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We propose a coefficient of conditional dependence between two ran-
dom variables Y and Z given a set of other variables X1, . . . ,Xp , based on
an i.i.d. sample. The coefficient has a long list of desirable properties, the
most important of which is that under absolutely no distributional assump-
tions, it converges to a limit in [0,1], where the limit is 0 if and only if Y and
Z are conditionally independent given X1, . . . ,Xp , and is 1 if and only if Y

is equal to a measurable function of Z given X1, . . . ,Xp . Moreover, it has
a natural interpretation as a nonlinear generalization of the familiar partial
R2 statistic for measuring conditional dependence by regression. Using this
statistic, we devise a new variable selection algorithm, called Feature Order-
ing by Conditional Independence (FOCI), which is model-free, has no tuning
parameters, and is provably consistent under sparsity assumptions. A number
of applications to synthetic and real data sets are worked out.

1. Introduction. The problem of measuring the amount of dependence between two
random variables is an old problem in statistics. Numerous methods have been proposed
over the years. For recent surveys, see [13, 34]. The literature on measures of conditional
dependence, on the other hand, is not so large, especially in the nonparametric setting.

The nonparametric conditional independence testing problem can be relatively easily
solved for discrete data using the classical Cochran–Mantel–Haenszel test [15, 38]. This test
can be adapted for continuous random variables by binning the data [32] or using kernels [18,
28, 48, 52, 63].

Besides these, there are methods based on estimating conditional cumulative distribution
functions [37, 42], conditional characteristic functions [53], conditional probability density
functions [54], empirical likelihood [55], mutual information and entropy [33, 44, 47], cop-
ulas [5, 51, 58], distance correlation [23, 56, 60] and other approaches [49]. A number of
interesting ideas based on resampling and permutation tests have been proposed in recent
years [6, 11, 48].

The first contribution of this paper is a new coefficient of conditional dependence between
two random variables Y and Z given a set of other variables X1, . . . ,Xp , based on i.i.d. data.
The coefficient is inspired by a similar measure of univariate dependence recently proposed
in [13]. The main features of our coefficient are the following:

1. it has a simple expression,
2. it is fully nonparametric,
3. it has no tuning parameters,
4. there is no need for estimating conditional densities, conditional characteristic functions

or mutual information,
5. it can be estimated from data very quickly, in time O(n logn) where n is the sample

size,
6. asymptotically, it converges to a limit in [0,1], where the limit is 0 if and only if Y

and Z are conditionally independent given X1, . . . ,Xp , and is 1 if and only if Y is equal to a
measurable function of Z given X1, . . . ,Xp ,
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7. the limit has a natural interpretation as a nonlinear generalization of the familiar partial
R2 statistic for measuring the conditional dependence of Y and Z given X1, . . . ,Xp , and

8. all of the above hold under absolutely no assumptions on the laws of the random vari-
ables.

The second contribution of this paper is a new variable selection algorithm based on the above
measure of conditional dependence, called Feature Ordering by Conditional Independence
(FOCI), which is model-free, has no tuning parameters, and is provably consistent under
sparsity assumptions. More importantly, it appears to perform very well in simulated and
real data sets. The development of FOCI and the proof of its consistency are the major new
contributions of this paper over [13]. It is not possible to devise such an algorithm using the
univariate coefficient from [13].

The paper is organized as follows. The definition and properties of our coefficient are pre-
sented in Section 2. Section 3 discusses how to interpret the coefficient as a nonlinear gen-
eralization of partial R2. A theorem about its rate of convergence is presented in Section 4.
Our variable selection method is introduced in Section 5 and a theorem about its consistency
is stated in Section 6. The special case of linear regression with Gaussian predictors is illus-
trated in Section 7. Applications to simulated and real data sets are presented in Section 8.
The remaining sections are devoted to proofs.

2. The coefficient. Let Y be a random variable and X = (X1, . . . ,Xp) and Z =
(Z1, . . . ,Zq) be random vectors, all defined on the same probability space. Here, q ≥ 1 and
p ≥ 0. The value p = 0 means that X has no components at all. Let μ be the law of Y . We
propose the following quantity as a measure of the degree of conditional dependence of Y

and Z given X:

(2.1) T = T (Y,Z|X) :=
∫
E(Var(P(Y ≥ t |Z,X)|X)) dμ(t)∫

E(Var(1{Y≥t}|X)) dμ(t)
.

In the denominator, 1{Y≥t} is the indicator of the event {Y ≥ t}. If the denominator equals
zero, T is undefined. (We will see below that this happens if and only if Y is almost surely
equal to a measurable function of X, which is a degenerate case that we will ignore.) If p = 0,
then X has no components, and the conditional expectations and variances given X should be
interpreted as unconditional expectations and variances. In this case, we will write T (Y,Z)

instead of T (Y,Z|X).
Although the statistic T has a somewhat complicated looking expression, it has a natural

interpretation as a nonlinear generalization of the partial R2 statistic for measuring the pro-
portion of variation in Y that is explained by (Z,X) but cannot be explained solely by X. This
is discussed in the next section. Specifically, see equation (3.1).

Note that T is a nonrandom quantity that depends only the joint law of (Y,X,Z). Before
stating our theorem about T , let us first see why T is a reasonable measure of conditional
dependence. Since taking conditional expectation decreases variance, we have that for any t ,

Var(1{Y≥t}|X) ≥ Var
(
P(Y ≥ t |Z,X)|X)

.

This shows that the numerator in (2.1) is less than or equal to the denominator, and so T

is always between 0 and 1. Now, if Y and Z are conditionally independent given X, then
P(Y ≥ t |Z,X) is a function of X only, and hence Var(P(Y ≥ t |Z,X)|X) = 0. Therefore, in
this situation, T = 0. We will show later that the converse is also true. On the other hand, if
Y is almost surely equal to a measurable function of Z given X, then P(Y ≥ t |Z,X) = 1{Y≥t}
for any t . Therefore, in this case, T = 1. Again, we will prove later that the converse is true.
The following theorem summarizes these properties of T .
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THEOREM 2.1. Suppose that Y is not almost surely equal to a measurable function of
X (when p = 0, this means that Y is not almost surely a constant). Then T is well defined
and 0 ≤ T ≤ 1. Moreover, T = 0 if and only if Y and Z are conditionally independent given
X, and T = 1 if and only if Y is almost surely equal to a measurable function of Z given X.
When p = 0, conditional independence given X simply means unconditional independence.

The statistic T is a generalization of a similar univariate measure defined in [13, 17]. Hav-
ing defined T , the main question is whether T can be efficiently estimated from data. We
will now present a consistent estimator of T , which is our conditional dependence coeffi-
cient. This generalizes a similar univariate estimator defined in [13]. Our data consists of n

i.i.d. copies (Y1,X1,Z1), . . . , (Yn,Xn,Zn) of the triple (Y,X,Z), where n ≥ 2. For each i, let
N(i) be the index j such that Xj is the nearest neighbor of Xi with respect to the Euclidean
metric on Rp , where ties are broken uniformly at random. Let M(i) be the index j such that
(Xj ,Zj ) is the nearest neighbor of (Xi ,Zi) in Rp+q , again with ties broken uniformly at
random. Let Ri be the rank of Yi , that is, the number of j such that Yj ≤ Yi . If p ≥ 1, our
estimate of T is

Tn = Tn(Y,Z|X) :=
∑n

i=1(min{Ri,RM(i)} − min{Ri,RN(i)})∑n
i=1(Ri − min{Ri,RN(i)}) .

If p = 0, let Li be the number of j such that Yj ≥ Yi , let M(i) denote the j such that Zj is
the nearest neighbor of Zi (ties broken uniformly at random), and let

Tn = Tn(Y,Z) :=
∑n

i=1(nmin{Ri,RM(i)} − L2
i )∑n

i=1 Li(n − Li)
.

In both cases, Tn is undefined if the denominator is zero. The following theorem proves that
Tn is indeed a consistent estimator of T .

THEOREM 2.2. Suppose that Y is not almost surely equal to a measurable function of
X. Then as n → ∞, Tn → T almost surely.

REMARKS. (1) If p and q are fixed, the statistic Tn can be computed in O(n logn) time
because nearest neighbors can be determined in O(n logn) time [27] and ranks can also be
calculated in O(n logn) time [35].

(2) No assumptions on the joint law of (Y,X,Z) are needed other than the nondegeneracy
condition that Y is not almost surely equal to a measurable function of X. This condition is
inevitable, because if this does not hold, then given X, Y is a constant; in this circumstance,
Y is both a function of Z given X and independent of Z given X, and so there can be no
reasonable measure of the degree of conditional dependence of Y and Z given X.

(3) Although the limit of Tn is guaranteed to be in [0,1], the actual value of Tn for finite n

may lie outside this interval.
(4) It is not easy to explain why Tn is a consistent estimator of T without going into the

details of the proof, so we will not make that attempt here.
(5) We have not given a name to Tn, but if an acronym is desired for easy reference, one

may call it CODEC, which is an acronym for Conditional Dependence Coefficient. In fact,
this is the acronym that we use in the R code for computing Tn.

(6) We have prepared an R package, called FOCI, that has a function for computing Tn and
a function for executing the variable selection algorithm FOCI presented in Section 5 below.
The package is available for download on CRAN [3].

(7) Besides variable selection, another natural area of applications of our coefficient is
graphical models. This is currently under investigation.
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(8) The consistency of Tn raises the possibility of constructing a consistent test for condi-
tional independence based on Tn. However, it is known that this is an impossible task, even
for a single alternative hypothesis, if we demand that the level of the test be asymptotically
uniformly bounded by some given α over the whole null hypothesis space [50]. This is why
the problem of nonparametric conditional independence testing for continuous random vari-
ables is essentially unsolvable unless one is willing to impose unverifiable assumptions. This
contrasts starkly with the problem of nonparametric testing of unconditional independence,
for which there are many useful and popular methods (see [13] for a survey).

(9) In view of Theorem 2.2, it is natural to be curious about the rate of convergence of Tn

to T . This is investigated in Section 4.

3. Interpreting the coefficient. To interpret T (Y,Z|X), it is instructive to first consider
the case of binary Y . Suppose that Y is {0,1}-valued. Then μ is supported on {0,1}. Since
Y ≥ 0 always, we have P(Y ≥ 0|Z,X) = 1{Y≥0} = 1 always. Thus,

Var
(
P(Y ≥ 0|Z,X)|X) = Var(1{Y≥0}|X) = 0.

Moreover, Y = 1{Y≥1}. Combining all of this, we get that for binary Y ,

T (Y,Z|X) = E(Var(E(Y |Z,X)|X))

E(Var(Y |X))
.

But, by the law of total variance,

Var(Y |X) = E
(
Var(Y |Z,X)|X) + Var

(
E(Y |Z,X)|X)

.

Thus, for binary Y ,

T (Y,Z|X) = 1 − E(Var(Y |Z,X))

E(Var(Y |X))
.

But this is just the partial R2 that measures the proportion of variation in Y that is explained
by (Z,X) but cannot be explained solely by X. Therefore, when Y is binary, we have the
identity

T (Y,Z|X) = R2
Y,Z|X.

