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Regular 2n−p designs are also known as single flat designs. Parallel flats
designs (PFDs) consisting of three parallel flats (3-PFDs) are the most fre-
quently utilized PFDs, due to their simple structure. Generalizing to f -PFD
with f > 3 is more challenging. This paper aims to study the general the-
ory for the f -PFD for any f ≥ 3. We propose a method for obtaining the
confounding frequency vectors for all nonequivalent f -PFDs, and to find
the least G-aberration (or highest D-efficiency) f -PFD constructed from any
single flat. PFDs are particularly useful for constructing nonregular fraction,
split-plot or randomized block designs. We also characterize the quaternary
code design series as PFDs. Finally, we show how designs constructed by
concatenating regular fractions from different families may also have a par-
allel flats structure. Examples are given throughout to illustrate the results.

1. Introduction. Two-level regular fractional factorial designs are commonly used for
screening experiments, since they are easily interpreted. For these regular fractions, facto-
rial effects are either orthogonal or fully aliased. In contrast, a nonregular fractional factorial
design is one for which some factorial effects are partially aliased. Compared with regular
fractions, nonregular designs have more complicated aliasing structure, but they are more
flexible in run sizes and allow estimation of more effects. For characterizing nonregular de-
signs, Deng and Tang [11] and Tang and Deng [30] propose the minimum G-aberration and
minimum G2-aberration criteria, respectively.

Parallel flats designs (PFDs) are nonregular designs that retain some of the simplicity of
regular fractional factorial designs. Connor and Young [10] first proposed PFDs, though with-
out using this name. Srivastava and Li [29] obtained conditions for a PFD to be an orthog-
onal design for estimating any arbitrary set of factorial effects. Srivastava and Chopra [28]
presented conditions for a PFD to be an orthogonal design with given resolution, while Liao,
Iyer and Vecchia [19] provided an algorithm for constructing orthogonal two-level PFDs with
user-specified resolution. A series of papers ([36], [27], [37], [26], [25]) have investigated a
subset of PFDs named quaternary code (QC) designs and provide many designs having min-
imum G2-aberration among all possible designs. QC designs are easily generated and retain
some of the structure of regular fractional factorial designs, but QC designs are limited to
run sizes of powers of 2. Recently, Jones et al. [18] and Edwards and Mee [12] presented a
Kronecker product construction for PFDs. Most nonregular designs are algorithmically con-
structed and there is little attention to their structure. PFDs are an exception, in that they
represent a broad class of nonregular designs having notable structure.

Much study of PFDs for f > 3 flats has focused on the construction of designs that are
fully efficient for a given model. However, the run-size of such designs may be too large, so
here we consider designs with smaller run sizes but with D-efficiency < 100%. 3-PFDs are
popular for this reason, providing efficient designs for estimating the two-factor interaction
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model, while requiring 25% fewer runs than the smallest resolution V regular fractions. Each
3-PFD is constructed by partitioning a regular fractional factorial design into four subsets
defined by two factorial effect contrasts and then discarding one subset. See, for example,
n = 4 factors with run size N = (3/4)(24) = 12 (Mee [21] Section 8.3), 7–8 factors with
N = 48 (Addelman [1], John [15]), and 9–11 factors with N = 96 (John [16], Mee [20]).
All these designs have simple correlation structures and perform well for estimating the two-
factor interaction model. See Chai and Liao [7] for general properties of 3-PFDs.

Models estimated from PFDs have a block diagonal information matrix, with the rank
of each submatrix limited by the number of flats. This structure makes f -PFDs easier to
understand and analyze than general nonorthogonal designs, while retaining flexibility of
run size, being available for any even number of runs. This article will greatly facilitate the
construction of this important class that fills a gap between regular 2n−p designs and D-
optimal and other algorithmically constructed two-level designs. We present a general theory
for f -PFDs for any f ≥ 3. For any given initial regular 2n−p design, we provide methods for
obtaining all nonequivalent resulting f -PFDs as well as their confounding frequency vectors.
We present a second method for determining the minimum G-aberration f -PFD for large p

and f . We also show how to construct parallel flats split plot designs, as well as identifying
parallel flats in designs constructed by concatenating arbitrary regular fractions. Examples
are given to illustrate each result.

2. Definitions and preliminaries. Let D be a two-level design with N runs and n factors
where each row represents a treatment combination and each column corresponds to a factor
with levels ±1. Denote the n columns of D by d1, . . . , dn. Two designs are called isomorphic
if one can be obtained from the other by row permutations, column permutations and sign
switches of columns (Hedayat, Sloane and Stufken [14]). For V = {υ1, . . . , υq}, the index of
q columns of D, define

Jq(V ) =
∣∣∣∣∣

N∑
i=1

diυ1 · · ·diυq

∣∣∣∣∣,
where dij is the ith component of column dj ; these Jq(V ) are called the J -characteristics
of D. If Jq(V ) = N , these q columns in V form a complete word of length q . If 0 < Jq(V ) <

N , these q columns form a partial word of length q . Following Cheng, Li and Ye [9], the
aliasing index is defined as ρq(V ) = |Jq(V )|/N , to characterize the degree of aliasing of
these q columns in V with the intercept. For any factorial design D, not necessarily orthog-
onal, let fqj be the frequency of q column combinations that give Jq(V ) = (N + 1 − j) for
j = 1, . . . ,N . Then following Deng and Tang [11], design D’s confounding frequency vector
(cfv) is

(1) cfv(D) = [
(f11, . . . , f1N)1, (f21, . . . , f2N)2, . . . , (fn1, . . . , fnN)n

]
.

Suppose that r is the smallest integer such that max|V |=r Jr(V ) > 0, where the maximization
is taken over all the size r subsets V of D. Then the generalized resolution of D is R(D) =
r + (1 − ρ), where ρ = max|V |=r Jr(V )/N .

Let cfvi (D) be the ith entry in (1) and let i∗ be the smallest integer such that cfvi∗(D1) �=
cfvi∗(D2). If cfvi∗(D1) < cfvi∗(D2), then D1 has less G-aberration than D2 (Deng and Tang
[11]). If no design of corresponding size has less G-aberration than D1, then D1 is a minimum
G-aberration design. Two isomorphic designs have the same cfv, but the reverse is not true.
For regular 2n−p designs, minimum G-aberration is equivalent to minimum aberration (Fries
and Hunter [13]).

Let A = (aij ) denote a p × n matrix over GF[2] of rank p and c a p × 1 vector with levels
±1. All treatment combinations x = (x1, x2, . . . , xn)

T that satisfy the equation A � x = c
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form a regular 2n−p design, where A � x is defined as the p × 1 vector with the ith element
to be x

ai1
1 · · ·xain

n ; this regular design is a single flat. For given A, we can have 2p different
options for the vector c, corresponding to the 2p disjoint single flats. The full 2n design is the
concatenation of these.

