the distributions P and Q and to give test
error bounds in terms of this discrepancy (Ben-David et al. (2010a, 2010b), Germain et al.
(2015), Mansour, Mohri and Rostamizadeh (2009), Mohri and Muñoz Medina (2012), Cortes,
Mohri and Muñoz Medina (2019)). This strategy has been shown to yield distribution-free
bounds with wide applicability, but whenever the discrepancy is nonzero, the excess error
is not guaranteed to converge to zero with the sample size. In order to achieve consistent
classification, we must impose additional structure (Ben-David et al. (2010b)), for example,
by focusing on label shift, covariate shift or label noise, each of which may be viewed as a
special case of transfer learning. In label shift (Lipton, Wang and Smola (2018), Zhang et al.
(2013)), the marginal distributions of YP and YQ differ, but the class-conditional covariate
distributions are the same for P and Q. Covariate shift (Candela et al. (2009), Gretton et al.
(2009), Sugiyama, Suzuki and Kanamori (2012)) concerns scenarios where the regression
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functions ηP and ηQ are assumed to be equal, but the marginal distributions of P and Q may
differ. In label noise (Blanchard et al. (2017), Reeve and Kabán (2019a), Scott (2019), Scott
and Zhang (2019)), ηP and ηQ differ. This does not necessarily preclude consistent classi-
fication, even when nQ = 0, provided that additional restrictions are met. For instance, the
Bayes classifier may still be the same for P and Q, in which case one can sometimes proceed
as if there were no label noise (Cannings, Fan and Samworth (2020), Menon, van Rooyen
and Natarajan (2018)); alternatively, if the label noise only depends on the true class label,
then the label noise parameters may be estimated under certain identifiability assumptions
(Blanchard et al. (2016), Reeve and Kabán (2019b)).

Other related work that considers the current setting where the statistician has access to
labelled data from both source and target distributions includes Kpotufe and Martinet (2018)
for the covariate shift problem, and Hanneke and Kpotufe (2019) and Cai and Wei (2021) for
general transfer learning. The frameworks of these papers ensure that (ηP (x)−1/2)(ηQ(x)−
1/2) > 0 whenever ηQ(x) 
= 1/2, and hence the Bayes classifiers for P and Q are equal. In
our terminology, this corresponds to the special case where g�(1/2) = 1/2 for all �. In each
of these works, the authors obtain minimax rates of convergence for the excess error in their
respective problems, which in particular reveal that consistent classification is possible with
DP alone, and the effect of DQ is to improve the rates. The only work in this context of
which we are aware that allows the Bayes classifier for the two distributions to differ is the
very recent contribution of Maity, Sun and Banerjee (2020). These authors consider the label
shift problem, so the differences between P and Q are captured through a single parameter
governing the similarity of P(YP = 1) and P(YQ = 1). Maity, Sun and Banerjee (2020) show
how this parameter can be efficiently estimated from the data (which can even be unlabelled),
and are therefore also able to obtain minimax rates of convergence for their problem.

One of our main goals in this work is to allow more flexible forms of transfer, to make our
framework applicable to the examples discussed above. The price we pay for this generality
is that our rates of convergence are necessarily slower than those of Kpotufe and Martinet
(2018), Cai and Wei (2021), Hanneke and Kpotufe (2019) and Maity, Sun and Banerjee
(2020). Nonetheless, our minimax rates conclusively demonstrate the benefits of transfer
learning in a highly flexible setting.

The remainder of this paper is organised as follows: in Section 2, we introduce our general
transfer learning framework, and state our main minimax optimality result (Theorem 1). Sec-
tion 3 gives a formal description of our algorithm, as well as a high-probability upper bound
for its excess test error (Theorem 2), while a conclusion is provided in Section 4. The proofs
of Theorem 2 and the upper bound in Theorem 1 are given in Section 5, and the proof of the
lower bound in Theorem 1 is provided in Section 6. Auxiliary results and illustrative examples
are deferred to the online Supplementary Material (Reeve, Cannings and Samworth (2021))
and are prefaced by the letter ‘S’; there we also present the results of a brief simulation study.

We conclude this Introduction with some notation used throughout the paper. Given a set
A, we write |A| for its cardinality, and Par(A) for the set of all finite partitions of A, that is, the
set consisting of elements of the form {A1, . . . ,Am}, with A1, . . . ,Am pairwise disjoint and⋃m

�=1 A� = A. We let N0 := N∪{0}, and for n ∈ N, let [n] := {1, . . . , n}. For x ∈ R
d , we write

‖x‖ for the Euclidean norm of x, and, given r > 0, we write Br(x) := {y ∈ R
d : ‖y − x‖ < r}

for the open Euclidean ball of radius r about x. We let Ld denote Lebesgue measure on
R

d , and let Vd := Ld(B1(0)) = πd/2/�(1 + d/2). For x ≥ 0, we let log+(x) := logx if
x ≥ e, and log+(x) := 1 otherwise. If μ,ν are probability measures on (X ,A), then we write
TV(μ, ν) := supA∈A |μ(A) − ν(A)| for their total variation distance, and if μ is absolutely
continuous with respect to ν with Radon–Nikodym derivative dμ/dν, we write KL(μ, ν) :=∫
X log(

dμ
dν

) dμ for the Kullback–Leibler divergence from ν to μ. Finally, the support of a
probability measure μ on R

d , denoted supp(μ), is defined to be the intersection of all closed
sets C ⊆ R

d with μ(C) = 1.
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2. Statistical setting and main result. Let P , Q be distributions on R
d × {0,1} and

let (XP ,YP ) ∼ P and (XQ,YQ) ∼ Q. We recall the definitions of the regression functions
ηP and ηQ from (1), and write μP and μQ for the marginal distributions of XP and XQ,
respectively.

A classifier is a Borel measurable function f : R
d → {0,1}. In practice, clas-

sifiers are constructed on the basis of training data, and we will assume that for
some nP ,nQ ∈ N0, we have access to independent pairs (XP

1 , Y P
1 ), . . . , (XP

nP
, YP

nP
) ∼

P and (X
Q
1 , Y

Q
1 ), . . . , (X

Q
nQ,Y

Q
nQ) ∼ Q. Recall that as shorthand, we denote DP =

((XP
1 , Y P

1 ), . . . , (XP
nP

, YP
nP

)) and DQ = ((X
Q
1 , Y

Q
1 ), . . . , (X

Q
nQ,Y

Q
nQ)). A data-dependent

classifier f̂ is a measurable function from (Rd × {0,1})nP × (Rd × {0,1})nQ ×R
d to {0,1},

and we let F̂nP ,nQ
denote the set of all such data-dependent classifiers. In this work, the first

arguments of f̂ ∈ F̂nP ,nQ
will always be DP and DQ, so we will often suppress all but the

final argument of f̂ , noting also that the mapping x → f̂ (x) is a classifier. Conversely, any
classifier may be regarded as a data-dependent classifier that is constant in all but its final
argument. The test error of f̂ ∈ F̂nP ,nQ

is given by

R(f̂ ) := P
(
f̂
(
XQ) 
= YQ|DP ,DQ

)
,(3)

where (XQ,YQ) ∼ Q is independent of our training data, and is minimised for every DP

and DQ by the Bayes classifier f ∗
Q, where f ∗

Q(x) := 1{ηQ(x)≥1/2}. The excess test error of

f̂ ∈ F̂nP ,nQ
is given by

E(f̂ ) := R(f̂ ) −R
(
f ∗

Q

)= ∫
{x:f̂ (x) 
=f ∗

Q(x)}
∣∣2ηQ(x) − 1

∣∣dμQ(x).(4)

In order to provide a formal statement of our key transfer assumption, we first define the
notion of a decision tree partition.

DEFINITION 1 (Decision tree partitions). Let T1 := {{Rd}} ⊆ Par(Rd), and for L ≥ 2,
define the subset of Par(Rd) given by

TL := {{X1, . . . ,XL−1 ∩ Hj,s,XL−1 \ Hj,s} : j ∈ [d], s ∈ R, {X1, . . . ,XL−1} ∈ TL−1
}
,

where Hj,s := {(xt )t∈[d] ∈ R
d : xj ≥ s} for j ∈ [d] and s ∈ R. The set of all decision tree

partitions is
⋃

L∈N TL.

We illustrate some elements of T1,T2,T3 and T4 when d = 2 in Figure 1.

ASSUMPTION 1 (Transfer). There exist {X ∗
1 , . . . ,X ∗

L∗} ∈ TL∗ , as well as � ∈ [0,1), φ ∈
(0,1) and transfer functions g1, . . . , gL∗ : [0,1] → [0,1] such that |ηP (x) − g�(ηQ(x))| ≤ �

for every � ∈ [L∗] and x ∈ X ∗
� ; moreover,

g�(z) − g�(1/2)

z − 1/2
≥ φ(5)

for every � ∈ [L∗] and z ∈ [0,1/2) ∪ (1/2,1].

To understand this assumption, first consider the case where � = 0. Then our condition
states that for the X ∗

� cell of our decision tree partition, we have the relationship ηP = g� ◦ηQ,
so that within this cell, ηP (x) only depends on x through ηQ(x). Moreover, (5) asks that
each g� is strictly increasing at 1/2, and is of course satisfied if each g� is differentiable
with g′

�(z) ≥ φ for z ∈ [0,1]. More generally, for � > 0, Assumption 1 only requires that
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FIG. 1. Illustration of elements of T1, T2, T3 and T4.

the relationship ηP = g� ◦ ηQ holds to within an error of � on each cell of our decision tree
partition.

Our next assumption concerns the mass of the source and target distributions in the tails.
Given a probability distribution μ on R

d and d0 ∈ [0, d], we define the lower density ωμ,d0 :
R

d → [0,1] of μ by

ωμ,d0(x) := inf
r∈(0,1)

μ(Br(x))

rd0
.(6)

For intuition, when μ is absolutely continuous with respect to the volume form on a d0-
dimensional, orientable manifold in R

d with density (Radon–Nikodym derivative) fμ, and if
the infimum in (6) is replaced with a lim inf as r ↘ 0, then ωμ,d0 is almost everywhere equal
to a constant multiple of fμ (Ledrappier and Young (1985), Lemma 4.1.2). This explains
our lower density terminology. Further properties of this lower density, which can in fact be
defined on general separable metric spaces, can be inferred from common assumptions in the
classification literature, including an assumption of regular support (Audibert and Tsybakov
(2007)) and a strong minimal mass assumption (Gadat, Klein and Marteau (2016)); see Lem-
mas S1 and S2 for details. We also note that the definition in (6) has some similarities with
that of a Hardy–Littlewood operator (Hardy and Littlewood (1930)), though one important
difference with the standard definition is that here an infimum replaces a supremum.

ASSUMPTION 2 (Marginals). There exist dQ ∈ [1, d], γQ > 0 and CP,Q > 1 such that

μQ

({
x ∈R

d : ωμQ,dQ
(x) < ξ

})≤ CP,Q · ξγQ(7)

for all ξ > 0. Moreover, there exist dP ∈ [dQ,d] and γP > 0 such that

μQ

({
x ∈ R

d : ωμP ,dP
(x) < ξ

})≤ CP,Q · ξγP(8)

for all ξ > 0.

To understand the first part of Assumption 2, first consider the case where μQ is absolutely
continuous with respect to Ld . In that case, condition (7) can be viewed as similar to other
tail conditions in the classification literature that control the μQ measure of the set on which
this density is small (e.g., Gadat, Klein and Marteau (2016), Assumption A4). Thus, (7) is
a generalisation of such a tail condition, because we do not require μQ to be absolutely
continuous with respect to Ld , and instead work with its lower density ωμQ,dQ

. The great
advantage of this formulation in (7) is that it allows us to avoid assuming that this lower
density is bounded away from zero on the support of μQ; Example S2 provides a simple,
univariate parametric family of densities {fγ : γ > 0} for which γQ = γ is the optimal choice.