For a general Y , let Yt := 1{Y≥t} for each t . Then by the same calculation as above, we get

T (Y,Z|X) = 1 −
∫
E(Var(Yt |Z,X)) dμ(t)∫
E(Var(Yt |X)) dμ(t)

.

Let us now define a probability measure ν on R, which has density proportional to
E(Var(Yt |X)) with respect to μ. Then the above formula can be rewritten as

T (Y,Z|X) =
∫

R2
Yt ,Z|X dν(t).(3.1)

Thus, T (Y,Z|X) is a weighted average of R2
Yt ,Z|X over all t ∈ R. But the random variable Y is

a linear combination of the binary variables {Yt }t∈R. Therefore, T (Y,Z|X) is also a measure
of the proportion of variation in Y that is explained by (Z,X) but cannot be explained solely
by X. It generalizes the usual partial R2 statistic R2

Y,Z|X in a nonlinear way — by breaking

up Y as a linear combination of binary variables, computing the partial R2 for each binary
variable, and combining these partial R2 statistics by taking a weighted average.
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4. Rate of convergence. Suppose that p ≥ 1, so that X has at least one component.
(Recall that q is always at least 1.) To obtain a rate of convergence of Tn to T , we need to
make some assumptions about the distribution of (Y,X,Z), because otherwise, we believe
that the convergence may be arbitrarily slow. The main issue is that we need some kind of
control on the sensitivity of the conditional distribution of Y given X and Z on the values of
X and Z. This is handled by the first assumption below. The second assumption is a matter
of technical convenience.

(A1) There are nonnegative real numbers β and C such that for any t ∈ R, x,x′ ∈ Rp and
z, z′ ∈ Rq , ∣∣P(Y ≥ t |X = x,Z = z) − P

(
Y ≥ t |X = x′,Z = z′)∣∣

≤ C
(
1 + ‖x‖β + ∥∥x′∥∥β + ‖z‖β + ∥∥z′∥∥β)(∥∥x − x′∥∥ + ∥∥z − z′∥∥)

,

and ∣∣P(Y ≥ t |X = x) − P
(
Y ≥ t |X = x′)∣∣

≤ C
(
1 + ‖x‖β + ∥∥x′∥∥β)∥∥x − x′∥∥.

(A2) There are positive numbers C1 and C2 such that for any t > 0, P(‖X‖ ≥ t) and
P(‖Z‖ ≥ t) are bounded by C1e

−C2t .

Note that assumption (A1) means that the conditional distribution of Y given (X,Z) = (x, z)
is a locally Lipschitz function of (x, z), where the Lipschitz constant is allowed to grow at
most polynomially in ‖x‖ and ‖z‖. Local Lipschitzness is a fairly relaxed assumption. It only
excludes esoteric cases where the conditional distribution of Y given (X,Z) = (x, z) is a very
rough function of (x, z) (e.g., like a Brownian path), which do not arise in any model used in
practice.

Under the above assumptions, the following theorem shows that Tn converges to T essen-
tially at the rate n−1/(p+q), up to an extra logarithmic term.

THEOREM 4.1. Suppose that p ≥ 1 and q ≥ 1, and that the assumptions (A1) and (A2)
hold with some β and C. Then, as n → ∞,

Tn − T = OP

(
(logn)p+q+β+1

n1/(p+q)

)
.

We believe that the rate n−1/(p+q) in Theorem 4.1 is the true rate of convergence of Tn to
T when the variables are continuous. It is not clear if there is some other statistic with the
same properties as Tn but with a better rate of convergence.

Note that the case p = 0 is not covered by Theorem 4.1. This is the case where Tn is
a measure of unconditional, rather than conditional, dependence. When p = 0 and q = 1,
we conjecture that Tn − T = OP (n−1/2). Moreover, under independence, we conjecture that√

nTn obeys a central limit theorem when p = 0 and q = 1. At this moment, we do not know
how to prove these conjectures.

Conditions (A1) and (A2) are trivially satisfied if the support of (Y,X,Z) is a finite set, by
choosing β = 0 and a suitably large C. Another situation where it is easy to see that (A1) and
(A2) hold is when (Y,X,Z) is normal, because then the conditional distribution of Y given
(X,Z) is again normal with a mean that is a linear function of X and Z, and a variance that
does not depend on X and Z.

More generally, the following result shows that (A1) is satisfied for a large class of densi-
ties with certain regularity and decay properties (and (A2) holds widely anyway).
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PROPOSITION 4.2. Let f (y|x) be the conditional probability density function of Y given
X = x, assuming it exists. Suppose that f is nonzero everywhere and differentiable with
respect to x, and for each i, the function∣∣∣∣ ∂

∂xi

logf (y|x)

∣∣∣∣
is bounded above by a polynomial in |y| and ‖x‖. Next, suppose that for any compact set
K ⊆ Rp , the function g(y) := maxx∈K f (y|x) is bounded and decays faster than any negative
power of |y| as |y| → ∞. Lastly, assume that for any k ≥ 1, E(Y 2k|X = x) is bounded above
by a polynomial in ‖x‖. Then the second inequality in assumption (A1) holds for some C and
β . A similar set of conditions on the conditional density of Y given X = x and Z = z ensures
that the first inequality in (A1) holds.

5. Feature Ordering by Conditional Independence (FOCI). In this section, we pro-
pose a new variable selection algorithm for multivariate regression using a forward stepwise
algorithm based on our measure of conditional dependence. The commonly used variable
selection methods in the statistics literature use linear or additive models. This includes clas-
sical methods [7, 14, 22, 26, 29, 30, 41, 57] as well as modern ones [12, 24, 45, 61, 64,
65]. These methods are powerful and widely used in practice. However, they sometimes run
into problems when significant interaction effects or nonlinearities are present. We will later
show an example where methods based on linear and additive models fail to select any of the
relevant predictors, even in the complete absence of noise.

Such problems can sometimes be overcome by model-free methods [2, 4, 8–11, 25, 30,
31, 59]. These, too, are powerful and widely used techniques, and they perform better than
model-based methods if interactions are present. On the flip side, their theoretical foundations
are usually weaker than those of model-based methods.

The method that we are going to propose below, called Feature Ordering by Conditional
Independence (FOCI), attempts to combine the best of both worlds by being fully model-free,
as well as having a proof of consistency under a set of assumptions.

The method is as follows. Let Y be the response variable and let X = (Xj )1≤j≤p be the
set of predictors. The data consists of n i.i.d. copies of (Y,X). First, choose j1 to be the
index j that maximizes Tn(Y,Xj ). Having obtained j1, . . . , jk , choose jk+1 to be the index
j /∈ {j1, . . . , jk} that maximizes Tn(Y,Xj |Xj1, . . . ,Xjk

). Continue like this until arriving at
the first k such that Tn(Y,Xjk+1 |Xj1, . . . ,Xjk

) ≤ 0, and then declare the chosen subset to be
Ŝ := {j1, . . . , jk}. If there is no such k, define Ŝ to be the whole set of variables. It may also
happen that Tn(Y,Xj1) ≤ 0. In that case, declare Ŝ to be empty.

Although it is not required theoretically, we recommend that the predictor variables be
standardized before running the algorithm. We will see later that FOCI performs well in
examples, even if the true dependence of Y on X is nonlinear in a complicated way. In the
next section, we prove the consistency of FOCI under a set of assumptions on the law of
(Y,X).

If computational time is not an issue, one can try to add m ≥ 2 variables at each step instead
of just one. Although we do not explore this idea in this paper, it is possible that this gives
improved results in certain situations. Similarly, one can try a forward–backward version of
FOCI, analogous to the forward–backward version of ordinary stepwise selection.

One can also consider implementing a forward stepwise algorithm like FOCI with other
measures of conditional dependence. To the best of our knowledge, that has not yet been
done. The closest cousin in the literature is an algorithm based on mutual information [4], but
unlike FOCI, it does not have a well-defined stopping rule.

One deficiency of FOCI is that it only selects a subset of predictors, without actually fitting
a predictive model. Following a suggestion from Rob Tibshirani, we recommend doing the
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following: First, select a subset using FOCI, and then use random forests [9] to fit a predictive
model with the selected variables. This has two advantages over simply fitting random forests
with the full set of predictors: (1) It picks out a small set of “important” variables, which may
be useful for various reasons, and (2) it is computationally much less expensive. We saw
that in real data sets, the prediction error of FOCI followed by random forests is only slightly
worse than fitting random forests with the full set of predictors. On the other hand, the number
of variables selected by FOCI is usually very small compared to the total number of variables.
Some examples are given in Section 8.

The stopping rule for FOCI may not be the best one. One can think of various other ways
of using our measure of conditional (or any other) for variable selection. Our stopping rule
seems to work well in practice, and we are able to prove consistency of variable selection for
this rule. It is possible that there are other, better rules, which are also provably consistent.
This merits further investigation.

6. Consistency of FOCI. Let (Y,X) be as in the previous section. For any subset of
indices S ⊆ {1, . . . , p}, let XS := (Xj )j∈S , and let Sc := {1, . . . , p} \S. In the machine learn-
ing literature, a subset S is sometimes called sufficient [59] if Y and XSc are conditionally
independent given XS . This includes the possibility that S is the empty set, when it simply
means that Y and X are independent. Sufficient subsets are known as Markov blankets in the
literature on graphical models [43], Section 3.2.1, and are closely related to the concept of
sufficient dimension reduction in classical statistics [1, 16, 36]. If we can find a small subset
of predictors that is sufficient, then our job is done, because these predictors contain all the
relevant predictive information about Y among the given set of predictors, and the statistician
can then fit a predictive model based on this small subset of predictors.

Define Q(∅) := 0, and for any nonempty set S ⊆ {1, . . . , p}, let

(6.1) Q(S) :=
∫

Var
(
P(Y ≥ t |XS)

)
dμ(t),

where μ is the law of Y . We will prove later (Lemma 11.2) that Q(S′) ≥ Q(S) whenever
S′ ⊇ S, with equality if and only Y and XS′\S are conditionally independent given XS . Thus
if S′ ⊇ S, the difference Q(S′) − Q(S) is a measure of how much extra predictive power is
added by appending XS′\S to the set of predictors XS .

Let δ be the largest number such that for any insufficient subset S, there is some j /∈ S

such that Q(S ∪ {j}) ≥ Q(S) + δ. In other words, if S is insufficient, there exists some index
j /∈ S such that appending Xj to XS increases the predictive power by at least δ. The main
result of this section, stated below, says that if δ is not too close to zero, then under some
regularity assumptions on the law of (Y,X), the subset selected by FOCI is sufficient with
high probability. Note that a sparsity assumption is hidden in the condition that δ is not
very small, because the definition of δ ensures that there is at least one sufficient subset of
size ≤ 1/δ. An interpretation of δ in the familiar setting of linear regression with Gaussian
predictors is discussed in the next section.

To prove our result, we need the following two technical assumptions on the joint distribu-
tion of (Y,X). They are generalizations of the assumptions (A1) and (A2) from Section 4.