Taking f distinct single flats corresponding to A, we obtain a parallel flats design with f

flats (f -PFD). Such a design consists of N = f × 2n−p treatment combinations. An f -PFD
is determined by the pair (A,C), where C = [c1, c2, . . . , cf ]. Meanwhile, we can also under-
stand the concept of parallel flats design from the perspective of defining words (Liao, Iyer
and Vecchia [19]). All 2p parallel flats are 2n−p designs in which the fractions are determined
by the same p defining words but different sign assignment. Each choice of vector c corre-
sponds to a sign assignment of the p defining words. All 2p single flats are said to belong to
the same family since they have the same defining words. An f -PFD is simply the concate-
nation of f single flats from the same family. For even f , the matrix C can sometimes be
reduced, so that the design is an (f/2)-PFD composed of flats of size 2n−(p−1). If an f -PFD
cannot be so reduced, it is said to be of minimal form (Edwards and Mee [12]).

For any minimal form f -PFD of size N × n, the values of Jq(V ) > 0 must be in {N, (1 −
2/f )N, . . . , (1 − 2(ς − 1)/f )N} where ς = �(f + 1)/2�. Redefine fqj to be the frequency
of q column combinations that give Jq(V ) = (1 − 2(j − 1)/f )N for j = 1, . . . , ς . The cfv
of D simplifies to

(2) cfv(D) = [
(f11, . . . , f1ς )1, (f21, . . . , f2ς )2, . . . , (fn1, . . . , fnς )n

]
.

3. General results of f -PFDs for f ≥ 3. For any given regular 2n−p design, denoted
as D0, each of the 2p distinct flats in this family corresponds to a column of a Sylvester
Hadamard matrix. We describe this connection now.

Let H2p be a Sylvester-type Hadamard matrix of order 2p , generated by the recursion
H21 = [1,1;1,−1] and

H2p =
[
H2p−1 H2p−1

H2p−1 −H2p−1

]
for p ≥ 2.

Then H2p is symmetrical and H 2
2p = 2pI2p , where I2p is the identity matrix of order 2p . We

number the rows and columns of H2p beginning with zero. Thus we write

H2p = [h0, h1, . . . , h2p−1],
where h0 is a 2p × 1 vector with all elements unity, and columns {h1, h2, . . . h2p−1} are p

basic columns. Any other column can be generated by these basic columns, such as h3 =
h1 ∗ h2 and h5 = h1 ∗ h4, where a ∗ b = (a1b1, . . . , azbz)

T for any a = (a1, . . . , az)
T , b =

(b1, . . . , bz)
T . Since H2p is symmetrical, the rows and the columns have the same defining

relations.
Each of the 2p flats corresponds to a column of H2p , in that hi determines the sign of each

word in the defining contrast subgroup for that flat; elements 1, 2,. . . , 2p−1 of hi define the
corresponding column of C. To obtain an f -PFD, we choose f flats from 2p single flats;
that is, we choose f columns from H2p . By restricting our attention to unreplicated designs,
there are 2p!/{f !(2p −f )!} combinations to be considered. (We discuss f -PFDs with partial
replication briefly in the final section.)

Without loss of generality, we take the first flat, D0, to be +1 for all p defining words; that
is, we choose the column h0. Each of the remaining parallel flats corresponds to a column
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from H ∗ = [h1, . . . , h2p−1]. This reduces the number of combinations to

tp,f = (
2p − 1

)!/{
(f − 1)!(2p − f

)!}.
Some of these choices will produce equivalent f -PFDs, with the following definition.

DEFINITION 1. Two f -PFDs are called equivalent if one f -PFD can be obtained from
the other by row permutations and column sign switches.

From Definition 1, two equivalent f -PFDs must be isomorphic while the inverse is not
true, since isomorphism also allows for column permutations. For a subset of f − 1 columns
of H ∗, say s = {hi1, . . . , hif−1}, we have s̃ = {h0, s}, which corresponds to including the first
flat, D0. Now define the group of cosets corresponding to s̃ as

(3) Gs̃ = {hij ◦ s̃ : j = 0,1, . . . , f − 1}, with hij ◦ s̃ = {hij , hij ∗ hi1, . . . , hij ∗ hif −1},
where i0 = 0. The f columns of hij ◦ s̃ can be obtained via multiplying the f columns of s̃

by hij . Thus, hij ◦ s̃ can be obtained from s̃ by column permutations and sign switch of rows,
which correspond to the row permutations and sign switches of columns of the resulting f -
PFD. For any two subsets of f −1 columns of H ∗, say s1, s2, if s̃1 = {h0, s1} and s̃2 = {h0, s2}
belong to the same group, then they must produce equivalent f -PFDs. In turn, suppose s̃1 and
s̃2 correspond to two equivalent f -PFDs. Then there must be a column of s̃1, say ν, that can
become column h0 in s̃2 by sign switches of rows. This implies that all f columns of s̃2 can
be obtained via multiplying s̃1 by ν, respectively. Therefore, s̃1 and s̃2 must belong to the
same group. For example, suppose p = f = 3; then we have

H2p = H8 = [
h0, H ∗] =

h0 h1 h2 h3 h4 h5 h6 h7⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

.

As noted above, H8 has three basic columns {h1, h2, h4} and any other column can be gener-
ated by these three basic columns such as h5 = h1 ∗ h4. Besides, H8 is symmetrical, indicat-
ing that the rows and the columns have the same defining relation. For a subset of f − 1 = 2
columns of H ∗, say s1 = {h1, h2}, we now consider the group of s̃1 = {h0, h1, h2}. Accord-
ing to Definition 1, Gs̃1 = {s̃1, s̃2, s̃3}, where s̃2 = h1 ◦ s̃1 = {h0, h1, h3} and s̃3 = h2 ◦ s̃1 =
{h0, h2, h3}. Obviously, for i = 2,3, the three columns of s̃i can be obtained via multiplying
the three columns of s̃1 by one of its columns. Thus, s̃i can be obtained from s̃1 by column
permutations and sign switch of rows, which correspond to the row permutations and sign
switches of columns of the resulting 3-PFDs, respectively. Therefore, s̃1, s̃2 and s̃3 must pro-
duce equivalent 3-PFDs. In turn, suppose s̃ and s̃1 correspond to two equivalent 3-PFDs,
where s̃ = {h0, s} and s = {hk1, hk2} is a subset of two columns of H ∗. Then there must be a
column of s̃1, say ν, that can become column h0 in s̃ by sign switches of rows. This implies
that all three columns of s̃ can be obtained via multiplying the three columns of s̃1 by ν. As
ν = h0, h1 or h2, thus s̃ must be s̃1, s̃2 or s̃3; that is, s̃ and s̃1 must belong to the same group.
To sum up, Gs̃ is the set of the choices of f columns of H2p (including h0) that can produce
the equivalent f -PFDs to that corresponding to s̃. Now we are ready to present the following
theorem.
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THEOREM 1. Two f -PFDs based on different flats, s̃1 = {h0, s1} and s̃2 = {h0, s2}, are
equivalent f -PFDs (for every D0) if and only if s̃1 and s̃2 belong to the same group.