Further intuition about the first part of Assumption 2 can be gained from several results in
the Supplementary Material that we now summarise. In Lemma S5, we show that if μQ has
a finite ρth moment for some ρ > 0, then (7) holds with dQ = d and γQ = ρ/(ρ + d). The
proof relies on Vitali’s covering lemma (e.g., Evans and Gariepy (2015), Theorem 1), and
we believe the result may find application elsewhere; see Remark S1 after Lemma S5. As a
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consequence of a general result about Weibull-type tails (Lemma S6), Proposition S12 shows
that when μQ has a log-concave density on R

d with d0-dimensional support, (7) holds with
dQ = d0 and any γQ < 1; in fact, when dQ = 1, we may even take γQ = 1 (Proposition S11).
Moreover, Proposition S13 extends these results to finite mixtures of log-concave distribu-
tions, with CP,Q depending linearly on the number of mixture components (and not de-
pending on the mixing proportions). In fact, more generally, Propositions S7 and S8 provide
simple stability results for the property (7) under finite mixtures and products, respectively.
As additional important examples, whenever μQ has bounded, d0-dimensional support, we
may take dQ = d0 and γQ = 1 (by Lemma S4); moreover, if μQ has a density that is bounded
away from zero on a d0-dimensional, regular support, then we may take dQ = d0 and γQ to
be arbitrarily large (by Lemma S1).

The second part of Assumption 2 relates μP and μQ together: it controls the μQ measure
of the set on which the lower density of μP is small, thereby capturing the extent to which
the source measure covers the target measure. For instance, Example S4 reveals that when
μQ = N(0,1) and μP = N(0, σ 2), we may take γP = σ 2, while from Example S5, we see
that when μQ = N(0,1) and μP = N(a,1) for some a 
= 0, we may take any γP < 1. We
remark that if (7) holds and if, in the terminology of Kpotufe and Martinet (2018), (P,Q)

have transfer-exponent κ ∈ [0,∞], then (8) holds for any dP ≥ dQ + κ and with γP = γQ;
see Lemma S14. Moreover, Example S6 provides a prototypical setting where working with
the condition (8) allows us to obtain faster rates of convergence than would be the case if we
instead deduced this rate from the corresponding transfer-exponent.

Our next two assumptions are standard margin (e.g., Mammen and Tsybakov (1999),
Polonik (1995)) and smoothness assumptions. We emphasise that these are only imposed
on the distribution Q, and we require no corresponding properties for P .

ASSUMPTION 3 (Margin). There exist α > 0 and CM ≥ 1 such that for all ζ > 0 we have
μQ({x ∈ R

d : |ηQ(x) − 1/2| < ζ }) ≤ CM · ζ α .

ASSUMPTION 4 (Smoothness). There exist β ∈ (0,1] and CS ≥ 1 such that |ηQ(x0) −
ηQ(x1)| ≤ CS · ‖x0 − x1‖β for all x0, x1 ∈R

d .

It will be convenient to write θ for the vector of parameters that appear in Assumptions 2–
4, namely (dQ,γQ,dP , γP ,CP,Q,α,CM, β,CS), and to write � for the corresponding pa-
rameter space. We will also make use of an augmented parameter vector that incorporates
the additional parameters that appear in Assumption 1, by letting θ� := (�,φ,L∗, θ), with
corresponding parameter space ��. For θ� ∈ ��, we write Pθ� for the set of pairs (P,Q) of
distributions satisfying Assumptions 1–4 with parameter θ�.

We are now in a position to state our main result.

THEOREM 1. Fix θ� = (�,φ,L∗, θ) ∈ �� with β/(2β + dQ) < γQ, β/(2β + dP ) < γP ,

αβ ≤ dQ, γP (1 − γQ) ≤ γQ and CM ≥ 1 + 22dQ/βd
dQ/2
Q VdQ

. For j ∈ {L,U}, let

Aj
nP ,nQ

:=
(

a
j
0

φ2 · nP

) βγP (1+α)

γP (2β+dP )+αβ + min
{(

L∗aj
1

nQ

) 1+α
2+α

, (1 − φ)1+α

}
+
(

�

φ

)1+α

,

Bj
nQ

:=
(

bj

nQ

) βγQ(1+α)

γQ(2β+dQ)+αβ

,

where aL
0 = aL

1 = bL := 1, aU
0 := log+(nP ), aU

1 := log+(L∗d(nP + nQ)) and bU :=
log+(nQ). Then there exist cθ ,Cθ > 0, depending only on θ , such that

cθ

(
AL

nP ,nQ
∧ BL

nQ
∧ 1
)≤ inf

f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

θ�

E
{
E(f̂ )

}≤ Cθ

(
AU

nP ,nQ
∧ BU

nQ
∧ 1
)
.(9)
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Theorem 1 establishes the optimal rates of convergence for the excess risk over our classes,
up to logarithmic factors. It is important to note that cθ and Cθ do not depend on (�,φ,L∗)
(and nor on nP or nQ); thus the theorem reveals the optimal dependence of the worst-case
excess risk on these parameters, too. Moreover, as we will show in Theorem 2, the minimax
rate can be achieved up to a poly-logarithmic factor when φ ≤ 1 − n

−1/(2+α)
Q by a procedure

that is completely adaptive, in the sense that it only takes DP and DQ as inputs (and not any
component of θ�).

The restrictions on the parameters in Theorem 1 are mild. For instance, by
Lemma S5, the conditions β/(2β + dQ) < γQ and γP (1 − γQ) ≤ γQ hold whenever
sup(P,Q)∈P

θ�
E(‖XQ‖1∨dQγP ) < ∞. The condition αβ ≤ dQ rules out ‘super-fast rates’ (in

the terminology of Audibert and Tsybakov (2007)) and is guaranteed to hold whenever
there exist (P,Q) ∈ Pθ� and x0 ∈ R

d such that ηQ(x0) = 1/2 and ωμQ,dQ
(x0) > 0 (see

Lemma S15). The first two parameter restrictions in Theorem 1 are only required for the
upper bound, while the other three are only needed for the lower bound. We also remark
that Theorem 1 holds even when nP or nQ are zero. In the former case, the problem reduces
to a standard classification problem, while in the latter case, Theorem 1 provides results for
relaxations of the covariate shift model in which ηP and ηQ are close.

By careful inspection of the proof of Theorem 1, we see that the first terms AL
nP ,nQ

and

AU
nP ,nQ

in the bounds are due to the transfer learning error, and comprise three separate
contributions. The first term arises from the error incurred in estimating ηP . The second
represents the difficulty of identifying the correct decision tree partition {X ∗

1 , . . . ,X ∗
L∗}, as

well as learning g1(1/2), . . . , gL∗(1/2); this term is negligible if φ is sufficiently close to 1.
In fact, as we will see from the proof of Theorem 2 below, it is not necessary to carry out
this step when φ is close to 1. Finally, the third term reflects the extent to which ηP can be
approximated by g� ◦ ηQ on X ∗

� . The BL
nQ

and BU
nQ

terms represent the rate of convergence
achievable by ignoring DP and performing standard classification using DQ; in the context
of transfer learning, our primary interest is in the setting where nP � nQ, and where the
minima in (9) are attained by AL

nP ,nQ
and AU

nP ,nQ
, respectively.

To set the rates BL
nQ

and BU
nQ

in context, it may be helpful to consider the case where μQ

is absolutely continuous with respect to Ld with a density that is bounded away from zero
on its regular support; see Definition S1. In that case, we may take γQ to be arbitrarily large

and dQ = d; notice that setting γQ = ∞ and dQ = d in BL
nQ

recovers the rate n
− β(1+α)

2β+d

Q for
the standard classification problem (with no source data) in Audibert and Tsybakov (2007)
under this regular support hypothesis. Returning to the more general transfer learning setting,
if we take γP = γQ = ∞ and dP = dQ = d , then the minimum of the first term in AL

nP ,nQ
and

BL
nQ

matches the rate obtained by Cai and Wei (2021). The second and third terms in AL
nP ,nQ

represent the necessary additional price for the generality of our framework.
To illustrate Theorem 1, and ignoring logarithmic factors for simplicity, consider the spe-

cial case where γP = γQ and dP = dQ (which would in particular be the case if the marginal
distributions μP and μQ coincide). Then Theorem 1 reveals that in order for transfer learn-
ing to be effective (as opposed to simply constructing a classifier based on DQ), we re-
quire φ2 · nP � nQ. If we further assume that γP = γQ = 1, that dP = dQ = d , that � = 0
and that α = β = 1, then we benefit from transfer learning provided that φ2 · nP � nQ and

L∗ � n
d/(d+3)
Q . In general, the scope for transfer learning to have an impact increases as γP

and φ increase, and as dP , L∗ and � decrease.

3. Methodology and upper bound. In this section, we introduce our adaptive algorithm
for transfer learning and provide a high-probability bound for its excess risk. To understand
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the main idea, consider the case where � = 0 in Assumption 1, and where we are told the
correct decision tree partition and transfer functions. In this setting, when x ∈ X ∗

� , the sign
of ηP (x) − g�(1/2) agrees with the sign of ηQ(x) − 1/2, so we aim to construct a nearest-
neighbour based estimate of the former quantity using DP . In practice, this estimate will
depend on a choice of decision tree, but this can be calibrated using a subsample from DQ.
Separately, we also construct a standard k nearest-neighbour estimate of ηQ(x)− 1/2 via the
same subsample from DQ, and make our final choice between the two data-dependent clas-
sifiers using empirical risk minimisation over the held-out data from DQ. The independence
of the two subsamples from DQ allows us to work conditionally on the first subsample at this
final step to obtain our final performance guarantees.

In giving a formal description of our algorithm, we will assume that nQ ≥ 2 (when nQ ≤ 1,
the upper bound in Theorem 1 is attained by applying a nearest-neighbour method to DP ),
and it will also be convenient initially to assume that nP > 0. For x ∈ R

d and k ∈ [nP ], we
let XP

(k) ≡ XP
(k)(x) denote the kth nearest neighbour of x in DP in Euclidean norm (where

for definiteness, in the case of ties, we preserve the original ordering of the indices), and let
YP

(k) ≡ YP
(k)(x) denote the concomitant label. We then split DQ into two subsamples D0

Q :=
((X

Q
1 , Y

Q
1 ), . . . , (X

Q
�nQ/2�, Y

Q
�nQ/2�)) and D1

Q := ((X
Q
�nQ/2�+1, Y

Q
�nQ/2�+1), . . . , (X

Q
nQ,Y

Q
nQ)).

For k ∈ [�nQ/2�], we let X
Q
(k) ≡ X

Q
(k)(x) denote the kth nearest neighbour of x in D0

Q, and

similarly let Y
Q
(k) ≡ Y

Q
(k)(x) denote the concomitant label.

Given L ∈ N and a decision tree partition {X1, . . . ,XL} ∈ TL, we define the leaf function
� :Rd → [L] by �(x) := j whenever x ∈ Xj . Let HL denote the set of decision tree functions
h : Rd → (0,1) of the form x → τ�(x) for some {X1, . . . ,XL} ∈ TL with leaf function �, and
some (τ1, . . . , τL) ∈ {0,1/nP ,2/nP , . . . ,1}L. It is also convenient to define H0 to consist of
the single (constant) function that maps Rd to 1/2 (this will handle the case when φ is very
close to 1). Given k ∈ [nP ], L ∈ N0 and h ∈ HL, we let

m̂P
k,h(x) := 1

k

k∑
i=1

{
YP

(i)(x) − h
(
XP

(i)(x)
)}

(10)

denote an empirical estimate of ηP (x) − g�(x)(1/2). To choose k, we fix a robustness param-
eter σ ∈ [n2

P ]/nP = {1/nP ,2/nP , . . . , nP }, and use a Lepski-type procedure to define

k̂ ≡ k̂P
σ,h(x) := max

{
k ∈ [nP − 1] : ∣∣m̂P

r,h(x)
∣∣≤ σ√

r
for all r ∈ [k]

}
+ 1.(11)

Fixing a confidence level δ ∈ (0,1), we will see in Proposition 3 that the choice σ ∗ =
min{�3 log1/2

+ (nP /δ)�, nP } yields classifiers that perform well with probability at least 1 − δ.
However, we seek a procedure with simultaneous guarantees across all levels δ, so we will
provide a data-dependent choice below. We now choose h by applying empirical risk min-
imisation over D0

Q, so that

ĥ ∈ argmin
h∈HL

�nQ/2�∑
i=1

{
Y

Q
i 1{m̂P

k̂,h
(X

Q
i )<0} + (1 − Y

Q
i

)
1{m̂P

k̂,h
(X

Q
i )≥0}

}
.(12)

As defined, ĥ involves a minimisation over an infinite set of decision tree functions; however,
by Lemma 13, a minimiser can be found by restricting the class HL to a finite set that may
in principle be computed from the data. See Section S2 for a discussion of implementational
aspects. Having determined ĥ, we can now define a family F̂P := {f̂ P

σ,L : σ ∈ [n2
P ]/nP ,L ∈

{0} ∪ [nQ]} ⊆ F̂nP ,nQ
, where f̂ P

σ,L(x) := 1{m̂P

k̂,ĥ
(x)≥0}. If nP = 0, then we set F̂P := ∅.
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The second part of our procedure involves applying a k nearest-neighbour classifier to D0
Q.