(A1′) There are nonnegative real numbers β and C such that for any set S ⊆ {1, . . . , p} of
size ≤ 1/δ + 2, any x,x′ ∈ RS and any t ∈ R,∣∣P(Y ≥ t |XS = x) − P

(
Y ≥ t |XS = x′)∣∣

≤ C
(
1 + ‖x‖β + ∥∥x′∥∥β)∥∥x − x′∥∥.

(A2′) There are positive numbers C1 and C2 such that for any S of size ≤ 1/δ + 2 and any
t > 0, P(‖XS‖ ≥ t) ≤ C1e

−C2t .
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Proposition 4.2 shows that the above assumptions are satisfied in a wide variety of situations.
The following theorem shows that under the above assumptions, the subset chosen by FOCI
is sufficient with high probability.

THEOREM 6.1. Suppose that δ > 0, and that the assumptions (A1′) and (A2′) hold. Let Ŝ

be the subset selected by FOCI with a sample of size n. There are positive real numbers L1, L2
and L3 depending only on C, β , C1, C2 and δ such that P(Ŝ is sufficient) ≥ 1−L1p

L2e−L3n.

The main implication of Theorem 6.1 is that if δ is not too close to zero, and n  logp,
then with high probability, FOCI chooses a sufficient set of predictors. In particular, this
theorem allows p to be quite large compared to n, as long as δ is not too small.

Although Theorem 6.1 works under the assumption that δ is fixed (because the constants
L1, L2 and L3 depend on δ in an unspecified manner), it is possible that a deeper analysis
can allow us to take δ → 0 as n → ∞. For that, the dependences of L1, L2 and L3 on δ will
have to be made explicit. It is possible that such an improvement can be made by carefully
reworking the steps in the proof, to at least get a consistency result when δ → 0 slower than
(logn)−1. To get anything better than that will probably require entirely new ideas.

Theorem 6.1 gives conditions under which the subset selected by FOCI is sufficient with
high probability. This is intended to be useful for practitioners, by giving them confidence that
the selected subset is indeed sufficient. In practice, as we will see in Section 8, the subsets
selected by FOCI are quite small. However, Theorem 6.1 does not guarantee the smallness of
the subset size. It would be desirable to have an improved version of Theorem 6.1, which not
only guarantees that Ŝ is sufficient with high probability, but also that |Ŝ| is small with high
probability. As of now, we do not know how to prove such a result.

7. Interpreting δ. In this section, we will try to understand the meaning of the quantity
δ defined in the previous section, in the familiar context of linear regression with normally
distributed predictor variables. Suppose that X is a normal random vector with zero mean and
arbitrary covariance structure, and that

Y = β · X + ε,

where β ∈ Rp is a vector of coefficients and ε ∼ N(0, σ 2) is independent of X, with nonzero
σ . Then Y is also a normal random variable with mean zero. Let τ 2 := Var(Y ). Let δ be the
quantity defined in the previous section, for this Y and X.

For any nonempty S � {1, . . . , p} and any j ∈ {1, . . . , p} \ S, let ρ(S, j) be the partial R2

of Y and Xj given XS . Let ρ(∅, j) be the usual R2 (that is, squared correlation) between Y

and Xj .
Note that if S is a sufficient set of predictors, then ρ(S, j) = 0 for any j /∈ S. Conversely, if

ρ(S, j) = 0 for all j /∈ S, then by normality, Y and XSc are conditionally independent given
XS , and hence S is sufficient. Thus, S is sufficient if and only if ρ(S, j) = 0 for all j /∈ S. So
if S is insufficient, then there is at least one j /∈ S such that ρ(S, j) > 0.

Let δ′ be the largest number such that for any insufficient set S, there is some j /∈ S such
that ρ(S, j) ≥ δ′. The following result shows that δ′ is comparable to δ, up to constant mul-
tiples depending only on σ and τ .

THEOREM 7.1. Let all notation be as above. There are positive universal constants C1
and C2 such that

C1σ
2

τ 2 δ′ ≤ δ ≤ C2τ
2

σ 2 δ′.

Thus, in the Gaussian setup, δ is equivalent to the analogous quantity computed using the
usual partial R2 instead of our measure of conditional dependence. The above result is proved
in Section 17.
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8. Examples. In this section, we present some applications of our methods to simulated
examples and real data sets. In all examples, the covariates were standardized prior to the
analysis.

EXAMPLE 8.1. Let X1 and X2 be independent Uniform[0,1] random variables, and
define

Y := X1 + X2 (mod 1).

The relationship between Y and (X1,X2) has three main features:

1. Y is a function of (X1,X2),
2. unconditionally, Y is independent of X2, and
3. conditional on X1, Y is a function of X2.

Let n = 1000. In about 95% of our simulations, Tn(Y, (X1,X2)) took values between 0.88
and 0.94, Tn(Y,X2|X1) was between 0.88 and 0.94, and Tn(Y,X2) was between −0.07 and
0.07, in agreement with the above properties. Other measures of conditional dependence,
such as conditional distance correlation [60], were unable to gauge the strength of the condi-
tional dependency between Y and X2 given X1.

EXAMPLE 8.2. Let X1 and X2 be independent N(0,1) random variables, and define

Y := X2
1 + X2

2, Z := arctan(X1/X2).

Then unconditionally, Y is independent of Z, and conditional on X1, Y is a function of Z.
Let n = 1000. In about 95% of our simulations, Tn(Y,Z) took values between −0.06 and
0.05, and Tn(Y,Z|X1) was between 0.79 and 0.84, in agreement with the above properties.
Again, other measures of conditional dependence were unable to capture the strength of the
conditional dependence between Y and Z given X1.

EXAMPLE 8.3. Let X1, . . . ,X1000 be independent N(0,1) random variables and let

Y = X1X2 + sin(X1X3).

With a sample of size 2000 from the above model, FOCI was able to select the correct subset
{X1,X2,X3} more than 90i% of the time. On the other hand, popular variable selection al-
gorithms based on linear models, such as ordinary forward stepwise, Lasso [57], the Dantzig
selector [12], and SCAD [24] were essentially never able to pick out the correct subset. (The
tuning parameters for Lasso, Dantzig selector and SCAD were chosen using 10-fold cross-
validation, and the AIC criterion was used for stopping in forward stepwise.) Even methods
based on nonlinear additive models, such as SPAM [45], were generally unable to find the
correct subset. The only other methods that successfully detected the importance of X1, X2
and X3 were random forests [9] and mutual information [4], but the computational times for
these methods were many times greater than that of FOCI.

EXAMPLE 8.4. Again, let X1, . . . ,X1000 be independent N(0,1) random variables and
let

Y = X1X2 + X1 − X3 + ε,

where ε ∼ N(0,1) is a noise term that is independent of Xi’s. With a sample of size 2000
from this model, FOCI was able to select the correct subset {X1,X2,X3} in 99.5% of sim-
ulations. Methods based on linear models were generally able to pick out X1 and X3 but
almost never detected the role of X2. SPAM was able to pick out all three variables in about
a quarter of the simulations. Again, the only other methods that successfully detected the im-
portance of X1, X2 and X3 were random forests and mutual information, but at a far greater
computational cost than FOCI.
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TABLE 1
Applications of FOCI to real data

Spambase data Polish companies data Million song data

Method Subset size MSPE Subset size MSPE Subset size MSPE

FOCI 14 0.045 5 0.022 17 88.085
Forward stepwise 56 0.039 62 0.020 90 87.226
Lasso 55 0.041 48 0.021 86 87.260
Dantzig selector 53 0.041 7 0.023 90 87.226
SCAD 38 0.041 4 0.025 85 87.319

EXAMPLE 8.5. We tried out FOCI on the following three benchmark real data examples,
all from the UCI Machine Learning Repository [19]:

1. Spambase data. Consists of 4601 observations, each corresponding to one email, and
57 features for each observation. The response variable is binary, indicating whether the email
is a spam email or not.

2. Polish companies bankruptcy data. Consists of 19,967 observations with 64 features.
Each sample corresponds to a company in Poland. The response variable is binary, indicating
whether or not the company was bankrupted after a period of time.

3. Million song data. Consists of 515,345 observations with 90 features. Each sample
corresponds to the audio features of a song published sometime ranging from 1922 to 2011.
The response variable is the year that the song was published.

FOCI was compared with forward stepwise, Lasso, Dantzig selector and SCAD. For each
method, after selecting the variables, a predictive model was fitted to a training set using
random forests. As before, the tuning parameters for Lasso, Dantzig selector and SCAD were
chosen using 10-fold cross-validation, and the AIC criterion was used for stopping in forward
stepwise. Mean squared prediction errors (MSPE) were estimated using a test set. The sizes
of the selected subsets and the MSPEs are reported in Table 1. In all three examples, FOCI
attained similar prediction errors as the other methods, but with a significantly fewer number
of variables.

EXAMPLE 8.6. In Section 5, we recommended fitting a predictive model using random
forests with the set of variables selected by FOCI. To test the validity of this approach, we
computed the prediction errors for random forests with the full set of predictors versus FOCI
followed by random forests, in the three real data sets considered above. The results are dis-
played in Table 2. We see that FOCI followed by random forests attains almost the same
MSPE as random forests with the full set of variables; but in each case, the number of vari-
ables selected by FOCI is small compared to the total number of variables.

9. Restatement of Theorems 2.1 and 2.2. Beginning with this section, the rest of the
paper is devoted to proofs. Throughout the rest of the manuscript, whenever we say that a
random variable Y is a function of another variable X, we will mean that Y = f (X) almost
surely for some measurable function f .

First, we focus on Theorems 2.1 and 2.2. To prove these theorems, it is convenient to break
up the estimators into pieces. This gives certain “elaborate” versions of Theorems 2.1 and 2.2,
which are interesting in their own right. First, suppose that p ≥ 1. Define

(9.1) Qn(Y,Z|X) := 1

n2

n∑
i=1

(
min{Ri,RM(i)} − min{Ri,RN(i)})
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and

(9.2) Sn(Y,X) := 1

n2

n∑
i=1

(
Ri − min{Ri,RN(i)}).

Let μ denote the law of Y . We will see later that the following theorem implies both Theorem
2.1 and Theorem 2.2 in the case p ≥ 1.

THEOREM 9.1. Suppose that p ≥ 1. As n → ∞, the statistics Qn(Y,Z|X) and Sn(Y,X)

converge almost surely to deterministic limits. Call these limit a and b, respectively. Then:

(i) 0 ≤ a ≤ b.
(ii) Y is conditionally independent of Z given X if and only if a = 0.

(iii) Y is conditionally a function of Z given X if and only if a = b.
(iv) Y is not a function of X if and only if b > 0.

Explicitly, the values of a and b are given by

a =
∫

E
(
Var

(
P(Y ≥ t |Z,X)|X))

dμ(t)

and

b =
∫

E
(
Var(1{Y≥t}|X)

)
dμ(t)

=
∫

E
(
P(Y ≥ t |X)

(
1 − P(Y ≥ t |X)

))
dμ(t).