Let gp,f be the number of disjoint groups for a given p and f , according to Theorem 1.
One can get all f -PFDs by including just one from each of the gp,f groups. From (3), for
any s, a subset of f − 1 columns of H ∗, the size of Gs̃ is at most f since some of hij ◦ s̃

for j = 0,1, . . . , f − 1 may be the same. Now we present theorems about the grouping,
considering f odd and f even separately.

THEOREM 2. If f is odd, then the size of Gs̃ is f ; thus, gp,f /tp,f = 1/f for odd f .

Theorem 2 is confirmed by proving the following: for odd f , there does not exist j1 �= j2
such that hij1

◦ s̃ = hij2
◦ s̃. A proof is provided in the Supplementary Material [33]. As a small

example, suppose p = f = 3. There are t3,3 = 21 choices of s̃, which can be partitioned into
g3,3 = 7 groups of size 3:

G{h0,h1,h2} = {{h0, h1, h2}, {h0, h1, h3}, {h0, h2, h3}},
G{h0,h1,h4} = {{h0, h1, h4}, {h0, h1, h5}, {h0, h4, h5}},
G{h0,h1,h6} = {{h0, h1, h6}, {h0, h1, h7}, {h0, h6, h7}},
G{h0,h2,h4} = {{h0, h2, h4}, {h0, h2, h6}, {h0, h4, h6}},
G{h0,h2,h5} = {{h0, h2, h5}, {h0, h2, h7}, {h0, h5, h7}},
G{h0,h3,h4} = {{h0, h3, h4}, {h0, h3, h7}, {h0, h4, h7}},
G{h0,h3,h5} = {{h0, h3, h5}, {h0, h3, h6}, {h0, h5, h6}}.

According to Theorem 1, the 3-PFDs based on the same group must be equivalent. Thus,
choosing one from each group is enough to get all nonequivalent 3-PFDs.

When f is even, there are more possibilities for the group size as presented in the following
theorem.

THEOREM 3. If f is even, it can be written as f = λ2μ, for some odd λ ≥ 1 and some
integer μ ≥ 1. Then the size of Gs̃ might be λ,2λ, . . . , λ2μ(= f ). Furthermore, the group
size corresponds to the reduction of the f -PFD, where if a group has size m with m < f ,
then all f -PFDs based on this group can be reduced to m-PFDs.

See the Supplementary Material for the proof of Theorem 3. We illustrate with two exam-
ples.

EXAMPLE 1. Given p = 4, f = 4, there are t4,4 = 455 choices for s̃ = {h0, s} with
s = {hi1, . . . , hi3}. According to the property of H2p , if {0, i1, i2, i3} form an Abelian group,
then the size of Gs̃ is 1, and all the 4-PFDs based on Gs̃ can be reduced to single flats of
size 2n−2. By a comprehensive examination, there are 140 groups in total, with 35 groups of
size 1 and 105 groups of size 4, implying 35 out of 455 choices correspond to a regular 2n−2,
while the remaining 420 choices correspond to 4-PFDs.

EXAMPLE 2. Given p = 4, f = 6, there are t4,6 = 3003 choices for s̃ = {h0, s} with
s = {hi1, . . . , hi5}. According to the property of a Sylvester Hadamard matrix, if the set of
indices {i1, . . . , i5} can be represented as {ω1,ω2,ω1ω2,ω3,ω1ω3}, where ωiωj is defined
by hωiωj

= hωi
∗ hωj

for 1 ≤ i < j ≤ 3, then we have the following pairings:

(4) s̃ = hω1 ◦ s̃, hω2 ◦ s̃ = hω1ω2 ◦ s̃, hω3 ◦ s̃ = hω1ω3 ◦ s̃;
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TABLE 1
Example 2’s six s̃ columns transposed, paired to indicate reduction to 3 flats

hT
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

hT
15 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

hT
3 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

hT
12 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

hT
5 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

hT
10 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

thus, the size of Gs̃ is 3. Furthermore, for each of the matrices (h0, hω1)
T , (hω2, hω1ω2)

T and
(hω3, hω1ω3)

T , there are 8 columns with the same elements, while the other 8 columns have
opposite elements. In addition, the column indices with opposite elements are identical for
all three 2 × 16 matrices, indicating the corresponding 6-PFD based on this group can each
be reduced to a 3-PFD. For example, suppose s̃ = {h0, s} with s = {h3, h5, h10, h12, h15} as
shown in Table 1; then we have s̃ = h15 ◦ s̃, h3 ◦ s̃ = h12 ◦ s̃, h5 ◦ s̃ = h10 ◦ s̃; that is, ω1 = 15,
ω2 = 3, ω3 = 5 in (4). Each of the matrices (h0, h15)

T , (h3, h12)
T and (h5, h10)

T has the
properties just described, so these matrices corresponding to three flats from the same family.
Thus, any 6-PFD based on this s̃ can be reduced to a 3-PFD. By comprehensive examination,
there are 553 groups in total, with 105 groups of size 3 and 448 groups of size 6, implying 315
out of all 3003 choices correspond to 3-PFDs while the remaining 2688 choices correspond
to 6-PFDs.

For any (p,f ) let ηκi
be the frequency of the groups of size κi ; then the group size pattern

(GSP) is defined as GSP(p,f ) = [ηκ1, . . . , ηκι], with ι different group sizes. For Example 1,
where p = 4, f = 4, there are 140 groups in total, with 35 groups of size 1 and 105 groups of
size 4. Thus, GSP(4,4) = [351,1054]. Similarly, for Example 2, GSP(4,6) = [1053,4486].
In these two examples, we obtained all groups through a complete search; now we discuss
the general theory. These counts are given by the following theorem.

THEOREM 4. For any f ≤ 2p , we have

GSP(p,f ) =
[
tp,f

f

]
f

for odd f,

GSP(p,4) =
[
(2p − 1)(2p − 2)

6

]
1
,

[
(2p − 1)(2p − 2)(2p − 4)

24

]
4
,

GSP(p,6) =
[
(2p − 1)(2p − 2)(2p − 4)

24

]
3
,

[
2p(2p − 1)(2p − 2)(2p − 4)(2p − 8)

720

]
6
,

GSP(p,8) =
[
(2p − 1)(2p − 2)(2p − 4)

168

]
1
,

[
(2p − 1)(2p − 2)(2p − 4)(2p − 8)

192

]
4
,

[
(2p − 1)(2p − 2)(2p − 4)(2p − 8)(8p − 13 ∗ 4p + 57 ∗ 2p − 180)

40320

]
8
,

GSP(p,10) =
[
(2p − 1)(2p − 2)(2p − 4)(2p − 6)(2p − 8)

1920

]
5
,

[
2p(2p − 1)(2p − 2)(2p − 4)(2p − 8)

720

]
10

.