More precisely, for k ∈ [�nQ/2�], we first define

m̂
Q
k (x) := 1

k

k∑
i=1

{
Y

Q
(i)(x) − 1

2

}
.(13)

Given σ ∈ [n2
Q]/nQ, we select a number of neighbours

k̃ ≡ k̃Q
σ (x) := max

{
k ∈ [�nQ/2� − 1

] : ∣∣m̂Q
r (x)

∣∣≤ σ√
r

for all r ∈ [k]
}

+ 1,(14)

and define another family F̂Q := {f̂ Q
σ : σ ∈ [n2

Q]/nQ} ⊆ F̂nP ,nQ
by f̂

Q
σ (x) := 1{m̂Q

k̃
(x)≥0}.

Our final data-dependent classifier then is obtained by empirical risk minimisation over
D1

Q: we pick

f̂ATL ∈ argmin
f ∈F̂P ∪F̂Q

nQ∑
i=�nQ/2�+1

1{f (X
Q
i ) 
=Y

Q
i }.

The following theorem provides a high-probability bound on the performance of f̂ATL over
Pθ� :

THEOREM 2. Fix θ� = (�,φ,L∗, θ) ∈ �� with β/(2β + dP ) < γP and β/(2β + dQ) <

γQ. Given nP ∈N0, nQ ≥ 2 and δ ∈ (0,1), we let

AnP ,nQ,δ :=
(

a0,δ

φ2 · nP

) βγP (1+α)

γP (2β+dP )+αβ + min
{(

L∗a1,δ

nQ

) 1+α
2+α

, (1 − φ)1+α

}
+
(

�

φ

)1+α

,

BnQ,δ :=
(

bδ

nQ

) βγQ(1+α)

γQ(2β+dQ)+αβ

, DnP ,nQ,δ :=
(

dδ

nQ

) 1+α
2+α

,

where a0,δ := log+(nP /δ), a1,δ := log+(L∗ dnP /δ), bδ := log+(nQ/δ) and dδ :=
log+((nP + nQ)/δ). Then there exists Cθ > 0, depending only on θ , such that

sup
(P,Q)∈P

θ�

P
{
E(f̂ATL) > Cθ · (min(AnP ,nQ,δ,BnQ,δ) + DnP ,nQ,δ

)}≤ δ.(15)

An important point to note is that the definition of f̂ATL does not depend on the confidence
level δ, yet the probabilistic guarantee in (15) holds simultaneously over all such levels. The
terms AnP ,nQ,δ and BnQ,δ are very closely related to AU

nP ,nQ
and BU

nQ
in Theorem 1; indeed,

the only changes are in the logarithmic factor. Integrating the tail probability bound (15) over
δ ∈ (0,1) therefore reveals that in the primary regimes of interest, the upper bound in Theo-
rem 1 can be attained using an algorithm that is agnostic to �, φ and L∗. Comparing Theo-
rem 2 with the upper bound in Theorem 1, we see that there is an additional term DnP ,nQ,δ .

This term only contributes when φ is extremely close to 1 (i.e., when 1 − φ � n
−1/(2+α)
Q up

to a logarithmic factor) and AnP ,nQ,δ � BnQ,δ . In this case, ηP is very close to ηQ, and the
upper bound in Theorem 1 can be attained by applying a standard nearest- neighbour method
to DP .

We recall that the second term BnQ,δ in (15) arises from ignoring DP and performing
classification using DQ. Our analysis here builds on prior work on error rates in k nearest-
neighbour classification (e.g., Kulkarni and Posner (1995), Hall, Park and Samworth (2008),
Samworth (2012), Chaudhuri and Dasgupta (2014), Biau and Devroye (2015), Gadat, Klein
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and Marteau (2016), Reeve and Brown (2017), Cannings, Berrett and Samworth (2020));
see also the seminal early work by Fix and Hodges (1951), Cover and Hart (1967) and Stone
(1977). The main novelty in our arguments, however, is in obtaining the AnP ,nQ,δ term, which
quantifies the extent to which our algorithm can exploit DP to classify data from Q more
accurately than can be done with DQ alone. Here, we combine analyses of nearest-neighbour
classification (but using DP instead of DQ) with a covering number argument for the number
of possible decision trees on DP (Biau and Devroye (2013), Scott and Nowak (2006), Wager
and Walther (2015)), allowing for an approximation error.

4. Conclusion. In this paper, we have argued that transfer learning has great potential
for practitioners in the modern data-rich era. Frequently, there is an abundance of data that,
while not arising from the target population, are still able to provide useful information about
inferential questions of interest. We have introduced a general framework to study this phe-
nomenon in the context of binary classification, and have derived the optimal rates of con-
vergence in this setting. Moreover, we have shown that these optimal rates are attainable by
a fully adaptive algorithm that takes only our source and target data as inputs.

The scope of transfer learning is very wide indeed, encompassing not only other forms
of transfer relationship and data acquisition mechanisms, but also alternative learning tasks
such as regression, density estimation and clustering. We therefore look forward to future
developments in this field.

5. Proofs of Theorem 2 and upper bound in Theorem 1. The proof of Theorem 2
is split into two subsections: the first controls the contribution to the excess test error of
a data-dependent classifier calibrated via a given decision tree, while the second handles
the additional error incurred in choosing the decision tree and other tuning parameters via
empirical risk minimisation. Both subsections require several intermediate results.

5.1. Excess test error of decision tree-calibrated nearest-neighbour classifiers. We intro-
duce some additional terminology. Given σ > 0, L ∈ N0 and h ∈ HL, define f̂ P

σ,h ∈ F̂nP ,nQ

by

f̂ P
σ,h(x) := 1{m̂P

k̂,h
(x)≥0},(16)

where m̂P
k,h(·) and k̂ ≡ k̂P

σ,h(·) are defined in (10) and (11), respectively. Note that f̂ P
σ,h(x) is

measurable with respect to the sigma algebra generated by DP , for every x ∈ R
d . Proposi-

tion 3 below is the main result of this subsection, and provides a high-probability bound for
the excess test error of f̂ P

σ,h for a particular choice of σ and a general decision tree h. It will
be applied three times in the proof of Theorem 2.

PROPOSITION 3. Let nP ∈ N. Fix θ� = (�,φ,L∗, θ) ∈ ��, where θ =
(dQ,γQ,dP , γP ,CP,Q,α,CM, β,CS), with β/(2β + dP ) < γP , and (P,Q) ∈ Pθ� . For
h ∈ HL∗ ∪H0, let

�h := � + max
�∈[L∗] sup

x∈X ∗
�

∣∣h(x) − g�(1/2)
∣∣.

Then there exists C̃θ > 0, depending only on θ , such that for every δ ∈ (0,1), if we set σ ∗ =
min{�3 log1/2

+ (nP /δ)�, nP }, then

P

[
E
(
f̂ P

σ ∗,h
)
> C̃θ

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�h

φ

)1+α}]
≤ δ.(17)
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The first term in the probability bound in (17) corresponds to the difficulty of estimating
ηP , while, in the second term, �h quantifies the approximation error of the decision tree
function h. The proof of Proposition 3 is given after several preliminary lemmas.

For δ ∈ (0,1) and x ∈ R
d with ωμP ,dP

(x) > 0, we define the event

Eδ
1(x) := ⋂

k∈[nP ]
4 log+(nP /δ)≤k<nP ·ωμP ,dP

(x)/2

{∥∥XP
(k)(x) − x

∥∥≤
(

2k

nP · ωμP ,dP
(x)

)1/dP
}
.

LEMMA 4. Let nP ∈ N and (P,Q) ∈ Pθ� . For x ∈ R
d with ωμP ,dP

(x) > 0, we have
P(Eδ

1(x)c) ≤ δ.

PROOF. Suppose that k ∈ [nP ] satisfies 4 log+(nP /δ) ≤ k < nP · ωμP ,dP
(x)/2, and let

r ≡ rk := {2k/(nP · ωμP ,dP
(x))}1/dP . Since r < 1, we have

μP

(
Br(x)

)≥ ωμP ,dP
(x) · rdP = 2k

nP

.

Hence, by the multiplicative Chernoff bound (McDiarmid (1998), Theorem 2.3(c)), we have

P

{∥∥XP
(k)(x) − x

∥∥>

(
2k

nP · ωμP ,dP
(x)

)1/dP
}

≤ P

{
nP∑
i=1

1{XP
i ∈Br(x)} < k

}

≤ P

{
nP∑
i=1

1{XP
i ∈Br(x)} <

nP

2
· μP

(
Br(x)

)}

≤ e−nP ·μP (Br(x))/8 ≤ e−k/4 ≤ δ

nP

.

The conclusion of the lemma now follows by a union bound. �

LEMMA 5. Let nP ∈ N, let (P,Q) ∈Pθ� and let x ∈ R
d be such that ωμP ,dP

(x) > 0. On
the event Eδ

1(x), we have that

max
i∈[k]

∣∣ηQ

(
XP

(i)(x)
)− ηQ(x)

∣∣< CS ·
(

2 · max{k, �4 log+(nP /δ)�}
nP · ωμP ,dP

(x)

)β/dP

(18)

for all k ∈ [nP ].

PROOF. First, if nP ·ωμP ,dP
(x)/2 ≤ k ≤ nP or �4 log+(nP /δ)� > nP , then the result fol-

lows from the fact that the right-hand side of (18) is at least 1. Second, if 4 log+(nP /δ) ≤ k <

nP · ωμP ,dP
(x)/2, then (18) follows from the definition of Eδ

1(x) combined with Assump-
tion 4. Finally, if k < �4 log+(nP /δ)� ≤ nP , then on Eδ

1(x),

max
i∈[k]

∣∣ηQ

(
XP

(i)(x)
)− ηQ(x)

∣∣≤ max
i∈[min{�4 log+(nP /δ)�,nP }]

∣∣ηQ

(
XP

(i)(x)
)− ηQ(x)

∣∣
≤ CS ·

(
2 · �4 log+(nP /δ)�

nP · ωμP ,dP
(x)

)β/dP

= CS ·
(

2 · max{k, �4 log+(nP /δ)�}
nP · ωμP ,dP

(x)

)β/dP

,

where the second inequality follows from the first two cases applied to �4 log+(nP /δ)�. �
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For δ ∈ (0,1) and x ∈ R
d , we now define another event

Eδ
2(x) :=

nP⋂
k=1

{
1

k

k∑
i=1

[
YP

(i)(x) − ηP

(
XP

(i)(x)
)]≤

√
log+(nP /δ)

2k

}
.

LEMMA 6. Let nP ∈ N and (P,Q) ∈ Pθ� . For every δ ∈ (0,1) and x ∈ R
d , we have

P(Eδ
2(x)c) ≤ δ.

PROOF. First, note that conditional on (XP
i )i∈[nP ], the labels YP

(1)(x), . . . , Y P
(nP )(x)

are independent Bernoulli random variables with respective means
ηP (XP

(1)(x)), . . . , ηP (XP
(nP )(x)). Hence, by Hoeffding’s inequality, for each k ∈ [nP ],

P

{
1

k

k∑
i=1

[
YP

(i)(x) − ηP

(
XP

(i)(x)
)]

>

√
log+(nP /δ)

2k
|(XP

i

)
i∈[nP ]

}
≤ δ

nP

.