Next, suppose that p = 0. Define

(9.3) Qn(Y,Z) := 1

n2

n∑
i=1

(
min{Ri,RM(i)} − L2

i

n

)

and

(9.4) Sn(Y ) := 1

n3

n∑
i=1

Li(n − Li).

We will prove later that the following theorem implies Theorems 2.1 and 2.2 when p = 0.

THEOREM 9.2. As n → ∞, Qn(Y,Z) and Sn(Y ) converge almost surely to deterministic
limits c and d , satisfying the following properties:

(i) 0 ≤ c ≤ d .
(ii) Y is independent of Z if and only if c = 0.

(iii) Y is a function of Z if and only if c = d .
(iv) d > 0 if and only if Y not a constant.

TABLE 2
Comparison with random forests

Data set FOCI subset size/Total set size MSPE FOCI MSPE random forest

Spambase 14/57 0.045 0.040
Polish companies 5/64 0.022 0.020
Million song 17/90 88.085 87.260
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Explicitly,

c =
∫

Var
(
P(Y ≥ t |Z)

)
dμ(t),

and

d =
∫

Var(1{Y≥t}) dμ(t)

=
∫

P(Y ≥ t)
(
1 − P(Y ≥ t)

)
dμ(t).

It is not difficult to see that whenever Y has a continuous distribution, d = 1/6. In this
case, there is no need for estimating d using Sn(Y,Z). On the other hand, the value of d may
be dependent on the distribution of Y when the distribution is not continuous. In such cases,
d needs to be estimated from the data using Sn(Y,Z).

10. Proofs of Theorems 2.1 and 2.2 using Theorems 9.1 and 9.2. Suppose that p ≥ 1.
Recall the quantities a and b from the statement of Theorem 9.1, and notice that T = a/b.
Suppose that Y is not a function of X. Then by conclusion (iv) of Theorem 9.1, b > 0,
and hence T is well defined. Moreover, conclusion (i) implies that 0 ≤ T ≤ 1, conclusion
(ii) implies that T = 0 if and only if Y and Z are conditionally independent given X, and
conclusion (iii) implies that Y is a function of Z given X if and only if T = 1. This proves
Theorem 2.1 when p ≥ 1. Next, note that Tn = Qn/Sn, where Qn = Qn(Y,Z|X) and Sn =
Sn(Y,X), as defined in (9.1) and (9.2). By Theorem 9.1, Qn → a and Sn → b in probability.
Thus, Tn → a/b = T in probability. This proves Theorem 2.2 when p ≥ 1.

Next, suppose that p = 0. The proof proceeds exactly as before, but using Theorem 9.2.
Here, T = c/d , where c and d are the quantities from Theorem 9.2. Suppose that Y is not
a function of X, which in this case just means that Y is not a constant. Then by conclusion
(iv) of Theorem 9.2, d > 0, and hence T is well defined. Moreover, conclusion (i) implies
that 0 ≤ T ≤ 1, conclusion (ii) implies that T = 0 if and only if Y and Z are independent and
conclusion (iii) implies that Y is a function of Z if and only if T = 1. This proves Theorem 2.1
when p = 0. Next, note that Tn = Qn/Sn, where Qn = Qn(Y,Z) and Sn = Sn(Y ), as defined
in (9.3) and (9.4). By Theorem 9.2, Qn → c and Sn → d in probability. Thus, Tn → c/d = T

in probability. This proves Theorem 2.2 when p = 0.

11. Preparation for the proofs of Theorems 9.1 and 9.2. In this section, we prove
some lemmas that are needed for the proofs of Theorems 9.1 and 9.2. Let Y be a random
variable and X be an Rp-valued random vector, defined on the same probability space. Define

F(t) := P(Y ≤ t), G(t) := P(Y ≥ t).

By the existence of regular conditional probabilities on regular Borel spaces (see, e.g., [20],
Theorem 2.1.15 and Exercise 5.1.16), for each Borel set A ⊆ R there is a measurable map
x �→ μx(A) from Rp into [0,1], such that:

(i) for any A, μX(A) is a version of P(Y ∈ A|X), and
(ii) with probability one, μX is a probability measure on R.

In the above sense, μx is the conditional law of Y given X = x. For each t , let

FX(t) := μX
(
(−∞, t]), GX(t) := μX

([t,∞))
.

Define

Q(Y,X) :=
∫

Var
(
GX(t)

)
dμ(t).(11.1)
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LEMMA 11.1. Let Q(Y,X) be as above. Then Q(Y,X) = 0 if and only if Y and X are
independent.

PROOF. If Y and X are independent, then for any t , P(Y ≥ t |X) = P(Y ≥ t) almost
surely. Thus, GX(t) = G(t) almost surely, and so Var(GX(t)) = 0. Consequently, Q(Y,X) =
0.

Conversely, suppose that Q(Y,X) = 0. Then there is a set A ⊆ R such that μ(A) = 1 and
Var(GX(t)) = 0 for every t ∈ A. Since E(GX(t)) = G(t), GX(t) = G(t) almost surely for
each t ∈ A. We claim that A = R.

To show this, take any t ∈ R. If μ({t}) > 0, then clearly t must be a member of A and there
is nothing more to prove. So assume that μ({t}) = 0. This implies that G is right continuous
at t .

There are two possibilities. First, suppose that G(s) < G(t) for all s > t . Then for each
s > t , μ([t, s)) > 0, and hence A must intersect [t, s). This shows that there is a sequence rn
in A such that rn decreases to t . Since GX(rn) = G(rn) almost surely for each n, this implies
that with probability one,

GX(t) ≥ lim
n→∞GX(rn) = lim

n→∞G(rn) = G(t).

But E(GX(t)) = G(t). Thus, GX(t) = G(t) almost surely.
The second possibility is that there is some s > t such that G(s) = G(t). Take the largest

such s, which exists because G is left continuous. If s = ∞, then G(t) = G(s) = 0, and
hence GX(t) = 0 almost surely because E(GX(t)) = G(t). Suppose that s < ∞. Then either
μ({s}) > 0, which implies that GX(s) = G(s) almost surely, or μ({s}) = 0 and G(r) < G(s)

for all r > s, which again implies that GX(s) = G(s) almost surely, by the previous para-
graph. Therefore, in either case, with probability one,

GX(t) ≥ GX(s) = G(s) = G(t).

Since E(GX(t)) = G(t), this implies that GX(t) = G(t) almost surely.
This completes the proof of our claim that Var(GX(t)) = 0 for every t ∈ R. In particular,

for each t ∈ R, GX(t) = G(t) almost surely. Therefore, for any t ∈ R and any Borel set
B ⊆ Rp ,

P
({Y ≥ t} ∩ {X ∈ B}) = E

(
P(Y ≥ t |X)1{X∈B}

)
= G(t)P(X ∈ B) = P(Y ≥ t)P(X ∈ B).

This proves that Y and X are independent. �

Let Z be an Rq -valued random vector defined on the same probability space as Y and X,
and let W = (X,Z) be the concatenation of X and Z.

LEMMA 11.2. Let W be as above. Then Q(Y,W) ≥ Q(Y,X), and equality holds if and
only if Y and Z are conditionally independent given X.

PROOF. Since GX(t) = E(GW(t)|X), it follows that for each t ,

Var
(
GX(t)

) ≤ Var
(
GW(t)

)
.

Consequently, Q(Y,W) ≥ Q(Y,X). If Y and Z are conditionally independent given X, then
for any t ,

GW(t) = P(Y ≥ t |X,Z) = P(Y ≥ t |X) = GX(t).
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Thus, Q(Y,W) = Q(Y,X). Conversely, suppose that Q(Y,W) = Q(Y,X). Notice that

Var
(
GW(t)

) − Var
(
GX(t)

) = Var
(
GW(t)

) − Var
(
E

(
GW(t)|X))

= E
(
Var

(
GW(t)|X))

= E
(
GW(t) − GX(t)

)2
.

Thus,

Q(Y,W) − Q(Y,X) =
∫

E
(
GW(t) − GX(t)

)2
dμ(t).

So, if Q(Y,W) = Q(Y,X), then there is a Borel set A ⊆ R such that μ(A) = 1 and GW(t) =
GX(t) almost surely for every t ∈ A. We claim that A =R. Let us now prove this claim. The
proof is similar to the proof of the analogous claim in Lemma 11.1, with a few additional
complications.

Take any t ∈ R. If μ({t}) > 0, then clearly t must be a member of A. So assume that
μ({t}) = 0. As before, this implies that G is right continuous at t . Take any sequence tn
decreasing to t . Then G(t) − G(tn) → 0. But

G(t) − G(tn) = E
(
GX(t) − GX(tn)

)
,

and GX(t) − GX(tn) is a nonnegative random variable. Thus, GX(t) − GX(tn) → 0 in proba-
bility and, therefore, there is a subsequence nk such that GX(tnk

) converges to GX(t) almost
surely. But from the properties of the regular conditional probability μx we know that GX
is a nonincreasing function almost surely. Thus, it follows that GX is right continuous at t

almost surely.
Now, as before, there are two possibilities. First, suppose that G(s) < G(t) for all s > t .

Then for each s > t , μ([t, s)) > 0, and hence A must intersect [t, s). This shows that there
is a sequence rn in A such that rn decreases to t . Since GW(rn) = GX(rn) almost surely for
each n and GX is right continuous at t with probability one, this implies that with probability
one,

GW(t) ≥ lim
n→∞GW(rn) = lim

n→∞GX(rn) = GX(t).

But E(GW(t)|X) = GX(t). Thus, GW(t) = GX(t) almost surely.
The second possibility is that there is some s > t such that G(s) = G(t). Take the largest

such s, which exists because G is left continuous. If s = ∞, then G(t) = G(s) = 0, and
hence GW(t) = GX(t) = 0 almost surely because E(GW(t)) = E(GX(t)) = G(t). Suppose
that s < ∞. Then either μ({s}) > 0, which implies that GW(s) = GX(s) almost surely (by
the previous step), or μ({s}) = 0 and G(r) < G(s) for all r > s, which again implies that
GW(s) = GX(s) almost surely (also by the previous step). Therefore in either case, with
probability one,

GW(t) ≥ GW(s) = GX(s).

Now, P(Y ∈ [t, s)) = 0, and hence P(Y ∈ [t, s)|X) = 0 almost surely. In other words,
GX(t) = GX(s) almost surely. Thus, GW(t) ≥ GX(t) almost surely. Since E(GW(t)|X) =
GX(t), this implies that GW(t) = GX(t) almost surely. This completes the proof of our claim
that A = R.

Therefore, for any t ∈ R and any Borel set B ⊆Rp′
,

P
({Y ≥ t} ∩ {Z ∈ B}|X) = E

(
P

({Y ≥ t} ∩ {Z ∈ B}|W)|X)
= E

(
P(Y ≥ t |W)1{Z∈B}|X)

= E
(
GX(t)1{Z∈B}|X)

= P(Y ≥ t |X)P(Z ∈ B|X).

This proves that Y and Z are conditionally independent given X. �
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Let X1,X2, . . . be an infinite sequence of i.i.d. copies of X. For each n ≥ 2 and each
1 ≤ i ≤ n, let Xn,i be the Euclidean nearest-neighbor of Xi among {Xj : 1 ≤ j ≤ n, j �= i}.
Ties are broken at random.