PROOF OF THEOREM 4. Here, we give the proof of case f = 8; other cases can be
proved with a similar argument. For f = 8, there are three possible group sizes, 1, 4
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and 8. First, we calculate the number of groups of size 1. According to the property of
H2p , group Gs̃ is of size 1 if and only if {0, i1, . . . , i7} form an Abelian group. There
are in total (2p − 1)(2p − 2)(2p − 4) options for the three basic columns; one can get
the whole Abelian group from each set of 3. Since (23 − 1)(23 − 2)(23 − 4) = 168 op-
tions corresponding to the same Abelian group, there are (2p − 1)(2p − 2)(2p − 4)/168
groups of size 1. Second, group Gs̃ is of size 4 if and only if {i1, . . . , i7} can be writ-
ten as {ω1,ω2,ω1ω2,ω3,ω1ω3,ω4,ω1ω4}, where hω1 , hω2 , hω3 , hω4 are four independent
rows and {h0, hω1}, {hω2, hω1ω2}, {hω3, hω1ω3}, {hω4, hω1ω4} correspond to 4 single flats
from the same family. There are in total (2p − 1)(2p − 2)(2p − 4)(2p − 8) options for
(ω1,ω2,ω3,ω4) while 2 × 2 × 2 × 3! = 48 options corresponding to the same choice. Then
there are (2p − 1)(2p − 2)(2p − 4)(2p − 8)/48 choices of s with group size 4, and so
(2p − 1)(2p − 2)(2p − 4)(2p − 8)/192 groups of size 4. Finally, one can obtain the num-
ber of groups of size 8 by subtraction, since all the choices sum to tp,8. �

Table 2 gives the values of tp,f (the number of all choices), gp,f (the number of nonequiv-
alent f -PFDs) and the GSP(p,f ) (the group size pattern) for 3 ≤ p ≤ 6, 3 ≤ f ≤ 8. The
set of gp,f nonequivalent f -PFDs from D0 is invariant to reordering the columns of D0. We
now describe two symmetries in these counts.

PROPOSITION 1. For given p, f flats and 2p + 1 − f flats correspond to the same
number of choices. Thus tp,f = tp,2p+1−f .

Proposition 1 is obvious from the formula for tp,f .

PROPOSITION 2. For given p, f flats and 2p − f flats have the same number of
nonequivalent designs. Thus, gp,f = gp,2p−f .

TABLE 2
Partition of all tp,f choices into gp,f equivalent groups for given p and f

p f = 3 f = 4 f = 5

3 7/21 14/35 7/35
[73] [71 74] [75]

4 35/105 140/455 273/1365
[353] [351 1054] [2735]

5 155/465 1240/4495 6293/31,465
[1553] [1551 10854] [62935]

6 651/1953 10,416/39,711 119,133/595,665
[6513] [6511 97654] [119,1335]

p f = 6 f = 7 f = 8

3 7/21 1/7 1/1
[73] [17] [11]

4 553/3003 715/5005 870/6435
[1053 4486] [7157] [151 1054 7508]

5 28,861/169,911 105,183/736,281 330,460/2,629,575
[10853 27,7766] [105,1837] [1551 32554 327,0508]

6 1,176,357/7,028,847 9,706,503/67,945,521 69,194,232/553,270,671
[97653 1,166,5926] [9,706,5037] [13951 68,3554 69,124,4828]

gp,f /tp,f , the tp,f choices can be divided into gp,f disjoint groups with group size pattern GSP(p,f ).
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The complement of a choice of f single flats contains the 2p − f omitted flats. Thus the
number of nonequivalent f -PFDs is equal to that of nonequivalent (2p − f )-PFDs. Also,
any two different (2n−p) flats in a family, if combined, become a single flat 2n−(p−1) design.
Since every 2-PFD can be reduced to a single flat, its complement can also be reduced.

LEMMA 1. For any p, every (2p − 2)-PFD can be reduced to a (2p−1 − 1)-PFD.

From Lemma 1, any six distinct 2n−3 flats from the same family form a 3-PFD, any 14
distinct 2n−4 flats from the same family form a 7-PFD, etc.

4. Minimum G-aberration criterion. We now show how the f columns of H2p deter-
mine the J -characteristics of the PFD and present a four-step method for finding the f -PFD
with minimum G-aberration for any initial design D0.

For any s̃ = {h0, s}, where s = {hi1, . . . , hif−1}, define

Sf (s) = 12p +
f −1∑
j=1

hij .

If we multiply |Sf (s)| by 2n−p , the first element equals N and the remaining values are the
J -characteristics of the f -PFD corresponding to s̃. For simplicity, we call Sf (s) and |Sf (s)|
the S-vector and absolute S-vector, respectively, of the f -PFD. We now present Method 1, a
four-step procedure for determining the lowest aberration f -PFD based on D0:

1. For an initial 2n−p design D0, denote as L = (L1, . . . ,L2p−1) the length of words in
the defining contrast subgroup arranged in Yates order, ω1,ω2,ω1 ∗ ω2,ω3,ω1 ∗ ω3, . . ..

2. Determine |Sf (s)| for a representative s̃ from each of the gp,f equivalence groups.
3. Remove duplicate absolute S-vectors to obtain a 2p × up,f matrix Sp,f where up,f

is the number of the unique absolute S-vectors.
4. From Sp,f and design D0’s L, we obtain the cfv’s of all gp,f nonequivalent f -PFDs;

the lowest G-aberration f -PFD constructed from D0 is readily identified.

In Step 2, we consider just one representative from each group, as the f -PFDs based on
the same group must be equivalent. This is verified by the following proposition.

PROPOSITION 3. For any two subsets of f − 1 columns of H ∗, say s1, s2, if s̃1 = {h0, s1}
and s̃2 = {h0, s2} belong to the same group, then they must have the same absolute S-vector.

Now we illustrate Method 1 for the case p = 6 and f = 5.

EXAMPLE 3. For any regular 210−6 design, there are in total 64 disjoint single flats
in its family, with each determined by the sign assignment of six defining words. For a 5-
PFD, we include the first flat with +1 for all defining words, and consider the assignment
of the other four flats from the remaining 63 flats; there are t6,5 = 595,665 such cases to
consider, but only g6,5 = 119,133 nonequivalent groups of PFDs. We calculate S-vectors of
all these nonequivalent PFDs and find u6,5 = 119,133 unique absolute S-vectors. Matching
these to the length of words in Yates order of D0, we may obtain the minimum G-aberration
choice. According to Chen, Sun and Wu [8] there are four nonisomorphic resolution III 210−6

designs, labeled 10-6. x for x = 1,2,3,4. We obtain the least G-aberration 5-PFD for each of
these four D0, and show results for the best two in Table 3. The minimum aberration 5-PFD
comes from design 10-6.1. When f is odd, one need not consider D0 with resolution less
than III when seeking the minimum G-aberration design, since the resulting f -PFD would
have generalized resolution <3.