The conclusion of the lemma follows by taking expectations over (XP
i )i∈[nP ], and then a

union bound over k ∈ [nP ]. �

LEMMA 7. Let nP ∈ N and (P,Q) ∈ Pθ� . Suppose that x ∈R
d and h ∈ HL∗ ∪H0 satisfy

∣∣∣∣ηQ(x) − 1

2

∣∣∣∣≥ 50 · CS

(
log+(nP /δ)

φ2 · nP · ωμP ,dP
(x)

) β
2β+dP + 2�h

φ
,

and let σ ∗ = min{�3 log1/2
+ (nP /δ)�, nP }. Then, on the event Eδ

1(x) ∩ Eδ
2(x), we have

f̂ P
σ ∗,h(x) = f ∗

Q(x).

PROOF. For the purpose of the proof, we let

ε := 50 · CS

(
log+(nP /δ)

φ2 · nP · ωμP ,dP
(x)

) β
2β+dP + 2�h

φ
,

so that |ηQ(x) − 1/2| ≥ ε (in particular, this means that ε ≤ 1/2). We consider only the case
where ηQ(x) − 1/2 ≥ ε, since the case where ηQ(x) − 1/2 ≤ −ε follows by symmetry. We
further suppose throughout the proof that the event Eδ

1(x) ∩ Eδ
2(x) holds. Let �∗ denote the

leaf function corresponding to {X ∗
1 , . . . ,X ∗

L∗} ∈ TL∗ in Assumption 1. Fixing k ∈ [nP ], it
then follows from Assumption 1 and Lemma 5 that for all i ∈ [k], and h ∈HL∗ ∪H0,

ηP

(
XP

(i)

)− h
(
XP

(i)

)= ηP

(
XP

(i)

)− g�∗(XP
(i))

(
ηQ

(
XP

(i)

))
+ g�∗(XP

(i))

(
ηQ

(
XP

(i)

))− g�∗(XP
(i))

(1/2) + g�∗(XP
(i))

(1/2) − h
(
XP

(i)

)
≥ φ · {ηQ

(
XP

(i)

)− 1/2
}− � − max

�∈[L∗] sup
x∈X ∗

�

∣∣h(x) − g�(1/2)
∣∣

≥ φ · {ηQ

(
XP

(i)

)− 1/2
}− φ · ε

2

≥ φ ·
{

ε

2
− CS ·

(
2 · max{k, �4 log+(nP /δ)�}

nP · ωμP ,dP
(x)

)β/dP
}
.
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We deduce that

m̂P
k,h(x) ≡ 1

k

k∑
i=1

{
YP

(i)(x) − h
(
XP

(i)

)}

≥ φ ·
{

ε

2
− CS ·

(
2 · max{k, �4 log+(nP /δ)�}

nP · ωμP ,dP
(x)

)β/dP
}

−
√

log+(nP /δ)

2k

(19)

for all k ∈ [nP ]. Now define

k∗ := min
{
k ∈ N : φ · CS ·

(
2k

nP · ωμP ,dP
(x)

)β/dP ≥
√

log+(nP /δ)

k

}
.

Since ε ≤ 1/2, we have nP ≥ nP · ωμP ,dP
(x) ≥ (100CS)(2β+dP )/βφ−2 log+(nP /δ) ≥

(100CS)(2β+dP )/β log+(nP /δ), so

⌈
4 log+(nP /δ)

⌉
< k∗ ≤

⌈(
log+(nP /δ)

φ2

) dP
2β+dP · (nP · ωμP ,dP

(x)
) 2β

2β+dP

⌉
≤ nP .

Moreover, we also see that σ ∗ = min{�3 log1/2
+ (nP /δ)�, nP } = �3 log1/2

+ (nP /δ)�. Hence by
(19), we have

m̂P
k∗,h(x) − σ ∗

√
k∗ > φ ·

{
ε

2
− CS ·

(
2k∗

nP · ωμP ,dP
(x)

)β/dP
}

− 5

√
log+(nP /δ)

k∗

≥ φ ·
{

ε

2
− 6CS ·

(
2k∗

nP · ωμP ,dP
(x)

)β/dP
}

(20)

= φ ·
{

ε

2
− 24CS ·

(
log+(nP /δ)

φ2 · nP · ωμP ,dP
(x)

) β
2β+dP

}
> 0.

We conclude that k̂ ≡ k̂P
σ ∗,h(x) ≤ k∗. Moreover, by applying (19) once again, we have for

k < k∗ that

m̂P
k,h(x) + σ ∗

√
k

≥ φ ·
{

ε

2
− CS ·

(
2 · max{k, �4 log+(nP /δ)�}

nP · ωμP ,dP
(x)

)β/dP
}

−
√

log+(nP /δ)

k
+ σ ∗

√
k

(21)

> −
√

log+(nP /δ)

max{k, �4 log+(nP /δ)�} −
√

log+(nP /δ)

k
+ σ ∗

√
k

≥ 0.

But by definition of k̂, we have |m̂P

k̂,h
(x)| > σ ∗/k̂1/2, so from (20) and (21), we deduce that

m̂P

k̂,h
(x) > 0, and hence that f̂ P

σ ∗,h(x) = 1{m̂P

k̂,h
(x)≥0} = 1 = f ∗

Q(x), as required. �

We now define a random subset Aδ(DP ) of Rd by

Aδ(DP ) := {x ∈ R
d : Eδ/(2n1+α

P )

1 (x) ∩ E
δ/(2n1+α

P )

2 (x) holds
}
.

LEMMA 8. Let nP ∈N and (P,Q) ∈ Pθ� . We have P{μQ(Aδ(DP )c) ≥ 1/n1+α
P } ≤ δ.
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PROOF. By Markov’s inequality and Fubini’s theorem, as well as Lemmas 4 and 6, we
have

P
{
μQ

(
Aδ(DP )c

)≥ 1/n1+α
P

}≤ n1+α
P ·E{μQ

(
Aδ(DP )c

)}
= n1+α

P ·E
∫
Rd

1{x∈Aδ(DP )c} dμQ(x)

≤ n1+α
P

∫
Rd

[
P
{
E

δ/(2n1+α
P )

1 (x)c
}+ P

{
E

δ/(2n1+α
P )

2 (x)c
}]

dμQ(x) ≤ δ,

as required. �

We are now ready to provide the proof of Proposition 3.

PROOF OF PROPOSITION 3. We begin by introducing some further notation for the
proof. Let

�0 := 100 · CS ·
(

log+(2n2+α
P /δ)

φ2 · nP

) β
2β+dP

,

t0 := min
{(

�0φ

4�h

) 2β+dP
β

,�

α(2β+dP )

αβ+γP (2β+dP )

0

}
.

We then generate a countable partition (Tj )j∈N0 of Aδ(DP ) by

T0 := {x ∈ Aδ(DP ) : ωμP ,dP
(x) ≥ t0

}
,

Tj := {x ∈ Aδ(DP ) : 2−j · t0 ≤ ωμP ,dP
(x) < 2−(j−1) · t0},

for j ∈ N. By Lemma 7 for each j ∈ N0, we have∣∣2ηQ(x) − 1
∣∣ · 1{x∈Tj :f̂ P

σ∗,h
(x) 
=f ∗

Q(x)} < �0 · (2−j · t0)− β
2β+dP + 4�h

φ

≤ 2�0 · (2−j · t0)− β
2β+dP ,

where the second inequality uses t0 ≤ (
�0φ
4�h

)
2β+dP

β . By Assumption 3, we have∫
{x∈T0:f̂ P

σ∗,h
(x) 
=f ∗

Q(x)}
∣∣2ηQ(x) − 1

∣∣dμQ(x) ≤ 21+αCM · �0
1+α · t−

β(1+α)
2β+dP

0

≤ 21+αCM · max
{(

4�h

φ

)1+α

,�0

γP (1+α)(2β+dP )

αβ+γP (2β+dP )

}
.

On the other hand, by Assumption 2 and the assumption that γP − β
2β+dP

> 0, for j ∈ N we
have∫
{x∈Tj :f̂ P

σ∗,h
(x) 
=f ∗

Q(x)}
∣∣2ηQ(x) − 1

∣∣dμQ(x) ≤ (21+γP CP,Q

) · �0 · (2−j · t0)γP − β
2β+dP

≤ (21+γP CP,Q

) · �0

γP (1+α)(2β+dP )

αβ+γP (2β+dP ) · 2
−j (γP − β

2β+dP
)
.

Putting the above together, we have

E
(
f̂ P

σ ∗,h
)= ∫

{x∈Rd :f̂ P
σ∗,h

(x) 
=f ∗
Q(x)}

∣∣2ηQ(x) − 1
∣∣dμQ(x)
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≤ μQ

(
Aδ(DP )c

)+ ∞∑
j=0

∫
{x∈Tj :f̂ P

σ∗,h
(x) 
=f ∗

Q(x)}
∣∣2ηQ(x) − 1

∣∣dμQ(x)

≤ μQ

(
Aδ(DP )c

)+ 21+αCM ·
(

4�h

φ

)1+α

+
{

21+αCM + (21+γP CP,Q

) · ∞∑
j=1

2
−j (γP − β

2β+dP
)

}
· �0

γP (1+α)(2β+dP )

αβ+γP (2β+dP )

≤ μQ

(
Aδ(DP )c

)+ C̃θ

2

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�h

φ

)1+α}
,

where C̃θ ≥ 2 depends only on θ . Note that the final inequality again uses the hypothesis that
γP > β/(2β + dP ). By Lemma 8, it now follows that

P

[
E
(
f̂ P

σ ∗,h
)
>

1

n1+α
P

+ C̃θ

2

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�h

φ

)1+α}]
≤ δ.

Since βγP

αβ+γP (2β+dP )
≤ 1, the conclusion follows. �

We now give the three different instantiations of Proposition 3 mentioned above.

COROLLARY 9. Let nP ∈ N. Fix θ� = (�,φ,L∗, θ) ∈ ��, where θ =
(dQ,γQ,dP , γP ,CP,Q,α,CM, β,CS), with β/(2β + dP ) < γP , and (P,Q) ∈ Pθ� .
Taking C̃θ ≥ 2 from Proposition 3, there exists h∗ ∈ HL∗ such that for every δ ∈ (0,1), if we
set σ ∗ = min{�3 log1/2

+ (nP /δ)�, nP }, then

P

[
E
(
f̂ P

σ ∗,h∗
)
>
(
2α + 1

)
C̃θ

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�

φ

)1+α}]
≤ δ.

PROOF. The decision tree function h∗ ∈ HL∗ is constructed as follows. Recall that
{X ∗

1 , . . . ,X ∗
L∗} ∈ TL∗ denotes the decision tree partition given by Assumption 1, with cor-

responding transfer functions g1, . . . , gL∗ : [0,1] → [0,1] and leaf function �∗ : Rd → [L∗].
Fix (τ ∗

1 , . . . , τ ∗
L∗) ∈ {0,1/nP ,2/nP , . . . ,1}L∗

such that |τ ∗
� − g�(1/2)| ≤ 1/nP for each

� ∈ [L∗], and define h∗ : Rd → (0,1) by h∗(x) := τ ∗
�∗(x). When φ2 · nP ≥ 1, the claim now

follows from Proposition 3, noting that(
� + 1/nP

φ

)1+α

≤ 2α

{(
�

φ

)1+α

+
(

1

φ2 · nP

)(1+α)/2}

≤ 2α

(
�

φ

)1+α

+ 2α

(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP )

.

But if φ2 · nP < 1, then the claim follows from the fact that E(f̂ P
σ ∗,h∗) ≤ 1. �

COROLLARY 10. Let nP ∈ N. Fix θ� = (�,φ,L∗, θ) ∈ ��, where θ =
(dQ,γQ,dP , γP ,CP,Q,α,CM, β,CS), with β/(2β + dP ) < γP , and (P,Q) ∈ Pθ� .
Taking C̃θ ≥ 2 from Proposition 3, and writing h0 for the unique element of H0, for every
δ ∈ (0,1), if we set σ ∗ = min{�3 log1/2

+ (nP /δ)�, nP }, then

P

[
E
(
f̂ P

σ ∗,h0

)
> 2αC̃θ

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�

φ

)1+α

+ (1 − φ)1+α

}]
≤ δ.
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PROOF. Observe that, by Assumption 1, for any � ∈ [L∗],
g�(1/2) − 1/2 ≤ −{g�(1) − g�(1/2)

}+ 1/2 ≤ (1 − φ)/2,

1/2 − g�(1/2) ≤ −{g�(1/2) − g�(0)
}+ 1/2 ≤ (1 − φ)/2.