LEMMA 11.3. With probability one, Xn,1 → X1 as n → ∞.

PROOF. Let ν be the law of X. Let A be the support of ν. Recall that A is the set of
all x ∈ Rp such that any open ball containing x has strictly positive ν-measure. From this
definition, it follows easily that the complement of A is a countable union of open balls of
ν-measure zero. Consequently, X ∈ A with probability one.

Take any ε > 0. Let B be the ball of radius ε centered at X1. Then

P
(‖X1 − Xn,1‖ ≥ ε|X1

) ≤ (
1 − ν(B)

)n−1
.

Since X1 ∈ A almost surely, it follows that ν(B) > 0 almost surely. Thus,

lim
n→∞P

(‖X1 − Xn,1‖ ≥ ε|X1
) = 0

almost surely, and hence

lim
n→∞P

(‖X1 − Xn,1‖ ≥ ε
) = 0.

This proves that ‖X1 − Xn,1‖ → 0 in probability. But ‖X1 − Xn,1‖ is decreasing in n. There-
fore, ‖X1 − Xn,1‖ → 0 almost surely. �

Take any particular realization of X1, . . . ,Xn. In this realization, for each 1 ≤ i ≤ n, let
Kn,i be the number of j such that Xi is a nearest neighbor of Xj (not necessarily the randomly
chosen one) and Xj �= Xi . The following is a well-known geometric fact (see, e.g., [62], p.
102).

LEMMA 11.4. There is a deterministic constant C(p), depending only on the dimension
p, such that Kn,1 ≤ C(p) always.

PROOF. Consider a triangle with vertices x, y and z in Rp , where y �= x and z �= x.
Suppose that the angle at x is strictly less than 60◦ and ‖x − y‖ ≤ ‖x − z‖. Then

(y − x) · (z − x)

‖y − x‖‖z − x‖ > cos 60◦ = 1

2
.

Consequently,

‖z − y‖2 = ‖z − x‖2 + ‖x − y‖2 + 2(z − x) · (x − y)

< ‖z − x‖2 + ‖x − y‖2 − ‖y − x‖‖z − x‖
≤ ‖z − x‖2,

where the last inequality holds because ‖x−y‖ ≤ ‖x−z‖. Thus, if K is a cone at x of aperture
less than 60◦, and x1, . . . ,xm is a finite list of points in K \ {x} (not necessarily distinct), then
there can be at most one i such that the nearest neighbor of xi in {x,x1, . . . ,xm} is x.

Now it is not difficult to see that there is a deterministic constant C(p) depending only on
p such that the whole of Rp can be covered by at most C(p) cones of apertures less than
60◦ based at any given point. Take this point to be X1. Then within each cone, there can be
at most one Xj , which is not equal to X1, and whose nearest neighbor is X1. This shows that
there can be at most C(p) points distinct from X1 whose nearest neighbor is X1, completing
the proof of the lemma. �
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LEMMA 11.5. There is a constant C(p) depending only on p, such that for any measur-
able f :Rp → [0,∞) and any n, E(f (Xn,1)) ≤ C(p)E(f (X1)).

PROOF. Since f is nonnegative,

E
(
f (Xn,i)

) ≤ E
(
f (Xi )

) +E
(
f (Xn,i)1{Xn,i �=Xi}

)
≤ E

(
f (Xi )

) +
n∑

j=1

E
(
f (Xj )1{Xj=Xn,i ,Xj �=Xi}

)
.

Therefore by symmetry,

E
(
f (Xn,1)

) = 1

n

n∑
i=1

E
(
f (Xn,i)

)

≤ 1

n

n∑
i=1

E
(
f (Xi)

) + 1

n

n∑
i=1

n∑
j=1

E
(
f (Xj )1{Xj=Xn,i ,Xj �=Xi}

)

= E
(
f (X1)

) + 1

n

n∑
j=1

E

(
f (Xj )

n∑
i=1

1{Xj=Xn,i ,Xj �=Xi}
)

≤ E
(
f (X1)

) + 1

n

n∑
j=1

E
(
f (Xj )Kn,j

) = E
(
f (X1)(1 + Kn,1)

)
.

By Lemma 11.4, this completes the proof. �

For the next result, we will need the following version of Lusin’s theorem (proved, e.g., by
combining [46], Theorem 2.18 and Theorem 2.24).

LEMMA 11.6 (Special case of Lusin’s theorem). Let f :Rp →R be a measurable func-
tion and γ be a probability measure on Rp . Then, given any ε > 0, there is a compactly
supported continuous function g :Rp →R such that γ ({x : f (x) �= g(x)}) < ε.

LEMMA 11.7. For any measurable f : Rp → R, f (X1) − f (Xn,1) tends to 0 in proba-
bility as n → ∞.

PROOF. Fix some ε > 0. Let g be a function as in Lemma 11.6, for the given f and ε,
and γ = the law of X1. Then note that for any δ > 0,

P
(∣∣f (X1) − f (Xn,1)

∣∣ > δ
)

≤ P
(∣∣g(X1) − g(Xn,1)

∣∣ > δ
) + P

(
f (X1) �= g(X1)

)
+ P

(
f (Xn,1) �= g(Xn,1)

)
.

By Lemma 11.3 and the continuity of g,

lim
n→∞P

(∣∣g(X1) − g(Xn,1)
∣∣ > δ

) = 0.

By the construction of g,

P
(
f (X1) �= g(X1)

)
< ε.

Finally, by Lemma 11.5,

P
(
f (Xn,1) �= g(Xn,1)

) ≤ C(p)P
(
f (X1) �= g(X1)

) ≤ C(p)ε.
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Putting it all together, we get

lim sup
n→∞

P
(∣∣f (X1) − f (Xn,1)

∣∣ > δ
) ≤ ε + C(p)ε.

Since ε and δ are arbitrary, this completes the proof of the lemma. �

Let (Y1,X1), . . . , (Yn,Xn) be i.i.d. copies of (Y,X). Let Fn be the empirical distribution
function of Y1, . . . , Yn, that is,

Fn(t) = 1

n

n∑
i=1

1{Yi≤t}.

Also let

Gn(t) = 1

n

n∑
i=1

1{Yi≥t}.

For each i, let N(i) be the index j such that Xj = Xn,i (ties broken at random). Define

(11.2) Qn = Qn(Y,X) := 1

n

n∑
i=1

(
min

{
Fn(Yi),Fn(YN(i))

} − Gn(Yi)
2)

.

Note that this is exactly the statistic Qn(Y,X) defined in equation (9.3) of Section 9.

LEMMA 11.8. Let Qn be defined as above. Then

lim
n→∞E

(
Qn(Y,X)

) = Q(Y,X).

PROOF. Let

(11.3) Q′
n := 1

n

n∑
i=1

(
min

{
F(Yi),F (YN(i))

} − G(Yi)
2)

and let

�n := sup
t∈R

∣∣Fn(t) − F(t)
∣∣ + sup

t∈R
∣∣Gn(t) − G(t)

∣∣.
Then by the triangle inequality,

(11.4)
∣∣Q′

n − Qn

∣∣ ≤ 3�n.

On the other hand, by the Glivenko–Cantelli theorem, �n → 0 almost surely as n → ∞.
Since �n is bounded by 2, this implies that

lim
n→∞E

∣∣Q′
n − Qn

∣∣ = 0.

Thus, it suffices to show that E(Q′
n) converges to Q(Y,X). First, notice that

min
{
F(Y1),F (YN(1))

} =
∫

1{Y1≥t}1{YN(1)≥t} dμ(t).

Let F be the σ -algebra generated by X1, . . . ,Xn and the random variables used for breaking
ties in the selection of nearest neighbors. Then for any t ,

E(1{Y1≥t}1{YN(1)≥t}|F) = GX1(t)GXN(1)
(t).
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Note that XN(1) = Xn,1. Also, recall that by the properties of the regular conditional probabil-
ity μx, the map x �→ Gx(t) is measurable. Therefore, by the above identity and Lemma 11.7,
we have

lim
n→∞E(1{Y1≥t}1{YN(1)≥t}) = E

(
GX(t)2)

.

Thus,

lim
n→∞E

(
Q′

n

) =
∫ (

E
(
GX(t)2) − G(t)2)

dμ(t).

Since E(GX(t)) = G(t), this completes the proof of the lemma. �

LEMMA 11.9. There are positive constants C1 and C2 depending only on the dimension
p such that for any n and any t ≥ 0,

P
(∣∣Qn −E(Qn)

∣∣ ≥ t
) ≤ C1e

−C2nt2
.

PROOF. Throughout this proof, C(p) will denote any constant that depends only on p.
The value of C(p) may change from line to line.

In addition to the variables Xi and Yi , in this proof we will make use of i.i.d. Uniform[0,1]
random variables U1, . . . ,Un, where Ui is used for breaking ties if Xi has multiple nearest
neighbors.

Our plan is to use the bounded difference concentration inequality [40]. For that, we have
to get a bound on the maximum possible change in Qn if one (Yi,Xi ,Ui) is replaced by some
alternative value (Y ′

i ,X′
i ,U

′
i ). We first write Qn = An + Bn, where

An := 1

n

n∑
i=1

min
{
Fn(Yi),Fn(YN(i))

}
, Bn := 1

n

n∑
i=1

Gn(Yi)
2.

It is not hard to see that after the above replacement, each Gn(Yj ) can change by at most
1/n, and since these quantities are in [0,1], Bn can change by at most 2/n. Therefore, the
bounded difference inequality gives

P
(∣∣Bn −E(Bn)

∣∣ ≥ t
) ≤ 2e−nt2/8.(11.5)

Unfortunately, An is not well behaved with respect to this kind of perturbation, so
we have to first replace An by some more manageable quantity. Take a realization of
(Y1,X1,U1), . . . , (Yn,Xn,Un). Define an equivalence relation on {1, . . . , n} by declaring that
i and j are equivalent if Xi = Xj . Call an equivalence class a “cluster” if its size is greater
than one, and a “singleton” otherwise. Note that if i belongs to a cluster C, then N(i) must
necessarily be also a member of the same cluster. In fact, N(i) would be chosen uniformly at
random (using Ui ) from C \ {i}.

Let C denote the set of all clusters and S denote the set of all singletons. For convenience,
let us define

ai,j := min
{
Fn(Yi),Fn(Yj )

}
,

so that

An = 1

n

∑
C∈C

∑
i∈C

ai,N(i) + 1

n

∑
i∈S

ai,N(i).

Let G denote the σ -algebra generated by (Y1,X1), . . . , (Yn,Xn) and (Ui)i∈S. Define A′
n :=

E(An|G). Then it is clear that

A′
n = 1

n

∑
C∈C

b(C) + 1

n

∑
i∈S

ai,N(i),(11.6)
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where

b(C) := 1

|C| − 1

∑
i∈C

∑
j∈C\{i}

ai,j .