T
W

O
-L

E
V

E
L

PA
R

A
L

L
E

L
FL

A
T

S
D

E
SIG

N
S

3023

TABLE 3
The lowest G-aberration 5-PFD for each of two different 210−6 D0 in Example 3

D0 10-6.1 with generator columns 3, 5, 6, 9, 14, 15
L (3,3,4,3,4,4,3,3,4,4,7,6,5,5,6,4,5,5,4,3,6,6,7,5,4,4,5,4,5,5,8,5,4,4,5,4,5,5,8,4,5,5,4,3,6,6,7,3,4,4,7,6,5,5,6,4,7,7,8,7,8,8,7)

s {h7, h27, h28, h33}
|S5(s)| (5,1,1,3,1,1,1,1,1,1,1,1,1,3,5,1,1,1,1,1,1,3,5,1,5,1,1,3,1,1,1,1,3,1,1,5,1,1,1,1,1,1,1,1,1,5,3,1,1,1,1,1,1,5,3,1,3,1,1,5,1,1,1,1)

cfv [(0,0,8)3, (0,2,16)4, (4,4,8)5, (2,2,4)6, (0,0,8)7, (1,0,4)8]

D0 10-6.2 with generator columns 3, 5, 6, 9, 10, 13
L (3,3,4,3,4,4,3,3,4,4,7,6,5,5,6,3,4,6,5,4,7,5,6,4,3,5,6,5,6,4,7,4,5,3,6,5,4,6,7,3,6,4,5,4,5,7,6,5,4,4,5,4,5,5,8,6,7,7,6,5,8,8,9)

s {h15, h22, h33, h58}
|S5(s)| (5,1,1,1,1,1,3,1,1,1,3,1,1,3,3,3,1,3,3,3,1,1,3,1,1,1,3,1,5,1,1,1,1,1,1,3,3,1,3,3,1,5,1,1,1,1,1,3,1,1,1,3,1,5,1,1,3,1,3,3,1,1,1,3)

cfv [(0,0,9)3, (0,3,13)4, (2,7,6)5, (1,7,4)6, (0,2,5)7, (0,0,3)8, (0,1,0)9]
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From Example 3, we can see that u6,5 = g6,5, implying different groups correspond to
different absolute S-vectors, but this is not always the case. To illustrate, suppose p = 4 and
f = 6; let s̃1 = {h0, h1, h2, h4, h8, h15} and s̃2 = {h0, h1, h2, h4, h9, h14} as shown in Table 4.
One can easily check that s̃1 and s̃2 belong to different groups, yet have the same absolute
S-vector.

5. Model estimation criterion. In the previous section, we chose the best design with
respect to G-aberration. This criterion, however, does not characterize all the performance of
a design for model estimation. For example, dropping any treatment combination from a full
2n, the design has high G-aberration and generalized resolution < 1. However, it supports
estimation of all the factorial effects except the n-factor interaction. In this section, we study
the performance of f -PFDs for estimating the two-factor interaction model

(5) y = β0 + ∑
1≤i≤n

βidi + ∑
1≤i<j≤n

βij didj + ε.

This model and models with fewer interactions (Srivastava and Li [29]) are widely used.
While we focus on model (5), the results we present apply more broadly to other models.

For a parallel flats design D constructed from the single flat D0, two orthogonal effects in
D0 remain orthogonal in D, while two completely aliased effects in D0 may be orthogonal
or partially aliased in D. Thus, for studying the estimability of D, we need to examine each
alias chain of D0, where an alias chain is the set of effects that are fully aliased. Following
Block and Mee [4] and Mee [22], define the alias length pattern (alp) of D0 as

alp = (α1, . . . , α�)

where αl is the number of chains of length l (1 ≤ l ≤ �) for (5), and � is the length of the
longest chain of D0. For example, design 10-6.1 in Example 3 has one chain of length 1 (the
intercept), 8 chains of length 3, 4 chains of length 4 and 3 chains of length 5; hence, � = 5
and alp = (1,0,8,4,3).

The information matrix of any f -PFD has the block diagonal structure

X′X =

⎡
⎢⎢⎢⎢⎣

X′
1X1 0 · · · 0
0 X′

2X2 · · · 0
...

...
. . .

...

0 0 · · · X′
gXg

⎤
⎥⎥⎥⎥⎦ ,

where each block X′
jXj corresponds to the effects in an alias chain of D0. Since rank(Xj ) ≤

f , the information matrix must be singular if the maximum chain length � exceeds f .
In the next subsections, we discuss some distinctives of 3-, 4- and 5-PFDs for estimating

(5).

5.1. 3-PFDs. Let D be a 3-PFD with N runs and n factors constructed from D0, and
suppose that � ≤ 3 for model (5). If all D0’s defining words of length 4 or less change sign
in D, then they must be of aliasing index 1/3 and the model is estimable. (The aliasing index
of each word is its J -characteristic in D, divided by N .) For Xj corresponding to an alias
chain of length 2, |XT

j Xj/N | = 8/9 and the two effects in this chain are partially aliased in

D with variance inflation factors, VIFs = diag(XT
j Xj/N)−1, of 9/8. For Xj corresponding

to an alias chain of length 3, |XT
j Xj/N | = 16/27 and the three effects partially aliased with

each other have VIF = 1.5. Thus, the D-efficiency (Deff) of the design, |X′X/N |1/q , equals

Deff(D) = {
(8/9)α2(16/27)α3

}1/q
,

where q = 1 + n + n(n − 1)/2 and αi is the number of alias chains of length i for D0. For
example, John’s [16] 3-PFD with N = 96, n = 10 is based on D0 with alp = (11,18,3), so
Deff(D) = 0.9362. This is the D-optimal 3-PFD, since no D0 with better alp exists.
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TABLE 4
Two subsets from different groups but having the same absolute S-vectors

s̃1 s̃2

hT
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 hT

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
hT

1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 hT
1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

hT
2 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 hT

2 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
hT

4 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 hT
4 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

hT
8 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 hT

9 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
hT

15 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 hT
14 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

S6(s1) 6 2 2 2 2 2 2 −2 2 2 2 −2 2 −2 −2 −2 S6(s2) 6 2 2 −2 2 −2 2 −2 2 2 2 2 2 2 −2 −2
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5.2. 4-PFDs. Let D be a 4-PFD with N runs and n factors constructed from D0, and
suppose that � ≤ 4 for model (5). For 4-PFDs, the aliasing index of any defining word must
be 1, 0.5 or 0. For model (5) to be estimable, having all D0’s defining words of length ≤ 4
to change sign is necessary but not sufficient; we must add the following condition: for each
alias chain of length 4, no two flats have the same signs for the six words creating this chain.
This is sufficient to ensure that Xj has full column rank. We now consider the VIFs for effects
in alias sets of length 2, 3 and 4, when the model is estimable.