Hence

�h0 = � + max
�∈[L∗]

∣∣g�(1/2) − 1/2
∣∣≤ � + 1 − φ

2
.

We assume without loss of generality that φ ≥ 1/2, since otherwise the conclusion follows
from the facts that E(f̂ P

σ ∗,h0
) ≤ 1 and C̃θ ≥ 2. The result then follows by Proposition 3. �

Now, for θ� = (dQ,γQ,CP,Q,α,CM, β,CS), let Qθ� denote the set of distributions Q on
R

d × {0,1} that satisfy Assumptions 3, 4 and the first part of Assumption 2 with parameter
θ�.

COROLLARY 11. Let nQ ∈ N. Fix θ� = (dQ,γQ,CP,Q,α,CM, β,CS) with β/(2β +
dQ) < γQ, and Q ∈ Qθ� . There exists C̃θ� ≥ 2, depending only on θ�, such that for every

δ ∈ (0,1), if we set σ̃ = min{�3 log1/2
+ (nQ/δ)�, nQ}, then

P

{
E
(
f̂

Q
σ̃

)
> C̃θ�

(
log+(nQ/δ)

nQ

) βγQ(1+α)

αβ+γQ(2β+dQ)
}

≤ δ.

PROOF. The result follows from Corollary 10, with Q in place of P , with D0
Q in place

of DP , and with � = 0 and φ = 1. �

5.2. Empirical risk minimisation. In this section, we control the additional error incurred
by selecting our decision tree h and robustness parameter σ by empirical risk minimisation.
Our analysis will make use of the following result, similar versions of which are well known
(e.g., Tsybakov (2004)), but we include a proof for completeness.

PROPOSITION 12. Suppose that Assumption 3 holds and let F be a nonempty, finite set
of classifiers and let f ∗ ∈ argminf ∈F R(f ). Let (X1, Y1), . . . , (Xn,Yn) be independent pairs

with distribution Q, and let f̂n ∈ argminf ∈F
∑n

i=1 1{f (Xi) 
=Yi}. Then, for any δ ∈ (0,1],

P

{
E(f̂n) > 2E

(
f ∗)+ 64C

1
2+α

M

(
log(2|F |/δ)

n

) 1+α
2+α
}

≤ δ.

PROOF. By Assumption 3, for every ε > 0 and f ∈ F ,

E(f ) =
∫
{x∈Rd :f (x) 
=f ∗

Q(x)}
∣∣2ηQ(x) − 1

∣∣dμQ(x)

≥ 2ε · μQ

({
x ∈ R

d : f (x) 
= f ∗
Q(x) and

∣∣ηQ(x) − 1/2
∣∣≥ ε

})
≥ 2ε · {μQ

({
x ∈ R

d : f (x) 
= f ∗
Q(x)

})− μQ

({
x ∈ R

d : ∣∣ηQ(x) − 1/2
∣∣< ε

})}
≥ 2ε · {μQ

({
x ∈ R

d : f (x) 
= f ∗
Q(x)

})− CM · εα}.
In particular, taking ε = {μQ({x ∈ R

d : f (x) 
= f ∗
Q(x)})/(2CM)}1/α , we deduce that

μQ

({
x ∈ R

d : f (x) 
= f ∗
Q(x)

})≤ (2CM)
1

1+α · E(f )
α

1+α .(22)
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Now, for each f ∈ F , let Z
f
i := 1{f (Xi) 
=Yi} − 1{f ∗

Q(Xi) 
=Yi} for i ∈ [n], noting that E(Z
f
i ) =

E(f ) and E{(Zf
i )2} ≤ (2CM)

1
1+α · E(f )

α
1+α by (22). Define the event

Eδ
3 := ⋂

f ∈F

{∣∣∣∣∣1n
n∑

i=1

Z
f
i − E(f )

∣∣∣∣∣≤
√√√√2(2CM)

1
1+α E(f )

α
1+α log(2|F |/δ)

n
+ 2 log(2|F |/δ)

3n

}
.

Note that |Zf
i | ≤ 1, so by Bernstein’s inequality (Bernstein (1924)) combined with a union

bound, we have P{(Eδ
3)

c} ≤ δ. Hence, on the event Eδ
3, we have

E(f̂n) − E
(
f ∗)

≤ 1

n

n∑
i=1

Z
f̂n

i − 1

n

n∑
i=1

Z
f ∗
i +

∣∣∣∣∣1n
n∑

i=1

Z
f̂n

i − E(f̂n)

∣∣∣∣∣+
∣∣∣∣∣1n

n∑
i=1

Z
f ∗
i − E

(
f ∗)∣∣∣∣∣

≤ 2

√√√√C
1

1+α

M E(f̂n)
α

1+α log(2|F |/δ)
n

+ 2

√√√√C
1

1+α

M E(f ∗)
α

1+α log(2|F |/δ)
n

+ 4 log(2|F |/δ)
3n

≤ 4

√√√√C
1

1+α

M E(f̂n)
α

1+α log(2|F |/δ)
n

+ 4 log(2|F |/δ)
3n

.

Thus, by considering separately the cases E(f̂n) ≤ 2E(f ∗) and E(f̂n) > 2E(f ∗), we see that
on the event Eδ

3,

E(f̂n) ≤ 2E
(
f ∗)+ 64C

1
2+α

M

(
log(2|F |/δ)

n

) 1+α
2+α

,

as required. �

In order to apply Proposition 12, we will first derive a bound on the number of possible
decision tree functions over DP . Recall for L ∈ N that HL denotes the set of decision tree
functions h :Rd → (0,1) to be those of the form x → τ�(x) for some {X1, . . . ,XL} ∈ TL with
leaf function �, and some (τ1, . . . , τL) ∈ {0,1/nP ,2/nP , . . . ,1}L. Given a set S ⊆ R

d , we
let h|S : S → (0,1) denote the restriction of h to S .

LEMMA 13. Let S ⊆ R
d be a set of cardinality at most nP , and let L ∈ N. Then the set

{h|S : h ∈ HL} has cardinality at most {Ld(nP + 1)}2L.

PROOF. For the proof, let LL denote the set of leaf functions � :Rd → {1, . . . ,L} corre-
sponding to decision tree partitions {X1, . . . ,XL} ∈ TL. We begin by bounding the cardinality
of the set of restricted leaf functions {�|S : � ∈ LL}. Observe that each restricted leaf function
�S may be constructed recursively by a sequence of L − 1 splits. Each split point may be
specified by choosing:

(a) one of at most L − 1 existing leaf nodes;
(b) one of d dimensions to split along;
(c) one of at most nP + 1 possible split points.

Hence, |{�|S : � ∈ LL}| ≤ {(L − 1)d(nP + 1)}L−1. Moreover, there are at most (nP + 1)L

possible choices for (τ1, . . . , τL) ∈ {0,1/nP ,2/nP , . . . ,1}L. Since each h|S is of the form
x → τ�|S (x) for some �|S with � ∈ LL and (τ1, . . . , τL) ∈ {0,1/nP ,2/nP , . . . ,1}L, the result
follows. �
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COROLLARY 14. Fix DP = ((XP
1 , Y P

1 ), . . . , (XP
nP

, YP
nP

)) ∈ (Rd × {0,1})nP . For every

L ∈ N and σ > 0, we have |{f̂ P
σ,h : h ∈ HL}| ≤ {Ld(nP +1)}2L, where f̂ P

σ,h is defined in (16).

PROOF. Let S = {XP
i }nP

i=1. Observe from the definition (10) that m̂P
k,h0

= m̂P
k,h1

whenever

h0|S = h1|S . Hence, by (11) and (16) the same is true of k̂ ≡ k̂P
σ,h(·) and f̂ P

σ,h. Thus, by
Lemma 13, we have∣∣{f̂ P

σ,h : h ∈ HL

}∣∣= ∣∣{f̂ P
σ,h|S : h ∈ HL

}∣∣≤ ∣∣{h|S : h ∈ HL}∣∣≤ {Ld(nP + 1)
}2L

,

as required. �

Recall from (16) that f̂ P
σ,L(·) = 1{m̂P

k̂,ĥ
(·)≥0}, where k̂ ≡ k̂P

σ,ĥ
(·) is defined in (11), and where

ĥ ∈ HL is selected by empirical risk minimisation over D0
Q as in (12). We are now in position

to apply Proposition 12 to obtain the main conclusion of this subsection.

PROPOSITION 15. Fix θ� = (�,φ,L∗, θ) ∈ ��, where θ = (dQ,γQ,dP , γP ,CP,Q,α,

CM, β,CS), with β/(2β + dP ) < γP , and (P,Q) ∈ Pθ� . There exists C′
θ > 0, depending only

on θ , such that for every δ ∈ (0,1), if we set σ ∗ = min{�3 log1/2
+ (nP /δ)�, nP }, then with

probability at least 1 − 2δ, we have

E
(
f̂ P

σ ∗,L∗
)≤ C′

θ

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�

φ

)1+α

+
(

L∗ log+(L∗ dnP /δ)

nQ

) 1+α
2+α
}
.

PROOF. Recalling C̃θ from Proposition 3, by Proposition 12 combined with Corol-
lary 14, we can find C′

θ ≥ 2C̃θ , depending only on θ , such that

P

{
E
(
f̂ P

σ ∗,L∗
)
> 2E

(
f̂ P

σ ∗,h∗
)+ C′

θ

(
L∗ log+(L∗ dnP /δ)

nQ

) 1+α
2+α
∣∣∣∣DP

}
≤ δ.

Moreover, by Proposition 3,

P

[
E
(
f̂ P

σ ∗,h∗
)
> C̃θ

{(
log+(nP /δ)

φ2 · nP

) βγP (1+α)

αβ+γP (2β+dP ) +
(

�

φ

)1+α}]
≤ δ.

The result follows. �

5.3. Completion of the proofs of Theorem 2 and upper bound in Theorem 1. PROOF OF

THEOREM 2. Since F̂P and F̂Q were constructed using only DP ∪D0
Q (and not D1

Q), we

may apply Proposition 12 conditionally on DP ∪ D0
Q and take expectations to obtain that

with probability at least 1 − δ/4, we have

E(f̂ATL) ≤ 2 min
{
E
(
f̂ P

σ ∗,0
)
,E
(
f̂ P

σ ∗,L∗∧nQ

)
,E
(
f̂

Q
σ̃

)}+ 64C
1

2+α

M

(
log(8|F̂P ∪ F̂Q|/δ)

�nQ/2�
) 1+α

2+α

,

where σ ∗ = min{�3 log1/2
+ (nP /δ)�, nP } and σ̃ = min{�3 log1/2

+ (nQ/δ)�, nQ}. Now |F̂P ∪
F̂Q| ≤ n2

P (nQ + 1) + n2
Q, so the result follows from Corollary 10, Proposition 15 and Corol-

lary 11, which give the required high-probability bounds for E(f̂ P
σ ∗,0), E(f̂ P

σ ∗,L∗∧nQ
) and

E(f̂
Q
σ̃

), respectively. �
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PROOF OF UPPER BOUND IN THEOREM 1. We consider four cases. First, if AU
nP ,nQ

=
min{AU

nP ,nQ
,BU

nQ
,1} and (L∗aU

1 /nQ)
1+α
2+α ≤ (1−φ)1+α , then the result follows by taking δ =

n
− 1+α

2+α

Q in Proposition 15. Second, if AU
nP ,nQ

= min{AU
nP ,nQ

,BU
nQ

,1} and (L∗aU
1 /nQ)

1+α
2+α >

(1 − φ)1+α , then the result follows by taking δ = n
− 1+α

2+α

P in Corollary 10. Third, if BU
nQ

=
min{AU

nP ,nQ
,BU

nQ
,1}, then the result follows by taking δ = n

− 1+α
2+α

Q in Corollary 11. Finally,

min{AU
nP ,nQ

,BU
nQ

} > 1, then the result follows from the fact that the excess risk of any data-
dependent classifier is at most 1. �

6. Proof of the lower bound in Theorem 1. The proof of the lower bound in The-
orem 1 begins with a version of Assouad’s lemma for transfer learning (Section 6.1) that
translates the problem into one of constructing an appropriate family of distributions indexed
by a hypercube. To apply this lemma, we first construct the respective marginal distributions
(Section 6.2) and then the corresponding regression functions (Section 6.3). The lower bound
is finally obtained via two applications of these results, reflecting the different challenges of
estimating the decision tree function (Section 6.4) and the source regression function (Sec-
tion 6.5).