We will now use the bounded difference inequality to get a tail bound for the difference
An − A′

n. Conditional on G, An is a function of (Ui)i /∈S. If one such Ui is replaced by some
other value U ′

i , then only N(i) may be affected. Thus, An changes by at most 1/n. Therefore,
the bounded difference inequality gives

P
(∣∣An − A′

n

∣∣ ≥ t |G) ≤ 2e−nt2/2.

Since the right side is deterministic, we can remove the conditioning on the left. But then the
tail bound gives E|An − A′

n| < 3n−1/2. Therefore,

P
(∣∣An −E(An)

∣∣ ≥ 3n−1/2 + t
)

≤ P
(∣∣An − A′

n

∣∣ ≥ t/2
) + P

(∣∣A′
n −E

(
A′

n

)∣∣ ≥ t/2
)

(11.7)

≤ 2e−nt2/8 + P
(∣∣A′

n −E
(
A′

n

)∣∣ ≥ t/2
)
.

So we now need to get a tail bound for A′
n − E(A′

n). Fortunately, A′
n is well behaved with

respect to perturbing one coordinate. Let us now try to figure out the maximum possible
change in A′

n if some (Yi,Xi ,Ui) is replaced by an alternative value (Y ′
i ,X′

i ,U
′
i ). We will do

this in stages. First, let us replace Xi by X′
i , keeping Yi and Ui fixed. We know by Lemma

11.4 that in any configuration, for any i there can be at most C(p) singletons j such that i is
a nearest neighbor of j (not necessarily the chosen one). This fact will be used many times
in the following argument. There are several cases to consider:

1. Suppose that i is in some cluster C of size ≥ 3 in the original configuration, and lands
up in some other cluster C′ in the new configuration. Then the set of singletons is the same in
the two configurations. If j is a singleton, then N(j) can change only if i is a nearest neighbor
of j in either the original configuration or the final configuration. As noted above, there can
be at most C(p) such j . Therefore, due to these changes, A′

n can change by at most C(p)/n.
On the other hand, b(C) changes by at most 2, as seen from the following computation:∣∣b(C) − b

(
C \ {i})∣∣

=
∣∣∣∣ 1

|C| − 1

∑
j∈C

∑
k∈C\{j}

aj,k − 1

|C| − 2

∑
j∈C\{i}

∑
k∈C\{i,j}

aj,k

∣∣∣∣
=

∣∣∣∣ 1

|C| − 1

∑
k∈C\{i}

ai,k + 1

|C| − 1

∑
j∈C\{i}

aj,i

− 1

(|C| − 1)(|C| − 2)

∑
j∈C\{i}

∑
k∈C\{i,j}

aj,k

∣∣∣∣ ≤ 2,

where the last inequality holds because the ai,j ’s are in [0,1]. A similar calculation shows
that b(C′) also changes by at most 1. Thus, overall, A′

n changes by at most C(p)/n.
2. Suppose that i is in some cluster C of size ≥ 3 in the original configuration, and pairs

up with a singleton to form a new cluster in the new configuration. Again, b(C) changes by
at most 2, and the contributions from the singletons in (11.6) changes by at most C(p)/n, by
the same logic as in case (1). The formation of the new cluster causes a change of at most
2/n. Therefore, again, the change in A′

n is at most C(p)/n.



A SIMPLE MEASURE OF CONDITIONAL DEPENDENCE 3089

3. Suppose that i is in some cluster C of size ≥ 3 in the original configuration, and be-
comes a singleton in the new configuration. Then just as before, b(C) changes by at most 2,
and the contributions from singletons changes by at most C(p)/n.

4. Suppose that i is in some cluster C of size 2 in the original configuration, and pairs
up with a singleton to form a new cluster in the new configuration. Again, the number of
singletons j for which N(j) changes due to this operation is bounded by C(p), and the
contributions from the clusters terms in (11.6) also changes by at most a bounded amount.
Thus, the change in A′

n is at most C(p)/n.
5. Suppose that i is in some cluster C of size 2 in the original configuration, and becomes

a singleton in the new configuration. Proceeding as before, we see that A′
n changes by at most

C(p)/n.
6. Suppose that i is a singleton in the original configuration and remains so in the new

configuration. Again, it is clear that the change in A′
n is at most C(p)/n.

7. All other cases are just reverses of the situations considered above. For example, if i is
a singleton in the original configuration and becomes part of a cluster of size ≥ 3 in the new
configuration, that is just the reverse of case (3).

Thus, we conclude that changing Xi to X′
i changes A′

n by at most C(p)/n. Next, let us change
Yi to Y ′

i . Then Fn(Yj ) changes by at most 1/n for each j �= i, and Fn(Yi) changes by at most
1. Therefore, each aj,k changes by at most 1/n if j �= i and k �= i, and by at most 1 if either
index equals i. From this, it is easy to see that A′

n can change by at most 1/n. Finally, let
us replace Ui by U ′

i . Then only N(i) can change, and hence A′
n can change by at most 1/n.

Combing all three steps, we get

P
(∣∣A′

n −E
(
A′

n

)∣∣ ≥ t
) ≤ 2e−C(p)nt2

.

Therefore, by (11.5) and (11.7), we get

P
(∣∣An −E(An)

∣∣ ≥ 3n−1/2 + t
) ≤ 6e−C(p)nt2

.

If t ≥ 3n−1/2, this bound holds for P(|An − E(An)| ≥ 2t). If t < 3n−1/2, we can choose
C1 ≥ 6 so that C1e

−C(p)nt2 ≥ 1, so that it is trivially a bound for P(|An −E(An)| ≥ 2t). This
completes the proof. �

Combining Lemmas 11.8 and 11.9, we get the following corollary.

COROLLARY 11.10. As n → ∞, Qn(Y,X) → Q(Y,X) almost surely.

12. Proof of Theorem 9.2. Note that convergence of Qn(Y,Z) to the deterministic limit
c is the result of Corollary 11.10 (applied to the pair (Y,Z) instead of (Y,X)). Showing that
Sn(Y ) converges to d is easier. Let

S′
n(Y ) = 1

n

n∑
i=1

G(Yi)
(
1 − G(Yi)

)
,

and

�n := sup
t∈R

∣∣Gn(t) − G(t)
∣∣.

Then by triangle inequality |Sn(Y ) − S′
n(Y )| ≤ 4�n, and by the Glivenko–Cantelli theorem

�n → 0 almost surely. So it is enough to show that S′
n(Y ) converges almost surely to d . But

that is a consequence of the strong law of large numbers, since the Yi’s are i.i.d. and

E
(
G(Yi)

(
1 − G(Yi)

)) =
∫

G(t)
(
1 − G(t)

)
dμ(t) = d.
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This completes the proof of the convergence claims in the theorem. Next, by combining
Corollary 11.10 and Lemma 11.1, we see that if Y and X are independent, then c = 0. This
proves claim (i) in the theorem. On the other hand, if Y is a function of Z, say Y = f (Z)

almost surely, then

c =
∫

Var
(
P(Y ≥ t |Z)

)
dμ(t)

=
∫

Var
(
E(1{Y≥t}|Z)

)
dμ(t)

=
∫

Var(1{f (Z)≥t}) dμ(t)

=
∫

E(1{f (Z)≥t})
(
1 −E(1{f (Z)≥t})

)
dμ(t) = d,

which proves claim (ii) in the theorem. Finally, by the law of total variance we have

Var(1{Y≥t}) = E
(
Var(1{Y≥t}|Z)

) + Var
(
P(Y ≥ t |Z)

)
,

therefore, 0 ≤ c ≤ d . Note that by Lemma 11.1, c = 0 if and only if Y is independent of Z.
To complete the proof of claim (iii), we have to show that if c = d then Y is almost surely a
function of Z. If c = d , then ∫

E
(
GZ(t) − GZ(t)2)

dμ(t) = 0,

which implies that P(E) = 1, where E is the event

(12.1)
∫

GZ(t)
(
1 − GZ(t)

)
dμ(t) = 0.

Let A be the support of μ. Define

aZ := sup
{
t : GZ(t) = 1

}
, bZ := inf

{
t : GZ(t) = 0

}
,

so that aZ ≤ bZ. Now suppose that the event {aZ < bZ} ∩ E takes place. Since GZ(t) ∈ (0,1)

for all t ∈ (aZ, bZ), the condition (12.1) implies that μ((aZ, bZ)) = 0. Since (aZ, bZ) is an
open interval, this shows that (aZ, bZ) ⊆ Ac. On the other hand, under the given circumstance,
we also have P(Y ∈ (aZ, bZ)|Z) > 0. Thus, P(Y ∈ Ac|Z) > 0.

The above argument implies that if P({aZ < bZ} ∩ E) > 0, then P(Y ∈ Ac) > 0. But this
is impossible, since A is the support of μ. Therefore, P({aZ < bZ} ∩ E) = 0. But P(E) = 1.
Therefore P(aZ = bZ) = 1. This implies that Y is almost surely a function of Z.

13. Proof of Theorem 9.1. For the proof of Theorem 9.1, we need some additional
lemmas.

LEMMA 13.1. Let Qn(Y,Z|X) be defined as in (9.1). Then Qn(Y,Z|X) converges to
Q(Y,Z|X) almost surely as n → ∞, where

Q(Y,Z|X) :=
∫

E
(
Var

(
GW(t)|X))

dμ(t),

where, as before, W = (X,Z).

PROOF. Note that Qn(Y,Z|X) = Qn(Y,W) − Qn(Y,X). Also,

E
(
GW(t)|X) = GX(t),
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which, by the law of total variance, gives

Var
(
GW(t)

) − Var
(
GX(t)

) = E
(
Var

(
GW(t)|X))

.

Thus,

Q(Y,Z|X) = Q(Y,W) − Q(Y,X).

The result now follows by Corollary 11.10. �

LEMMA 13.2. For Sn(Y,X) defined in (9.2),

lim
n→∞E

(
Sn(Y,X)

) = S(Y,X)

where S(Y,X) := ∫
E(Var(1{Y≥t}|X)) dμ(t).

PROOF. The proof uses techniques developed in the proof of Lemma 11.8. Let

S′
n(Y,X) = 1

n

n∑
i=1

(
F(Yi) − min

{
F(Yi),F (YN(i))

})
,

and

�n := sup
t∈R

∣∣Fn(t) − F(t)
∣∣.

By the triangle inequality, ∣∣S′
n(Y,X) − Sn(Y,X)

∣∣ ≤ 4�n.

By the Glivenko–Cantelli theorem, �n → 0 almost surely and since �n is bounded by 1, we
can conclude that

lim
n→∞E

∣∣S′
n(Y,X) − Sn(Y,X)

∣∣ = 0.

Then it is enough to show that E(S′
n(Y,X)) converges to S(Y,X). Proceeding as in the proof

of Lemma 11.8, we get

lim
n→∞E

(
S′

n(Y,X)
) =

∫ (
G(t) −E

(
GX(t)2))

dμ(t)

=
∫

E
(
GX(t) − GX(t)2)

dμ(t) = S(Y,X),

which completes the proof. �

LEMMA 13.3. There are positive constants C1 and C2 depending only on p such that
for any n and any t ≥ 0,

P
(∣∣Sn(Y,X) −E

(
Sn(Y,X)

)∣∣ ≥ t
) ≤ C1e

−C2nt2

PROOF. The concentration for the second term in the definition (9.2) was already argued
in the proof of Lemma 11.9. For the first term, a simple application of the bounded difference
inequality suffices. �

Finally, we are ready to prove Theorem 9.1.