For each alias chains of length 2, let ξ1 be the aliasing index of the corresponding word.
Then |XT

j Xj/N | = 1 − ξ2
1 , and the two VIFs are the reciprocal of this determinant. The

possible values of the determinant are therefore 1 and 0.75. For alias chains of length 3, if all
three words creating the alias chain are of aliasing index 0, the three effects in this chain are
orthogonal and |XT

j Xj/N | = 1. Otherwise, one effect, say E1, will be partially aliased with
the other two effects, E2 and E3, while E2 is orthogonal to E3; then E1 has VIF = 2, E2 and
E3 have VIF = 1.5, and |XT

j Xj/N | = 0.5. In this case, the three words creating this chain
have aliasing index distribution (21/2,10), where ηρ denotes there are η words of aliasing
index ρ in D and we call it the aliasing index distribution of this chain. An alias chain of
length 4 is a consequence of 6 words in the defining relation for D0; when a 4-column Xj

has full column rank, there are three cases: (i) if the aliasing index distribution is (60) then
this chain is clear of aliasing, each VIF = 1, and |XT

j Xj/N | = 1, (ii) if the aliasing index

distribution is (41/2,20) then each VIF = 2 and |XT
j Xj/N | = 0.25, (iii) if the aliasing index

distribution is (31/2,30) one effect will have VIF = 4 (it is partially aliased with the other
three effects), while the other three have VIF = 2. As in case (ii), |XT

j Xj/N | = 0.25.

Thus, when the model can be estimated, for chains of length l for l = 2,3,4, |XT
j Xj/N | is

1 only when all the effects in this chain are orthogonal with each other; otherwise, |XT
j Xj/N |

is 0.75, 0.5, 0.25, respectively. The D-efficiency of D must be

Deff(D) = {
(0.75)α2−α20(0.5)α3−α30(0.25)α4−α40

}1/q
,

where αi0 is the number of alias chains of length i that correspond to orthogonal Xj matrices
in D. Clearly, the D-efficiency has lower bound Deff0(D) = {(0.75)α2(0.5)α3(0.25)α4}1/q ,
and each clear chain of length i for i = 2,3,4 improves the Deff0(D) by a factor 1.3̄1/q ,
21/q , 41/q , respectively.

5.3. 5-PFDs. Let D be a 5-PFD with N runs and n factors constructed from D0, and
suppose that � ≤ 5 for model (5). For 5-PFDs, the aliasing index of each word is either 1,
3/5 or 1/5. For model (5) to be estimable, having all D0’s defining words of length ≤ 4 to
change sign is necessary but not sufficient. We must impose some additional conditions for
each alias set of length 4 and 5 as follows. For each chain of length 4, there exists a subset
of 4 flats for which no two flats have the same signs for all six words creating this chain. For
each chain of length 5: (i) no two flats have the same signs for the ten words creating this
chain, and (ii) if the aliasing index distribution is (23/5,81/5), the two words with aliasing
index 3/5 must share a common effect. These are sufficient to ensure that Xj has full column
rank. In the Appendix, we provide the VIFs for effects in alias sets of length 2, 3, 4 and 5 for
each possible aliasing index distribution.

EXAMPLE 4 (Example 3 continued). Consider again the two 210−6 designs in Example 3.
Designs 10-6.1 and 10-6.2 have � = 5 and 4, respectively; each alp in given in Table 5. Thus,
no 4-PFDs based on 10-6.1 can estimate model (5), while some generated by 10-6.2 do. The
most efficient 4-PFDs from 10-6.2 (with s = {h15, h22, h51}) have two clear chains of length
3 and a clear chain of length 4, so D-efficiency is {(0.3)3(0.25)9}1/56 = 77.11%. Table 5 lists
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TABLE 5
4-PFD and 5-PFDs for estimating the two-factor interaction model with 10 factors

D0 alp 4-PFD 5-PFD

Deff(%) cfv Deff(%) cfv

10-6.1 (1,0,8,4,3) − − 79.18 [(0,0,8)3, (0,6,12)4, . . .]
10-6.2 (1,0,5,10,0) 77.11 [(0,4)3, (0,9)4, . . .] 85.69 [(0,0,9)3, (0,3,13)4, . . .]

−, the model cannot be estimated with any 4-PFD corresponding to D0.

the cfv of the D-optimal design having the least G-aberration. We also list the D-optimal
5-PFD from Designs 10-6.1 and 10-6.2. Note that the D-optimal 5-PFD from 10-6.1 (with
s = {h7, h17, h30, h45}) is not the minimum aberration design given in Table 3, while the
D-optimal 5-PFD from 10-6.2 does correspond to the 5-PFD in Table 3.

6. Parallel flats classes. By Method 1 presented in Section 4, for any given initial 2n−p

design, one can obtain all nonequivalent f -PFDs and select the preferred one, provided f and
p are not too large. When p and/or f is large, however, it becomes computationally infeasible
to identify all gp,f designs. In this section, we present a method to solve this problem by
introducing parallel flats classes. The proposed method lessens the computational burden for
finding a satisfactory design by arranging the defining words of smallest length to positions
with the smallest aliasing indices: 0 for even f , 1/f for odd f . This can provide useful
designs without an exhaustive search of the f -PFDs for a given D0.

For f ≥ 4, the up,f distinct |Sf (s)| vectors for a given p and f can be partitioned into
separate classes. We now describe how this is determined, and how it provides an alternative
means for searching for the desired f -PFD.

As an initial example, note that the 5-PFDs in Table 3 have |S5(s)| vectors with differing
frequencies of 5, 3 and 1. The 5-PFD from 10-6.1 has frequencies (7, 8, 48) for the sums
(5, 3, 1), while the 5-PFD from 10-6.2 has frequencies (3, 20, 40). This is not a property
of D0, but rather is a property of the columns of H ∗. The first 5-PFD is based on s1 =
{h15, h22, h37, h60}. These columns of H ∗ yield 8 replicates of a resolution IV 24−1 design. In
contrast, the second 5-PFD in Table 3 is based on s2 = {h7, h11, h29, h46}; these four columns
produce a full 24 replicated four times. Taking any set of four columns from H ∗ will produce
an orthogonal design. Besides the full 24 and the resolution IV fraction, there exists the
resolution III 24−1. By simple counting, one can partition tp,5 into cases generated by these
three: (i)

∏3
i=0(2

p − 2i )/4! subsets of four columns form a full 24 (replicated, if p > 4);
(ii)

∏2
i=0(2

p − 2i )/4! subsets of four columns form a resolution IV 24−1 (replicated, if p >

3); (iii)
∏2

i=0(2
p − 2i )/3! subsets of four columns form a resolution III 24−1 (replicated, if

p > 3). For p = 6, these products are 546,840, 9765 and 39,060, respectively, and these sum
to t6,5 = 595,665. Furthermore, the five designs in each equivalence group have the same 4-
column structure. Thus, g6,5 may be similarly partitioned; the number of equivalence groups
are 109,368, 1953 and 7812.