6.1. Assouad’s lemma for transfer learning. The following result is a variant of As-
souad’s lemma (e.g., Yu (1997), Lemma 2, Kim (2020), Section 3.12), adapted to our setting.

LEMMA 16. Let P be a set of pairs of distributions (P,Q), each on R
d ×{0,1}. Let nP ,

nQ ∈ N0, m ∈ N, � = {−1,1}m, (xt )t∈[m] ∈ (Rd)m, εP , εQ ∈ [0,1/4], uP , uQ ∈ [0,1/m],
vP , vQ ∈ [0,1] and {(P σ ,Qσ ) : σ ∈ �} ⊆ P with respective regression functions ησ

P : Rd →
[0,1], ησ

Q : Rd → [0,1] and marginals μP , μQ on R
d satisfy:

(i) 25(nP uP ε2
P + nQuQε2

Q) ≤ 1;
(ii) εP (2vP − 1) = εQ(2vQ − 1) = 0;

(iii) for t ∈ [m], we have μP ({xt }) = uP and μQ({xt }) = uQ;
(iv) for σ = (σ1, . . . , σm) ∈ � and t ∈ [m], we have ησ

P (xt ) = vP + σt · εP and ησ
Q(xt ) =

vQ + σt · εQ;
(v) for σ , σ ′ ∈ �, x ∈ supp(μP ) \ {xt }t∈[m], we have ησ

P (x) = ησ ′
P (x); moreover, for x ∈

supp(μQ) \ {xt }t∈[m], we have ησ
Q(x) = ησ ′

Q(x).

Then

inf
f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

E
{
E(f̂ )

}≥ muQεQ

2
.

To prove Lemma 16, we introduce some additional notation and provide a preliminary
lemma. For σ ∈ �, let νσ denote the product measure (P σ )nP × (Qσ )nQ . In addition, given
σ = (σ1, . . . , σm) ∈ � and t ∈ [m], we define σ t = (σ t

1, . . . , σ
t
m) ∈ � by σ t

t := −σt and σ t
t ′ :=

σt ′ for t ′ ∈ [m] \ {t}.

LEMMA 17. In the setting of Lemma 16, we have TV(νσ , νσ t
) ≤ 1/2 for every σ ∈ �

and t ∈ [m].

PROOF. We first show that KL(P σ ,P σ t
) ≤ 16uP ε2

P . Without loss of generality, we as-
sume that εP > 0, since otherwise P σt = P σ . Thus, ησ t

P (xt ) = 1 − ησ
P (xt ) = 1/2 − εP · σt
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and ησ t

P (x) = ησ
P (x) for all x ∈ supp(μP ) \ {xt }. Hence,

KL
(
P σ ,P σ t )= ∫

Rd×{0,1}
log
(

dP σ

dP σ t

)
dP σ

=
∫
Rd

{
ησ

P (x) log
(

ησ
P (x)

ησ t

P (x)

)
+ (1 − ησ

P (x)
)

log
(

1 − ησ
P (x)

1 − ησ t

P (x)

)}
dμP (x)

= (2ησ
P (xt ) − 1

)
log
(

ησ
P (xt )

1 − ησ
P (xt )

)
· μP

({xt })
= 2εP σt · log

(
1 + 2εP σt

1 − 2εP σt

)
· uP = 2uP εP · log

(
1 + 2εP

1 − 2εP

)

≤ 8uP ε2
P

1 − 2εP

≤ 16uP ε2
P ,

where the penultimate inequality uses the inequality loga ≤ a − 1 for a ≥ 1. By the same
argument, we also have KL(Qσ ,Qσt

) ≤ 16uQε2
Q. By the additive property of Kullback–

Leibler divergence for product measures, we conclude that

KL
(
νσ , νσ t )= nP KL

(
P σ ,P σ t )+ nQKL

(
Qσ ,Qσt )≤ 16

(
nP uP ε2

P + nQuQε2
Q

)≤ 1

2
.

Thus, by Pinsker’s inequality (e.g., Tsybakov (2009), Lemma 2.5),

TV
(
νσ , νσ t )≤√KL

(
νσ , νσ t )

/2 ≤ 1/2,

as required. �

We now return to the proof of Lemma 16.

PROOF OF LEMMA 16. Without loss of generality, we assume that εQ > 0, so vQ = 1/2.
Fix f̂ ∈ F̂nP ,nQ

. Given z ∈ Z := (Rd × {0,1})nP × (Rd × {0,1})nQ , let f̂z : Rd → {0,1}
denote the mapping obtained by taking z as the first argument in f̂ . Then

sup
(P,Q)∈P

E
{
E(f̂ )

}≥ max
σ∈�

∫
Z

∫
{x∈Rd :f̂z(x) 
=f ∗

Qσ (x)}
∣∣2ησ

Q(x) − 1
∣∣dμQ(x)dνσ (z)

≥ 1

2m

∑
σ∈�

∫
Z

m∑
t=1

∣∣2ησ
Q(xt ) − 1

∣∣ · 1{f̂z(xt ) 
=f ∗
Qσ (xt )}μQ

({xt })dνσ (z)

= uQεQ

2m−1

m∑
t=1

∑
σ∈�

νσ ({f̂z(xt ) 
= f ∗
Qσ (xt )

})

= uQεQ

2m

m∑
t=1

∑
σ∈�

{
νσ ({f̂z(xt ) 
= f ∗

Qσ (xt )
})+ νσ t ({

f̂z(xt ) 
= f ∗
Qσt (xt )

})}

≥ uQεQ

2m

m∑
t=1

∑
σ∈�

{
1 − TV

(
νσ , νσ t )}≥ muQεQ

2
,

where the penultimate inequality uses the fact that f ∗
Qσt (xt ) = 1 − f ∗

Qσ (xt ) and the final

inequality follows from Lemma 17. �
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FIG. 2. Illustration of the support of the measure μq,r,w,d0 in (23).

6.2. Marginal construction. The marginal distributions μP and μQ in our lower bound
construction will not vary with the vertices of our hypercube � in Lemma 16. An interesting
consequence of this fact is that our lower bound in Theorem 1 will continue to hold, even
if these marginal distributions were known (or equivalently, if we were also provided with
an infinite sample of unlabelled training data from either distribution). These measures will
consist of a mixture of a discrete uniform distribution on a lattice of points in the nonnega-
tive orthant in R

d and a component consisting of a uniform distribution on a dQ-dimensional
hyper-rectangle in the opposite orthant, as illustrated in Figure 2. Moreover, the lattice com-
ponent of the support of μQ will be a dQ-dimensional slice within the dP -dimensional lattice
component of the support of μP . The structure of these marginals is designed to put as much
probability mass as possible on the lattice points, as these will be the points that are difficult
to classify, and will maximise the lower bound in Lemma 16. On the other hand, Condition
(i) of Lemma 16 constrains us to have a sufficiently large lattice that no individual point pro-
vides too much information to the learner. The component supported on the hyper-rectangle
is used to ensure that the margin condition (Assumption 3) is satisfied.

To describe the construction more formally, define κP := 1/(2d
1/2
P ) and κQ := 1/(2d

1/2
Q ).

For q ∈ N and d0 ∈ {dP , dQ}, let T̃q,d0 := {0,1, . . . , q − 1}d0 × {0}d−d0 ⊆ R
d . Now let

(x̃
q
t )

q
dQ

t=1 be an enumeration of the set T̃q,dQ
and let (x̃

q
t )

qdP

t=q
dQ+1

be an enumeration of

T̃q,dP
\ T̃q,dQ

. For each q ∈ N, r > 0, t ∈ [qdP ] and d0 ∈ {dP , dQ}, we let x
q,r
t := (r/q) ·κP · x̃q

t

and Tq,r,d0 := {xq,r
t : t ∈ [qd0]}. For a Borel subset A of R

d , let AdQ
:= {(x1, . . . , xdQ

) :
(x1, . . . , xdQ

,0, . . . ,0) ∈ A} and let AdQ,dP
:= A ∩ (RdQ × [0,1)dP −dQ × {0}d−dP ). Given

q ∈ N, w ∈ [0,1/2], r > 0, d0 ∈ {dP , dQ}, we define a probability measure μq,r,w,d0 on R
d
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by

μq,r,w,d0(A) := (1 − w)

κ
dQ

Q

LdQ

(
AdQ

∩ [−κQ(1 + r),−rκQ

]dQ
)

+ w

Nq,r,d0

qd0∑
t=1

1{xq,r
t ∈AdQ,dP

},

(23)

for Borel subsets A of Rd , where Nq,r,d0 := qdQ min{�q/(rκP )�, q}d0−dQ = |(Tq,r,d0)dQ,dP
|.

Our marginal measures μP and μQ will be chosen as instances of μq,r,w,d0 for particular
choices of q , r , w and d0; see Corollary 21.

We begin with a couple of preliminary lemmas, before presenting the main properties of
these marginal distributions in Lemma 20 and Corollary 21 below. This latter result provides
sufficient conditions for the marginals to satisfy Assumption 2.

LEMMA 18. For κ ∈ (0, d
−1/2
Q ) and x ∈ [0, κ]dQ , we have LdQ

({y ∈ R
dQ : ‖y − x‖ <

s} ∩ [0, κ]dQ) ≥ (κs)dQ for all s ∈ [0,1], and LdQ
({y ∈ R

dQ : ‖y − x‖ < s} ∩ [0, κ]dQ) ≤
VdQ

· sdQ for all s > 0.

PROOF. To prove the lower bound, we take x ∈ [0, κ]dQ , s ∈ [0,1], and consider the
map ψx,s : z → s · (z − x) + x on R

dQ . Observe that ψx,s([0, κ]dQ) ⊆ [0, κ]dQ . On the
other hand, since x ∈ ψx,s([0, κ]dQ) and diam(ψx,s([0, κ]dQ)) ≤ sκd

1/2
Q < s, we also have

ψx,s([0, κ]dQ) ⊆ {y ∈ R
dQ : ‖y − x‖ < s}. Hence,

LdQ

({
y ∈R

dQ : ‖y − x‖ < s
}∩ [0, κ]dQ

)≥ LdQ

(
ψx,s

([0, κ]dQ
))≥ (κs)dQ.

The upper bound follows from the fact that {y ∈ R
dQ : ‖y − x‖ < s} ∩ [0,1]dQ ⊆ {y ∈ R

dQ :
‖y − x‖ < s}. �

LEMMA 19. For q ∈ N, d0 ∈ {dP , dQ}, x ∈ T̃q,d0 and s ≤ 4qd
1/2
P , we have |T̃q,d0 ∩

Bs(x)| ≥ {s/(24d
1/2
P )}d0 .

PROOF. First, observe that if q = 1, then |T̃q,d0 ∩ Bs(x)| = |{0}| = 1 ≥ {s/(24d
1/2
P )}d0 .

For q ≥ 2, we have s/(24d
1/2
P ) ≤ (q − 1)/2. Hence, for each x ∈ T̃q,d0 , we can find a dP -

dimensional, axis-aligned cube A with vertex x and side length s/(24d
1/2
P ) containing at

least �s/(24d
1/2
P )�d0 elements of T̃q,d0 . Thus, |T̃q,d0 ∩ Bs(x)| ≥ |T̃q,d0 ∩ A| ≥ {s/(24d

1/2
P )}d0 .

�

LEMMA 20. Let q ∈N, r > 0, w ∈ [0,1/2] and d0 ∈ {dP , dQ}. We have:

(i) ωμq,r,w,d0 ,d0(x) ≥ 1 − w for all x ∈ [−κQ(1 + r),−rκQ]dQ × {0}d−dQ ;

(ii) ωμq,r,w,d0 ,d0(x) ≥ 2−3d0 · min{1,w · qd0 · N−1
q,r,d0

· r−d0} for all x ∈ Tq,r,dQ
.