PROOF OF THEOREM 9.1. Convergence of Qn(Y,Z|X) almost surely to a = Q(Y,Z|X)

is the content of Lemma 13.1, and convergence of Sn(Y,X) to b = S(Y,X) follows by Lem-
mas 13.2 and 13.3.
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Let us now prove the claims (i), (ii) and (iii) of the theorem. First, let us prove (i). It is
not hard to see that a = Q(Y,W) − Q(Y,X). Thus, if Y and Z are conditionally independent
given X, then by Lemma 11.2, a = 0. This proves (i). Next, note that

b − a =
∫

E
(
Var(1{Y≥t}|X) − Var

(
E(1{Y≥t}|Z,X)|X))

dμ(t)

=
∫

E
(
E

(
Var(1{Y≥t}|Z,X)|X))

dμ(t)

=
∫

E
(
Var(1{Y≥t}|Z,X)

)
dμ(t).

Now, if with probability one Y is a function of Z conditional on X, then Var(1{Y≥t}|Z,X) = 0
almost surely. Thus, the above expression shows that a = b in this situation.

Finally, let us prove claim (iii). Note that the above expression for b − a also shows that
0 ≤ a ≤ b, since Var(1{Y≥t}|Z,X) ≥ 0. Thus, it suffices to prove the opposite implications for
(i) and (ii).

If a = 0, then again by Lemma 11.2, we get that Y and Z are conditionally independent
given X. If a = b, then there exists a set A ⊆ R such that μ(A) = 1 and for any t ∈ A we have

Var(1{Y≥t}|Z,X) = 0

almost surely. Proceeding as the last part of the proof of Theorem 9.2, we can now conclude
that Y is almost surely equal to a function of W. This implies that Y is almost surely a
function of Z conditional on X. �

14. Proof of Theorem 4.1. Throughout this section, we will assume that the assump-
tions (A1) and (A2) from Section 4 hold. In the following lemma, Xn,1 is the nearest neighbor
of X1 among X2, . . . ,Xn (with ties broken at random), as in previous sections.

LEMMA 14.1. Let C1 and C2 be as in assumption (A2). Then there is some C3 depending
only on C1, C2 and p such that

E
(
min

{‖X1 − Xn,1‖,1
}) ≤

{
C3n

−1(logn)3 if p = 1,

C3n
−1/p(logn)p+1 if p ≥ 2.

PROOF. Throughout this proof, C will denote any constant that depends only on C1, C2
and p. Take any t > 0 and ε ∈ (n−1/p,1). Let B be the ball of radius t in Rp centered at the
origin. Partition B into at most Ctpε−p small sets of diameter ≤ ε. Let S be the small set
containing X1. Then

P
(‖X1 − Xn,1‖ ≥ ε

) ≤ P(X1 /∈ B) + P(X2 /∈ S, . . . ,Xn /∈ S).

Now note that

P(X2 /∈ S, . . . ,Xn /∈ S|X1) = (
1 − P(X2 ∈ S|X1)

)n−1 = (
1 − ν(S)

)n−1
,

where ν is the law of X. Let A be the collection of all small sets with ν-mass less than δ.
Since there are at most Ctpε−p small sets, we get

E
[(

1 − ν(S)
)n−1] ≤ (1 − δ)n−1 + P(X1 ∈ A)

≤ (1 − δ)n−1 + Ctpε−pδ.

Since P(X1 /∈ B) ≤ C1e
−C2t , this gives

P
(‖X1 − Xn,1‖ ≥ ε

) ≤ C1e
−C2t + (1 − δ)n−1 + Ctpε−pδ.
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Now choosing δ = Kn−1 logn and t = K log(nεp) for some large enough K , we get

P
(‖X1 − Xn,1‖ ≥ ε

) ≤ C(logn)p+1

nεp
.

Thus,

E
(
min

{‖X1 − Xn,1‖,1
}) = n−1/p +

∫ 1

n−1/p
P

(‖X1 − Xn,1‖ ≥ ε
)
dε

≤ n−1/p + C(logn)p+1

n

∫ 1

n−1/p
ε−pdε.

This is bounded by Cn−1(logn)3 if p = 1, and Cn−1/p(logn)p+1 if p ≥ 2. �

In the next lemma, let Q = Q(Y,X) be defined as in equation (11.1) and Qn = Qn(Y,X)

be defined as in equation (9.3).

LEMMA 14.2. Let C and β be as in assumption (A1) and C1 and C2 be as in assumption
(A2). Then there are K1, K2 and K3 depending only on C, β , C1, C2 and p such that for any
t ≥ 0,

P
(|Qn − Q| ≥ K1n

−min{1/p,1/2}(logn)p+β+1 + t
) ≤ K2e

−K3nt2
.

PROOF. Let Q′
n and �n be as in the proof of Lemma 11.8. By the Dvoretzky–Kiefer–

Wolfowitz inequality [21, 39], we know that for any x ≥ 0,

P(
√

n�n ≥ x) ≤ 2e−2x2
.

From this, it follows that E(�n) ≤ n−1/2 and, therefore, by (11.4),

E
∣∣Q′

n − Qn

∣∣ ≤ 3n−1/2.(14.1)

Arguing as in the proof of Lemma 11.8, we get

E
(
Q′

n

) =
∫ (

E
(
GX1(t)GXn,1(t)

) − G(t)2)
dμ(t).

On the other hand,

Q =
∫ (

E
(
GX(t)2) − G(t)2)

dμ(t).

Since Gx(t) ∈ [0,1] for all x and t , this gives
∣∣E(

Q′
n

) − Q
∣∣ ≤

∫
E

∣∣GX1(t) − GXn,1(t)
∣∣dμ(t).

Now note that by assumption (A1),∣∣GXn,1(t) − GX1(t)
∣∣ ≤ C

(
1 + ‖Xn,1‖β + ‖X1‖β)‖X1 − Xn,1‖.

Next, note that by assumption (A2), P(‖X1‖ ≥ t) ≤ C1e
−C2t . Therefore, by Lemma 11.5, the

law of ‖Xn,1‖ also has an exponentially decaying tail. Lastly, note that |GXn,1(t)−GX1(t)| ≤
1. So, letting E be the event that the maximum of ‖X1‖ and ‖Xn,1‖ is bigger than K logn for
some suitably large K , we get

E
∣∣GXn,1(t) − GX1(t)

∣∣ ≤ P(E) +E
(∣∣GXn,1(t) − GX1(t)

∣∣1Ec

)
≤ n−1 + L(logn)βE

(
min

{‖X1 − Xn,1‖,1
})



3094 M. AZADKIA AND S. CHATTERJEE

for some large constant L. It is now easy to complete the proof using Lemma 14.1, inequality
(14.1), and Lemma 11.9. �

We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1. Recall from Section 10 that

Tn(Y,Z|X) = Qn(Y,Z|X)

Sn(Y,X)
,

and

T (Y,Z|X) = Q(Y,Z|X)

S(Y,X)
,

where the quantity Q(Y,Z|X) is defined in Lemma 13.1 and S(Y,X) is defined in
Lemma 13.2. Now, as we observed in the proof of Lemma 13.1,

Qn(Y,Z|X) = Qn(Y,W) − Qn(Y,X),

where W = (X,Z). Therefore, by Lemma 14.2,

Qn(Y,Z|X) − Q(Y,Z|X) = OP

(
(logn)p+q+β+1

n1/(p+q)

)
.

By an exactly similar argument,

Sn(Y,X) − S(Y,X) = OP

(
(logn)p+β+1

nmin{1/p,1/2}
)
.

Finally, by part (iv) of Theorem 9.1, S(Y,X) �= 0. The proof is completed by combining these
observations. �

15. Proof of Proposition 4.2. Take a bounded open ball B in Rp and let K be the closure
of B . Let g(y) := maxx∈K f (y|x). By assumption, g(y) is bounded and decays faster than
any negative power of |y| as |y| → ∞. Also, since K is bounded, the assumption on the
derivatives of logf (y|x) implies that

h(y) := max
x∈K

∣∣∣∣ ∂

∂xi

logf (y|x)

∣∣∣∣
is bounded above by a polynomial in |y|. Thus, for x ∈ K and y ∈ R,∣∣∣∣ ∂

∂xi

f (y|x)

∣∣∣∣ =
∣∣∣∣f (y|x)

∂

∂xi

logf (y|x)

∣∣∣∣
≤ g(y)h(y),

and g(y)h(y) is an integrable function of y. This allows us to apply the dominated conver-
gence theorem and conclude that for any x ∈ B (and hence any x ∈ Rp),∣∣∣∣ ∂

∂xi

P(Y ≥ t |X = x)

∣∣∣∣ =
∣∣∣∣ ∂

∂xi

∫ ∞
t

f (y|x) dy

∣∣∣∣
=

∣∣∣∣
∫ ∞
t

∂

∂xi

f (y|x) dy

∣∣∣∣
≤

∫ ∞
−∞

∣∣∣∣ ∂

∂xi

logf (y|x)

∣∣∣∣f (y|x) dy.
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Now applying the assumption about the derivatives of logf (y|x), and the condition that
E(Y 2k|X = x) is bounded by a polynomial in ‖x‖ for any k, it follows easily that∣∣∣∣ ∂

∂xi

P(Y ≥ t |X = x)

∣∣∣∣
is bounded above by a polynomial in ‖x‖. The second inequality in (A1) follows directly
from this.

16. Proof of Theorem 6.1. Let j1, j2, . . . , jp be the complete ordering of all variables
produced by the stepwise algorithm in FOCI. Let S0 := ∅, and for each 1 ≤ k ≤ p, let Sk :=
{j1, . . . , jk}. For k > p, let Sk := Sp . For any subset S, let Q(Y,XS) be defined as in (11.1)
and let Qn(Y,XS) be defined as in (9.3). Notice that Q(Y,XS) is the same as the quantity
Q(S) defined in (6.1). Define these quantities to be zero if S = ∅. Let K be the integer part
of 1/δ + 2. Let E′ be the event that |Qn(Y,XSk

) − Q(Y,XSk
)| ≤ δ/8 for all 1 ≤ k ≤ K , and

let E be the event that SK is sufficient.

LEMMA 16.1. Suppose that E′ has happened, and also that

(16.1) Qn(Y,XSk
) − Qn(Y,XSk−1) ≤ δ

2
for some 1 ≤ k ≤ K . Then Sk−1 is sufficient.

PROOF. Take any k ≤ K such that (16.1) holds. If k > p there is nothing to prove. So let
us assume that k ≤ p. An examination of the formula for Tn shows that for each k, jk is the
index j that maximizes Qn(Y,XSk−1∪{j}) among all j /∈ Sk−1. Since E′ has happened, this
implies that for any j /∈ Sk−1,

Q(Y,XSk−1∪{j}) − Q(Y,XSk−1) ≤ Qn(Y,XSk−1∪{j}) − Qn(Y,XSk−1) + δ

4

≤ Qn(Y,XSk
) − Qn(Y,XSk−1) + δ

4

≤ 3δ

4
.