A design’s row coincidence distribution can be used to determine its word length pattern
(Butler [6]). For regular fractions containing the treatment combination with all factors at
+1, the row coincidence distribution is obtained by summing the rows of D0 (Mee [21],
Appendix J). For the resolution III and IV 24−1 fractions corresponding to columns {1,
2, 4, 3} and {1, 2, 4, 7} of H8 (numbering the columns 0–7), the row coincidence distri-
butions are (4,0,0,0,2,−2,−2,−2) and (4,0,0,0,0,0,0,−4), respectively. The S-vector
of an f -PFD is related to the row coincidence distribution as follows. Adding a vector of
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+1’s (i.e., the first column of H2p ) to these row coincidence distributions gives the vectors
(5,1,1,1,3,−1,−1,−1) and (5,1,1,1,1,1,1,−3), respectively. While these vectors dif-
fer, their absolute values have the same distribution. The |S5(s)| vectors in Table 3 are for
p = 6, which is just 8 repeats of the vectors for p = 3. If we take eight replicates of each
vector, we have the frequencies (8, 8, 48) for (5, 3, 1). This matches the frequencies in |S5(s)|
for the first design in Table 3. Thus, 5-PFDs produced by four columns of H ∗ forming a
replicated resolution IV fraction 24−1 or a replicated resolution III 24−1 have the same dis-
tribution of values for |S5(s)|. We now show that the resolution IV and III structures produce
the same set of cfv’s for 5-PFDs.

The S-vector corresponding to the 8-run resolution III fraction for s = {h1, h2, h4, h3} is
S5(s) = (5,1,1,1,3,−1,−1,−1). If we take h7 as basic instead of h4 and rearrange in Yates
order, we have (h0, h1, h2, h3, h7, h6, h5, h4). Rearranging the elements of S5(s) accordingly,
we get the absolute S-vector for the resolution IV fraction. Since the rows of H64 are just the
repeat of these same vectors 8 times, we have shown that by rearranging the choice of basic
columns, the corresponding |S5(s)| vectors for the 5-PFDs from rows forming a resolution
III and resolution IV fraction are equal. This leads to our definition of parallel flats classes,
which will aid the search for low aberration f -PFDs.

DEFINITION 2. Two subsets of f − 1 columns of H ∗, say s1, s2, are said to be of the
same parallel flats class if they have identical absolute S-vectors up to the different Yates
order for H2p , that is, we are allowed to reassign the basic rows of H ∗.

Any subset s = {hi1, . . . , hif−1} corresponds to a regular orthogonal array (ROA) with 2p

runs and f − 1 (two-level) factors, with the definition ROA(s) = [hi1, . . . , hif−1]. According
to Definition 2, the parallel flats class of s remains unchanged under column permutations and
row permutations of ROA(s). It is worth noting that here the row permutations is restricted
to the different Yates order of rows of H2p . Hereafter, we refer to this as Yates order row
exchange. For any two subsets s1, s2, if ROA(s1) and ROA(s2) are isomorphic, then one can
be obtained from the other via the column permutations and Yates order row exchange only,
where the factor level sign changes is impossible as the first row of every ROA is 1T

f −1. Now,
we present a theorem to show that by considering all nonisomorphic ROA, we obtain all
Sf (s) vectors.

THEOREM 5. Two subsets of f − 1 columns of H ∗, say s1, s2, have the same S-vector
up to the Yates order exchange if ROA(s1) and ROA(s2) are isomorphic.

PROOF OF THEOREM 5. If ROA(s1) and ROA(s2) are isomorphic, then ROA(s1) can be
obtained from ROA(s2) by column permutations and Yates order row exchange. It is obvious
that column permutations do not change the S-vector. Thus, s1 and s2 have the same S-vector
up to the Yates order exchange. �

For any two choices of f − 1 rows of H ∗, the isomorphic ROAs correspond to the same
parallel flats class. However, the reverse is not true. As we saw for f = 5, two nonisomorphic
ROAs may also correspond to the same parallel flats class. Thus, the number of parallel
flats classes is smaller than the number of nonisomorphic regular OA(2p, f − 1). We can
obtain all parallel flats classes by checking all nonisomorphic regular fractions with 2p runs
and f − 1 factors, including equally replicated designs. Specifically, we must consider all
nonisomorphic unreplicated 2(f −1)−(f −1−δ) designs of resolution ≥ III, where �log2(f )� ≤
δ ≤ min(p,f − 1). For example, with p = 6 and f = 5, we considered unreplicated 4-factor
designs of size 2δ for δ = 3 and 4.
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TABLE 6
Parallel flats classes for f -PFD with 4 ≤ f ≤ 6

f Parallel flats class1 δ2 Representative s3 ν4 (f − 1)-PFD parent Distribution of |Sf (s)|5

4 4.1.4 3 1,2,4 6 − τ1 = 2p−3 − 1
τ0.5 = 2p−1

τ0 = 3 × 2p−3

4.2.1 2 1,2,3 2 − τ1 = 2p−2 − 1
τ0 = 3 × 2p−2

5 5.1.5 4 1,2,4,8 24 4.1.4 τ1 = 2p−4 − 1
τ0.6 = 5 × 2p−4

τ0.2 = 5 × 2p−3

5.2.5 3 1,2,4,7 24 4.1.4,4.2.1 τ1 = 2p−3 − 1
1,2,4,3 6 τ0.6 = 2p−3

τ0.2 = 3 × 2p−2

6 6.1.6 5 1,2,4,8,16 120 5.1.5 τ1 = 2p−5 − 1
τ2/3 = 3 × 2p−4

τ1/3 = 15 × 2p−5

τ0 = 5 × 2p−4

6.2.6 4 1,2,4,8,15 120 5.1.5 τ1 = 2p−4 − 1
τ1/3 = 15 × 2p−4

6.3.6 4 1,2,4,8,7 24 5.1.5,5.2.5 τ1 = 2p−4 − 1
1,2,4,8,3 12 τ2/3 = 2p−3

τ1/3 = 7 × 2p−4

τ0 = 3 × 2p−3

6.4.3 3 1,2,4,3,5 8 5.2.5 τ1 = 2p−3 − 1
τ1/3 = 3 × 2p−3

τ0 = 2p−1

1f.x.y, the xth parallel flats class for f -PFD and the corresponding f -PFD can be reduced to a y-PFD.
2δ, the number of the basic columns in the representative ROA(s). Given p, we are restricted to classes with
δ ≤ p.
3Representative s, column indices for one s for each nonisomorphic ROA in this parallel flats class.
4ν, (2p − 1)(2p − 2) . . . (2p − 2δ−1)/ν is the number out of all tp,f cases corresponding to this parallel flats
class.
5τz, the number of z ∗ N in |Sf (s)|.

Table 6 lists all parallel flats classes for f = 4, 5, 6. In the Supplementary Material, we
extend Table 6, providing all parallel flats classes for f = 7, 8, 9. Now we present a second
method to search for the lowest G-aberration f -PFD based on D0 using parallel flats classes.

Method 2 for finding a low aberration f -PFD from D0 consists of the following steps:

1. For an initial 2n−p design D0, obtain L = (L1, . . . ,L2p−1), the length of each defin-
ing word arranged by Yates order. (This is the same as in Method 1.)

2. Obtain all parallel flats classes by checking all nonisomorphic orthogonal regular
fractions with 2p runs and f − 1 factors. (Our tables furnish these for f ≤ 9.)

3. For each class, choose a member, say s, and assign as many of the defining words of
shorter length as possible to the positions with aliasing index 0 or 1/f , depending on whether
f is even or odd, according to L and s. In this way, we can get the least G-aberration f -PFD
based on this parallel flats class.
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4. Choose the best one from all parallel flats classes to obtain the best f -PFD based
on D0.