PROOF. To prove (i), we take x ∈ [−κQ(1 + r),−rκQ]dQ × {0}d−dQ and s ∈ (0,1). As
shorthand, we write B := Bs(x), so that BdQ

= {(x1, . . . , xdQ
) : (x1, . . . , xdQ

,0, . . . ,0) ∈ B}.
By Lemma 18 combined with the translation invariance of Lebesgue measure, we have

μq,r,w,d0(B) ≥ (1 − w) · κ−dQ

Q ·LdQ

(
BdQ

∩ [−κQ(1 + r),−rκQ

]dQ
)≥ (1 − w) · sd0 .

The claim (i) follows.
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To prove (ii), we take x = x
q,r
t ∈ Tq,r,dQ

. If s ∈ (0, (2r) ∧ 1], then s̃ := {q/(rκP )} · s ≤
min{4qd

1/2
P , q/(rκP )}, so by Lemma 19 we have

μq,r,w,d0

(
Bs(x)

)≥ w

Nq,r,d0

· ∣∣Tq,r,d0 ∩ Bs

(
x

q,r
t

)∣∣= w

Nq,r,d0

· ∣∣T̃q,d0 ∩ Bs̃

(
x̃

q
t

)∣∣
≥ w

Nq,r,d0

· {s̃/(24d
1/2
P

)}d0 = w

Nq,r,d0

· {qs/
(
24rκP d

1/2
P

)}d0

= 2−3d0 · w · r−d0 · qd0

Nq,r,d0

· sd0 .

On the other hand, if s ∈ (2r,1] then with zr := (

dQ︷ ︸︸ ︷−rκQ, . . . ,−rκQ,

d−dQ︷ ︸︸ ︷
0, . . . ,0) ∈ R

d , we have
‖x − zr‖ ≤ ‖x‖ + ‖zr‖ ≤ r/2 + r/2 < s/2. Hence, by (i), we have μq,r,w,d0(Bs(x)) ≥
μq,r,w,d0(Bs/2(zr)) ≥ (1 − w) · (s/2)d0 ≥ 2−(d0+1)sd0 ≥ 2−3d0sd0 , and the conclusion fol-
lows. �

COROLLARY 21. Take CP,Q > 1, dQ ∈ [1, d], dP ∈ [dQ,d] and γP , γQ > 0. Suppose

that q ∈ N, r > 0 and wP , wQ ∈ [0,2−3dP (γP ∨γQ) ∧ (1−C
−1/(γP ∧γQ)

P,Q )] satisfy wQ(wP ·qdP ·
N−1

q,r,dP
)−γP rdP γP ≤ 2−3dP γP and w

1−γQ

Q rdQγQ ≤ 2−3dQγQ . Then Assumption 2 is satisfied for
μP = μq,r,wP ,dP

and μQ = μq,r,wQ,dQ
.

PROOF. For the first condition of Assumption 2 consider initially ξ ∈ (0,2−3dQ ·
min{1,wQ · r−dQ}]. Then by Lemma 20,

μQ

({
x ∈ R

d : ωμQ,dQ
(x) < ξ

})= 0 ≤ CP,Q · ξγQ.

If ξ ∈ (2−3dQ · min{1,wQ · r−dQ},1 − wQ], then by Lemma 20 again,

μQ

({
x ∈R

d : ωμQ,dQ
(x) < ξ

})= wQ ≤ CP,Q · 2−3dQγQ
(
1 ∧ w

γQ

Q r−dQγQ
)≤ CP,Q · ξγQ.

Finally, if ξ ∈ (1 − wQ,∞), then

μQ

({
x ∈ R

d : ωμQ,dQ
(x) < ξ

})= 1 ≤ CP,Q(1 − wQ)γQ ≤ CP,Q · ξγQ,

as required.
For the second condition of Assumption 2 let ξ ∈ (0,2−3dP · min{1,wP · qdP · N−1

q,r,dP
·

r−dP }]. Then by Lemma 20,

μQ

({
x ∈ R

d : ωμP ,dP
(x) < ξ

})= 0 ≤ CP,Q · ξγP .

If ξ ∈ (2−3dP · min{1,wP · qdP · N−1
q,r,dP

· r−dP },1 − wP ], then by Lemma 20 again,

μQ

({
x ∈R

d : ωμP ,dP
(x) < ξ

})= wQ ≤ CP,Q · 2−3dP γP
{
1 ∧ (wP · qdP · N−1

q,r,dP
· r−dP

)γP
}

≤ CP,Q · ξγP .

Finally, if ξ ∈ (1 − wP ,∞), then

μQ

({
x ∈ R

d : ωμP ,dP
(x) < ξ

})= 1 ≤ CP,Q(1 − wP )γP ≤ CP,Q · ξγP ,

as required. �
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6.3. Target regression function construction. We now describe a construction of a family
of target regression functions that are indexed by the vertices of a hypercube as in Lemma 16.
We begin by defining the restrictions of the elements of this family to the support of μP ; on
this set, these restrictions will be perturbations of the uninformative regression function that
takes the constant value 1/2. The perturbations should be as large as possible, to maximise
the quantity εQ in Lemma 16 and to ensure that the margin condition (Assumption 3) holds,
but need to be small enough that the restrictions can be extended to functions on R

d that
satisfy the Hölder continuity condition (Assumption 4).

Given ε ∈ (0,1/8], q ∈ N, r > 0, σ = (σt )
q

dQ

t=1 ∈ {−1,1}qdQ , we first define η◦
ε,q,r,σ :

[−κQ(1 + r),−rκQ]dQ × {0}d−dQ ∪ Tq,r,dP
→R by

η◦
ε,q,r,σ (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
− 2ε − 1

4
‖x − zr‖β if x ∈ [−κQ(1 + r),−rκQ

]dQ × {0}d−dQ,

1

2
+ σt · ε if x = x

q,r
t with t ≤ qdQ,

1

2
− 2ε if x = x

q,r
t with qdQ < t ≤ qdP ,

where zr := (

dQ︷ ︸︸ ︷−rκQ, . . . ,−rκQ,

d−dQ︷ ︸︸ ︷
0, . . . ,0). The main results of this subsection (Corollary 23

and Lemma 24) provide sufficient conditions for an extension ηε,q,r,σ of η◦
ε,q,r,σ to the whole

of Rd to satisfy Assumptions 4 and 3, respectively. Recalling that κP = 1/(2d
1/2
P ) and κQ =

1/(2d
1/2
Q ), we first present a basic property of η◦

ε,q,r,σ .

LEMMA 22. Let q ∈ N, r > 0, β ∈ (0,1], σ = (σt )
q

dQ

t=1 ∈ {−1,1}qdQ
and ε ∈ (0,1/8 ∧

(1/6) · (r · κP /q)β]. Then |η◦
ε,q,r,σ (x) − η◦

ε,q,r,σ (x′)| ≤ ‖x − x′‖β for all x, x′ ∈ [−κQ(1 +
r),−rκQ]dQ × {0}d−dQ ∪ Tq,r,dP

. Moreover, η◦
ε,q,r,σ (x) ∈ [0,1] for all x ∈ [−κQ(1 +

r),−rκQ]dQ × {0}d−dQ ∪ Tq,r,dP
.

PROOF. To prove the first part of the lemma, we consider three cases. First, if x, x′ ∈
[−κQ(1 + r),−rκQ]dQ × {0}d−dQ , then by Minkowski’s inequality,

∣∣η◦
ε,q,r,σ (x) − η◦

ε,q,r,σ

(
x′)∣∣= 1

4

∣∣‖x − zr‖β − ∥∥x′ − zr

∥∥β ∣∣≤ 1

4

∥∥x − x′∥∥β.

Second, if x ∈ [−κQ(1 + r),−rκQ]dQ × {0}d−dQ and x′ ∈ Tq,r,dP
, then

∣∣η◦
ε,q,r,σ (x) − η◦

ε,q,r,σ

(
x′)∣∣≤ 1

4
‖x − zr‖β + 3ε

≤ 1

2

{‖x − zr‖β + (r · κP )β
}≤ {‖x − zr‖ + (r · κQ)

}β
.

(24)

Now let xr ∈ R
d denote the point where the line segment joining x and 0 meets the boundary

of the convex set Cr := [−rκQ,∞)dQ × {0}d−dQ ⊆ R
d , and note that ‖xr‖ ≥ r · κQ. Observe

that zr is the Euclidean projection of x onto Cr . Hence

‖x − zr‖ + r · κQ ≤ ‖x − xr‖ + ‖xr‖ = ‖x‖ ≤ ∥∥x − x′∥∥.(25)

The combination of (24) and (25) establishes the desired property in the second case.
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Finally, if x, x′ ∈ Tq,r,dP
with x 
= x′, then

∣∣η◦
ε,q,r,σ (x) − η◦

ε,q,r,σ

(
x′)∣∣≤ 3ε ≤

(
r · κP

q

)β

≤ ∥∥x − x′∥∥β.

To prove the second part of the lemma, suppose first that x ∈ [−κQ(1 + r),−rκQ]dQ ×
{0}d−dQ . Then, since ‖x − zr‖ ≤ 1 and ε ∈ (0,1/8], we must have η◦

ε,q,r,σ (x) ∈ [0,1]. On
the other hand, if x ∈ Tq,r,dP

, then η◦
ε,q,r,σ (x) ∈ {1/2 − 2ε,1/2 − ε,1/2 + ε} ⊆ [0,1]. �

COROLLARY 23. Let q ∈ N, r > 0, β ∈ (0,1], σ = (σt )
q

dQ

t=1 ∈ {−1,1}qdQ
and ε ∈

(0,1/8 ∧ (1/6) · (r · κP /q)β]. Then there exists a function ηε,q,r,σ : Rd → [0,1] such that

ηε,q,r,σ (x)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
− 2ε − 1

4
‖x − zr‖β if x ∈ [−κQ(1 + r),−rκQ

]dQ × {0}d−dQ,

1

2
+ σt · ε if x = x

q,r
t with t ≤ qdQ,

1

2
− 2ε if x = x

q,r
t with qdQ < t ≤ qdP ,

(26)

and |ηε,q,r,σ (x) − ηε,q,r,σ (x′)| ≤ ‖x − x′‖β for all x, x′ ∈ R
d . In particular, Assumption 4

holds for the regression function ηQ = ηε,q,r,σ with CS = 1.

PROOF. By Lemma 22, the function η◦
ε,q,r,σ : [−κQ(1 + r),−rκQ]dQ × {0}d−dQ ∪

Tq,r,dP
→ [0,1] is Hölder continuous with exponent β and constant 1 on its domain.

By McShane’s extension theorem McShane (1934), Corollary 1, there exists an extension
η′

ε,q,r,σ : Rd → R which is Hölder continuous with exponent β and constant 1, and satis-
fies η′

ε,q,r,σ (x) = η◦
ε,q,r,σ for x ∈ [−κQ(1 + r),−rκQ]dQ × {0}d−dQ ∪ Tq,r,dP

. The function
ηε,q,r,σ : Rd → [0,1] given by ηε,q,r,σ (x) := {η′

ε,q,r,σ (x) ∨ 0} ∧ 1 has the desired properties.
�

LEMMA 24. Let q ∈ N, r > 0, β ∈ (0,1], σ = (σt )
q

dQ

t=1 ∈ {−1,1}qdQ , ε ∈ (0,1/8∧ (1/6) ·
(r · κP /q)β], CM ≥ 1 + 22dQ/βd

dQ/2
Q VdQ

, α ∈ [0, dQ/β] and wQ ∈ [0, (1/2) ∧ εα]. Then
Assumption 3 holds whenever Q has marginal μQ = μq,r,wQ,dQ

and regression function
ηQ = ηε,q,r,σ .