Therefore, since δ > 0, the definition of δ implies that Sk−1 must be a sufficient subset of
predictors. �

LEMMA 16.2. The event E′ implies E.

PROOF. Suppose that E′ has happened. Suppose also that (16.1) is violated for every
1 ≤ k ≤ K . Since E′ has happened, this implies that for each k ≤ K ,

Q(Y,XSk
) − Q(Y,XSk−1) ≥ Qn(Y,XSk

) − Qn(Y,XSk−1) − δ

4

≥ δ

4
.

This gives

Q(Y,XSK
) =

K∑
k=1

(
Q(Y,XSk

) − Q(Y,XSk−1)
)

≥ Kδ

4
≥

(
1

δ
+ 1

)
δ

4
>

1

4
.
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But the variance of any [0,1]-valued random variable is bounded by 1/4, which implies that
1/4 is the maximum possible value of the statistic Q. This yields a contradiction, proving
that (16.1) must hold for some k ≤ K . Therefore, by Lemma 16.1, SK is sufficient. �

LEMMA 16.3. There are positive constants L1, L2 and L3 depending only on C, β , C1,
C2 and K , such that

P
(
E′) ≥ 1 − L1p

L2e−L3n.

PROOF. Throughout this proof, L1,L2, . . . will denote constants that depend only on C,
β , C1, C2 and K . By assumptions (A1′) and (A2′), and Lemma 14.2, there exist L1, L2 and
L3 such that for any S of size ≤ K and any t ≥ 0,

P
(∣∣Qn(Y,XS) − Q(Y,XS)

∣∣ ≥ L1n
−min{1/K,1/2}(logn)K+β+1 + t

)
≤ L2e

−L3nt2
.

Call the event on the left AS,t . Let

At := ⋃
|S|≤K

AS,t .

Then by a simple union bound,

P(At ) ≤ L2p
Ke−L3nt2

.

Now choose t = δ/16. If n is so large that

(16.2) L1n
−min{1/K,1/2}(logn)K+β+1 ≤ δ

16
,

then the above bound implies that

(16.3) P
(
E′) ≥ 1 − L2p

Ke−L4n.

Now the condition (16.2) can be written as n ≥ L5. Choose a constant L6 ≥ L2 so large that
for any n < L5,

L6p
Ke−L3n ≥ 1.

Then if n < L5, we have P(E′) ≥ 1 − L6p
Ke−L3n. Combining with (16.3), we see that this

inequality holds without any constraint on n. �

LEMMA 16.4. The event E′ implies that Ŝ is sufficient.

PROOF. Suppose that E′ has happened. Consider two cases. First, suppose that FOCI has
stopped at step K or later. Then SK ⊆ Ŝ. By Lemma 16.2, E has also happened, and hence
SK is sufficient. Therefore, in this case, Ŝ is sufficient. Next, suppose that FOCI has stopped
at step k − 1 < K . Then by the definition of the stopping rule, we see that

Qn(Y,XSk
) ≤ Qn(Y,XSk−1).

In particular, (16.1) holds. Since E′ has happened, Lemma 16.1 now implies that Ŝ = Sk−1
is sufficient. �

It is clear that Lemmas 16.3 and 16.4 together imply Theorem 6.1.
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17. Proof of Theorem 7.1. We start with the following lemma about the variance of a
certain kind of function of normal random variables.

LEMMA 17.1. Let  be the standard normal c.d.f. and let Z ∼ N(0,1). There are posi-
tive constants C1 and C2 such that for any a, b ∈ R,

C1b
2e−(a2+b2) ≤ Var

(
(a + bZ)

) ≤ C2b
2.

PROOF. Since Z has the same law as −Z, and (−x) = 1 − (x) for all x, it is easy
to see that there is no loss of generality in assuming that a and b are nonnegative. Moreover,
since the result is trivial when b = 0, let us also assume that b > 0. Let Z, Z′ be i.i.d. N(0,1)

random variables, so that

Var
(
(a + bZ)

) = 1

2
E

[(
(a + bZ) − 

(
a + bZ′))2]

.

Let ϕ = ′ be the standard normal p.d.f. Now,

(a + bZ) − 
(
a + bZ′) = ϕ(Y )b

(
Z − Z′)

for some Y lying between a +bZ and a +bZ′. Suppose that in a particular realization, Z and
Z′ both turn out to be in [−1,1]. Then Y lies between a − b and a + b, which implies that
ϕ(Y ) is at least as large as the minimum of ϕ(a − b) and ϕ(a + b). Thus, in this situation,

ϕ(Y ) ≥ 1√
2π

exp
(
−1

2
max

{
(a − b)2, (a + b)2})

≥ 1√
2π

exp
(−(

a2 + b2))
.

This shows that

Var
(
(a + bZ)

) ≥ 1

2
E

[(
(a + bZ) − 

(
a + bZ′))2; |Z| ≤ 1,

∣∣Z′∣∣ ≤ 1
]

≥ C1b
2e−(a2+b2)E

[(
Z − Z′)2; |Z| ≤ 1,

∣∣Z′∣∣ ≤ 1
]

= C2b
2e−(a2+b2),

where C1 and C2 are positive universal constants. This proves the lower bound. For the upper
bound, simply observe that since ϕ is uniformly bounded by 1/

√
2π , we have

Var
(
(a + bZ)

) ≤ b2

4π
E

[(
Z − Z′)2] = b2

2π
.

This completes the proof of the lemma. �

The next lemma compares one of our measures of conditional dependence with partial R2

in the case of normal random variables.

LEMMA 17.2. Let (Y,X,Z) be jointly normal, with Y ∼ N(0, τ 2) for some τ > 0. Let
Q(Y,Z|X) be defined as in the statement of Lemma 13.1. Let α2 := Var(Y |X,Z) and β2 :=
Var(Y |X), and assume that these numbers are nonzero. Let R2

Y,Z|X be the partial R2 of Y and
Z given X. There are positive universal constants C1 and C2 such that

C1β
2e−β2/α2

ατ
R2

Y,Z|X ≤ Q(Y,Z|X) ≤ C2β
2

α2 R2
Y,Z|X.

The same bounds hold if we replace Q(Y,Z|X) by Q(Y,Z) (defined in equation (11.1)) and
R2

Y,Z|X by R2
Y,Z (the usual R2 between Y and Z) on both sides, and define β2 as Var(Y ).
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PROOF. Let W := (X,Z), and for each t ∈ R, let

Yt := P(Y ≥ t |W).

Let U := E(Y |W) and V := E(Y |X). Given W, Y is normal with mean U and variance α2.
Thus,

Yt = P
(
(Y − U)/α ≥ (t − U)/α|W)

= 1 − 
(
(t − U)/α

) = 
(
(U − t)/α

)
.

(17.1)

Recall that

Q(Y,Z|X) =
∫

E
(
Var(Yt |X)

)
dμ(t),

where μ is the N(0, τ 2) probability measure. So, by (17.1),

Q(Y,Z|X) =
∫

E
(
Var

(


(
(U − t)/α

)|X))
dμ(t).(17.2)

Now note that E(U |X) = V . Next, note that

E
[
(Y − U)(U − V )|X] = E

[
E

(
(Y − U)(U − V )|W)|X] = 0,

since E(Y |W) = U , and U and V are functions of W. Thus,

E
[
(Y − V )2|X] = E

[
(Y − U)2|X] +E

[
(U − V )2|X]

= E
[
E

(
(Y − U)2|W)|X] + Var(U |X)

= E
[
Var(Y |W)|X] + Var(U |X)

= α2 + Var(U |X).

But E[(Y − V )2|X] = β2. Thus, Var(U |X) = β2 − α2. Therefore, given X, U is normal with
mean V and variance β2 − α2. Let

b :=
√

β2 − α2

α
.

Then, by (17.2), we get

Q(Y,Z|X) =
∫

E
(
Var

(


(
bZ + (V − t)/α

)|X))
dμ(t),

where Z is a standard normal random variable, independent of all else. By Lemma 17.1,

C1b
2e−(V −t)2/α2−b2 ≤ Var

(


(
bZ + (V − t)/α

)|X) ≤ C2b
2.

Plugging these bounds into the previous display, we get

C1b
2e−b2

∫
E

(
e−(V −t)2/α2)

dμ(t) ≤ Q(Y,Z|X) ≤ C2b
2.(17.3)

Now note that ∫
E

(
e−(V −t)2/α2)

dμ(t) = E
(
e−(V −ξ)2/α2)

,

where ξ ∼ N(0, τ 2) and is independent of V . But V − ξ ∼ N(0,2τ 2 − β2), since

Var(V ) = Var(Y ) −E
(
Var(Y |X)

) = τ 2 − β2.
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Thus, a simple computation gives

E
(
e−(V −ξ)2/α2) =

(
1 + 2(2τ 2 − β2)

α2

)−1/2

= α√
α2 + 2(2τ 2 − β2)

≥ α

2τ
,

where the last inequality holds because α ≤ β . Plugging this lower bound into (17.3) and
using b2 ≤ β2/α2, we get

C1αe−β2/α2
b2

2τ
≤ Q(Y,Z|X) ≤ C2b

2.

Finally, observe that

b2 = β2

α2

β2 − α2

β2 = β2

α2 R2
Y,Z|X

and substitute this in the previous display. This completes the proof of the first assertion of
the lemma. The second assertion follows similarly, by retracing the steps in the proof and
making suitable changes at the appropriate places. �

We are now ready to prove Theorem 7.1.

PROOF OF THEOREM 7.1. Let S be an insufficient subset of predictors. Then there is
some j /∈ S such that Q(Y,Xj |XS) ≥ δ, because if Q(S) is defined as in (6.1), then it is not
hard to see that

Q(Y,Xj |XS) = Q
(
S ∪ {j}) − Q(S).

But then, by Lemma 17.2,

ρ(S, j) = R2
Y,Xj |XS

≥ α2

C2β2 Q(Y,Xj |XS) ≥ α2δ

C2β2 ,

where α2 = Var(Y |XS∪{j}) and β2 = Var(Y |XS). Since α2 ≥ Var(Y |X) = σ 2 and β2 ≤
Var(Y ) = τ 2, this shows that

ρ(S, j) ≥ σ 2δ

C2τ 2 .

This proves that δ′ ≥ σ 2δ/C2τ
2. Conversely, for any insufficient set S, there is some j /∈ S

such that ρ(S, j) ≥ δ′. So by Lemma 17.2,

Q(Y,Xj |XS) ≥ C1β
2e−β2/α2

δ′

ατ
.

Now, β2 ≥ Var(Y |X) = σ 2, α2 ≤ Var(Y ) = τ 2, and α2 ≤ β2. Thus,

Q(Y,Xj |XS) ≥ C1σ
2e−1δ′

τ 2 .

Thus, δ ≥ C1e
−1σ 2δ′/τ 2. This completes the proof of the theorem. �
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