PROOF. Without loss of generality, take ζ < 1. First, suppose ζ ≥ ε. By (26), if x ∈
supp(μQ) \ Tq,r,dQ

and |ηQ(x) − 1/2| < ζ , then ‖x − zr‖ ≤ (4ζ )1/β . As shorthand, we write
B := B(4ζ )1/β (zr), so that BdQ

= {(x1, . . . , xdQ
) : (x1, . . . , xdQ

,0, . . . ,0) ∈ B}. Hence,

μQ

({
x ∈ R

d : ∣∣ηQ(x) − 1/2
∣∣< ζ

})≤ μQ(Tq,r,dQ
) + μQ(B)

≤ wQ + κ
−dQ

Q ·LdQ

(
BdQ

∩ [−κQ(1 + r),−rκQ

]dQ
)

≤ εα + (2κQ)−dQVdQ
(4ζ )dQ/β ≤ CM · ζ α.

On the other hand, if ζ < ε, then μQ({x ∈ R
d : |ηQ(x) − 1/2| < ζ }) = 0 ≤ CM · ζ α , as

required. �
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6.4. Difficulty of estimating the decision tree function. Lemma 25 below provides an
initial minimax lower bound that arises from the difficulty of estimating the decision tree
function. The proof will involve the marginal distributions μP and μQ constructed in Sec-
tion 6.2, the family of target regression functions constructed in Section 6.3, and will contain
a description of the construction of the corresponding family of source regression functions
that is appropriate for this lower bound. Recall the definition of BL

nQ
from Theorem 1.

LEMMA 25. Fix θ� = (�,φ,L∗, θ) ∈ �� with αβ ≤ dQ, γP (1 − γQ) ≤ γQ and CM ≥
1 + 22dQ/βd

dQ/2
Q VdQ

. Then there exists cθ,0 > 0, depending only on θ , such that

inf
f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

θ�

E
{
E(f̂ )

}≥ cθ,0

{(
L∗

nQ

) 1+α
2+α ∧ BL

nQ
∧ (1 − φ)1+α

}
.(27)

PROOF. Our goal is to define a particular instantiation of the construction in Lemma 16,
which requires us to specify m ∈N, (xt )t∈[m] ∈ (Rd)m, εP , εQ ∈ [0,1/4], uP , uQ ∈ [0,1/m],
vP , vQ ∈ [0,1], regression functions ησ

P : Rd → [0,1], ησ
Q : Rd → [0,1] for σ ∈ � =

{−1,1}m, and marginals μP , μQ on R
d .

To this end, we first define some intermediate quantities that depend only on θ . Let

ρ ≡ ρθ := γQ(dQ − αβ) + αβ

γQ(2β + dQ) + αβ
; a1 ≡ a1,θ := 2−3dP (γP ∨γQ) ∧ (1 − C

−1/(γP ∧γQ)

P,Q

);
ρ1 ≡ ρ1,θ := dQ

β(2 + α)
+ α

γP (2 + α)
+ 1; b1 ≡ b1,θ := 25ρ1κ

dP

P

8dP · 6dQ/β · 25+dP −dQ
;

λ ≡ λθ := α + 2γQ + dQγQ/β

2 + α
; a2 ≡ a2,θ := 25(λ−γQ) · 2−3dQγQ · κdQγQ

P · 6−dQγQ/β.

Now let a ≡ aθ := min{(a1b1)
1/ρ1,25a

(2+α)/α
1 , a

1/λ
2 ,2−(1+3α),24−2/α} > 0. This allows us

to define

q = ⌊min
(
an

ρ
Q,L∗)1/dQ

⌋
.

Observe that q ≥ 1 whenever nQ ≥ a−1/ρ , and we will therefore first prove the desired lower
bound in this case. Now let m = qdQ , let εP = 0, let

ε ≡ εQ = min
{(

m

25nQ

)1/(2+α)

,
1 − φ

4

}
,(28)

let wQ = εα , let uQ = wQ/m, let r = (6ε)1/βq/κP , let wP = (8r)dP Nq,r,dP
q−dP w

1/γP

Q and

let uP = wP /Nq,r,dP
. Set xt = x

q,r
t for t ∈ [m], where x

q,r
t is defined at the beginning of

Section 6.2. Further, let vP = 1/2+ε and vQ = 1/2. Recalling (23), we will take the marginal
distributions to be μP = μq,r,wP ,dP

and μQ = μq,r,wQ,dQ
, noting that by our choice of the

first three terms in the minimum defining a, the conditions of Corollary 21 hold (this uses
the hypothesis that γP (1 − γQ) ≤ γQ), and this corollary then tells us that Assumption 2 is
satisfied. For σ ∈ �, let ησ

Q = ηε,q,r,σ as defined in Corollary 23, noting that the fourth term in
the minimum defining a ensures that the conditions of this corollary hold and, therefore, that
each ησ

Q satisfies Assumption 4. Moreover, the final term in the minimum defining a, together
with the hypotheses of the current lemma, guarantees that the conditions of Lemma 24 hold,
so the distribution Qσ on R

d × {0,1} with marginal distribution μQ and regression function
ησ

Q satisfies Assumption 3.
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It remains to define ησ
P for σ ∈ �, and to do this, we first define a decision tree partition

and a family of transfer functions. Recalling the definition of Tq,r,dQ
from the beginning of

Section 6.2, let {X ∗
1 , . . . ,X ∗

L∗} ∈ TL∗ be such that X ∗
� ∩ Tq,r,dQ

= {xq,r
� } for each � ∈ [m] ⊆

[L∗] (the fact that m ≤ L∗ follows from our definition of q). Define h : [0,1] → [0,1] by

h(z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z if z ∈ [0,1/2 − 2ε],
3z + 4ε − 1 if z ∈ [1/2 − 2ε,1/2 − ε],
(1 − 2ε)z + 4ε

1 + 2ε
if z ∈ [1/2 − ε,1].

Observe that

h(z) − 1/2

z − 1/2
≥ 1 − 2ε

1 + 2ε
≥ 1 − 4ε ≥ φ(29)

for z ∈ [0,1] \ 1/2, where the final bound follows from the second term in the minimum
defining ε. For σ = (σ1, . . . , σm) ∈ � and � ∈ [m], define gσ

� : [0,1] → [0,1] by

gσ
� (z) :=

{
z if σ� = 1,

h(z) if σ� = −1,

and for � ∈ {m + 1, . . . ,L∗}, let gσ
� (z) := z. We can now set ησ

P = gσ
� ◦ ησ

Q on X ∗
� , and note

that by (29), Assumption 1 holds for each transfer function gσ
� .

We are now in a position to verify that our constructed marginals and family of source
and target regression functions satisfy the conditions of Lemma 16 with P = Pθ� . Condition
(i) holds because εP = 0 and 25nQuQε2

Q = 25nQε2+α
Q ≤ 1 by definition of εQ in (28). The

verification of Condition (ii) again uses the fact that εP = 0, and also that vQ = 1/2. Con-
dition (iii) follows immediately by definition of μP , μQ, xt , uP and uQ. The second part
of Condition (iv) holds by definition of ησ

Q, together with the definitions of ηε,q,r,σ in (23),
vQ and εQ. The first part of this condition uses this second part, together with the facts that
vP = 1/2 + ε and h(1/2 − ε) = 1/2 + ε. Finally, Condition (v) holds because the restriction
of ηε,q,r,σ in (26) to [−κQ(1 + r),−rκQ]dQ × {0}d−dQ does not depend on σ , and because
gσ

� is the identity function for � ∈ {m + 1, . . . ,L∗}.
Writing c′

θ,0 := a
1+α
2+α /2(6+dQ)(1+α), we conclude from Lemma 16 that

inf
f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

E
{
E(f̂ )

}≥ muQεQ

2
≥ c′

θ,0

{(
L∗

nQ

) 1+α
2+α ∧ BL

nQ
∧ (1 − φ)1+α

}
(30)

for nQ ≥ a−1/ρ . But the left-hand side of (30) is decreasing in nQ, so the full result holds on

setting cθ,0 := c′
θ,0 · 2−(1+α)a

1+α
ρ(2+α) . �

6.5. Difficulty of estimating the source regression function and completion of the proof of
the lower bound in Theorem 1.

LEMMA 26. Fix θ� = (�,φ,L∗, θ) ∈ �� with αβ ≤ dQ, γP (1 − γQ) ≤ γQ and CM ≥
1 + 22dQ/βd

dQ/2
Q VdQ

. Then there exists cθ,1 > 0, depending only on θ , such that

inf
f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

θ�

E
{
E(f̂ )

}≥ cθ,1 min
{(

1

φ2 · nP

) βγP (1+α)

γP (2β+dP )+αβ +
(

�

φ

)1+α

,BL
nQ

,1
}
.



3646 H. W. J. REEVE, T. I. CANNINGS AND R. J. SAMWORTH

PROOF. Recalling the definition of a1 = 2−3dP (γP ∨γQ) ∧ (1 − C
−1/(γP ∧γQ)

P,Q ) from the

proof of Lemma 25, we define a3 := a
1/dQ

1 · 6−1/β · (κP /16)dP /dQ and let

a4 := min
{
a

βdQγQ
γQ(dQ−αβ)+αβ

3 ,
1

8
, a

1/α
1 ,2−1/α,

(
κ

dP

P · 2−(6+3dP ) · 6−dP /β) βγP
γP (2β+dP )+αβ ,

(
a

dQ

3 · 2−(6+dQ)) βγQ
γQ(2β+dQ)+αβ

}
,

ε ≡ εQ := a4 · min
(

max
{(

1

φ2 · nP

) βγP
γP (2β+dP )+αβ

,
�

φ

}
,

(
1

nQ

) βγQ
γQ(2β+dQ)+αβ

)
.

Take q := �a3 · ε
− γQ(dQ−αβ)+αβ

βdQγQ �. We will initially assume that nQ ≥ 1, which means that

ε ≤ a

βdQγQ
γQ(dQ−αβ)+αβ

3 so q ≥ 1. Further define m = qdQ , let εP = (φ · ε −�)∨0, let wQ = εα , let

uQ = wQ/m, let r = (6ε)1/βq/κP , let wP = (8r)dP Nq,r,dP
q−dP w

1/γP

Q , let uP = wP /Nq,r,dP

and let vP = vQ = 1/2. Set xt = x
q,r
t for t ∈ [m], where x

q,r
t is defined at the begin-

ning of Section 6.2. We will take the marginal distributions to be μP = μq,r,wP ,dP
and

μQ = μq,r,wQ,dQ
, which as in the proof of Lemma 25, satisfy the conditions of Corollary 21,

and hence Assumption 2. For σ ∈ � = {−1,1}m, let ησ
Q = ηε,q,r,σ . Then, as in the proof of

Lemma 25, the conditions of Corollary 23 and Lemma 24 hold, so Assumptions 4 and 3 are
also satisfied. For δ ∈ (0, φ/2], define hφ,δ : [0,1] → [0,1] by

hφ,δ(z) :=

⎧⎪⎪⎨⎪⎪⎩
φ · (z − 1/2) + 1/2 + δ if z ∈ [0,1/2 − δ/φ],
1/2 if z ∈ [1/2 − δ/φ,1/2 + δ/φ],
φ · (z − 1/2) + 1/2 − δ if z ∈ [1/2 + δ/φ,1],

and for δ > φ/2, let hφ,δ(·) := 1/2. For σ ∈ �, we take ησ
P = hφ,� ◦ ησ

Q, and g� := hφ,0
for � ∈ [L∗]. Note that these definitions ensure that each g� satisfies (5), and |ησ

P (x) −
g�(η

σ
Q(x))| ≤ ‖hφ,� − hφ,0‖∞ ≤ � for x ∈X�, so Assumption 1 holds.

Finally, similar (but slightly simpler) arguments to those used in the proof of Lemma 25
verify that the assumptions of Lemma 16 hold with P = Pθ� , so writing cθ,1 := a1+α

4 /4, we
conclude from Lemma 16 that

inf
f̂ ∈F̂nP ,nQ

sup
(P,Q)∈P

E
{
E(f̂ )

}≥ muQεQ

2

≥ cθ,1 min
{(

1

φ2 · nP

) βγP (1+α)

γP (2β+dP )+αβ +
(

�

φ

)1+α

,BL
nQ

}(31)

whenever nQ ≥ 1. But the left-hand side of (31) is decreasing in nQ, so the full result follows.
�

PROOF OF THE LOWER BOUND IN THEOREM 1. This follows immediately from Lem-
mas 25 and 26. �
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