We illustrate Method 2 with the following example.

EXAMPLE 5 (Example 3 continued). Let D0 be design 10-6.1, with word length pattern
(8, 18, 16, 8, 8, 5). We seek the lowest G-aberration 6-PFD based on D0. Since g6,6 > 106,
we use the short-cut Method 2. From Table 6, there are four classes for f = 6, p = 6, and rep-
resentative members can be selected as s1 = {h1, h2, h4, h8, h16}, s2 = {h1, h2, h4, h8, h15},
s3 = {h1, h2, h4, h8, h7}, s4 = {h1, h2, h3, h4, h5}, respectively. Class 6.2.6 can be excluded
since it has no J -characteristics of 0. For s1, there are 20 J -characteristics of 0. Given
design 10-6.1’s L shown in Table 3, all 8 length-3 defining words can be assigned to J -
characteristics of 0 under several orders, so all complete words of length 3 are removed in
the resulting 6-PFD. Second, consider the defining words of length 4 under these Yates or-
ders, and choose the orders that perform best. This is continued until we have assigned all
the lower-order words. In this way, one can obtain the best 6-PFD in term of G-aberration
based on the first parallel flats class 6.1.6. Taking the columns of H ∗ according to s1 and the
rows rearranged by taking rows 7, 11, 21, 13, 3, 54 as basic, we obtain a 6-PFD with cfv =
[(0,0,18)4, (0,8,0)5, . . .]. For more details, see the Appendix. The same operation can be
applied for classes 6.3.6 and 6.4.3. Table 7 lists the Yates row order and cfv corresponding
to the best 6-PFD under each of these three classes, as well as the results for taking D0 to be
Chen, Sun and Wu’s [8] designs 10-6.2, 10-6.3 and 10-6.4. From Table 7, the 6-PFDs with
lowest G-aberration based on these different initial designs come from different classes.

Thus, Method 2 provides an alternative way to search for low aberration f -PFDs by as-
signing the defining words of smaller length to positions having the lowest aliasing indices.
Contrary to Method 1 in Section 4, we need not compute the absolute S-vectors for all
g6,6 = 1,176,357 groups.

For f < 9, no two parallel flats classes have the same aliasing index distributions. How-
ever, as seen in the Supplementary Material, classes 9.11.9 and 9.12.9 have the same aliasing
index distribution. The following example illustrates that the resulting 9-PFDs are indeed
different.

EXAMPLE 6. We take as representative members of parallel flats classes 9.11.9 and
9.12.9 subsets s11 = {h1, h2, h4, h8, h16, h15, h19, h21} and s12 = {h1, h2, h4, h8, h16, h5, h15,
h19}. For p = 5, both classes have aliasing index distribution (0, 0, 3, 13, 15). Let D0 be the
resolution II 27−5 design corresponding to columns {1,2,3,1,3,2,1} of H32; this D0 has
word length pattern (0, 5, 12, 7, 4, 3). Since � = 8, one must have at least 8 flats in order
to estimate all main effects and two-factor interactions. We take f = 9 and so construct 36-
run designs. For both s11 and s12, all 5 defining words of length 2 and 7 of the 12 words
of length 3 can be assigned to the minimum aliasing index (1/9) under several orders. The
least G-aberration design from s12 has cfv = [(0,0,0,0,5)2, (0,0,0,5,7)3, (0,0,1,4,2)4,
(0,0,0,3,1)5, . . .]; this design also has the best D-efficiency for 9-PFDs from class 9.12.9
for this D0. By contrast, the lowest G-aberration 9-PFD from class 9.11.9 has cfv =
[(0,0,0,0,5)2, (0,0,0,5,7)3, (0,0,1,4,2)4, (0,0,2,1,1)5, . . .] and Deff =72.44%; a 9-
PFD with higher aberration but Deff = 75.81% maximizes D-efficiency for class 9.11.9. In
each case, the best design from class 9.12.9 is superior.
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TABLE 7
Basic rows for reordering H∗ and cfv for lowest G-aberration 6-PFD from each class

Class D0 = 10-6.1 D0 = 10-6.2 D0 = 10-6.3 D0 = 10-6.4

6.1.6 {7 11 21 13 3 54}
√

{7 11 21 13 22 55} {7 11 22 13 28 51}
√

{7 11 21 32 13 22}
[(0,0,18)4, (0,8,0)5, . . .] [(0,0,16)4, (0,8,0)5, . . .] [(0,0,15)4, (0,8,0)5, . . .] [(1,0,15)4, (0,6,0)5, . . .]

6.3.6 {9 10 13 11 17 44} {9 10 13 29 46 1}
√

{9 10 13 11 27 44} {9 10 13 19 11 46}
[(1,0,17)4, (0,4,0)5, . . .] [(0,0,16)4, (0,6,0)5, . . .] [(1,0,14)4, (0,4,0)5, . . .] [(1,0,15)4, (0,4,0)5, . . .]

6.4.3 {1 3 5 13 20 35} {1 3 5 13 23 34} {1 3 5 9 19 39} {1 3 5 14 21 39}
√

[(2,0,16)4, (0,0,0)5, . . .] [(1,0,15)4, (0,0,0)5, . . .] [(1,0,14)4, (0,0,0)5, . . .] [(1,0,15)4, (0,0,0)5, . . .]
√

marks the best 6-PFD for each D0 among all classes. Class 6.2.6 is ignored, since it cannot remove any words.



3032 C. WANG AND R. W. MEE

7. Quaternary code construction. Xu and Wong [36] present a series of QC designs D

of size N = 4b and n ≤ 4b − 2b having generalized resolution at least 3.5. Each design for
even n is constructed from a quaternary linear code as follows. Let G = (γ1, . . . , γn/2) be a
b × n/2 matrix over Z4 = {0,1,2,3}(mod 4). All possible linear combinations of the rows
in G over Z4 form a quaternary linear code, denoted by the 4b × n/2 matrix Q. To obtain a
two-level design in n factors, apply the Gray map

0 → (−1,−1), 1 → (−1,1), 2 → (1,1), 3 → (1,−1).

That is, each element in Z4 is replaced with a pair from −1 and 1. Designs with an odd
number of factors are obtained by omitting one column. From these designs, a series with
N = 22b+1 is constructed having the form [D D; D −D]. We now show that both of these
series produce 2b-PFDs.

THEOREM 6. Designs with 4b treatment combinations constructed from a quaternary
linear code are parallel flats designs consisting of 2b flats of size 2b, where the n − b defin-
ing words are {d�1j

1 d
�2j

3 · · ·d�bj

2b−1dj : j = 2,4, . . . ,2b,2b + 1, . . . , n} with �ij = γi�(j+1)/2�
for i = 1,2, . . . , b. Here, γi�(j+1)/2� represents the ith component of column γ�(j+1)/2�. The
defining word associated with dj is taken to be⎧⎨

⎩
(−1)�2−1 ∑b

i=1 �ij ϕil� if j is odd,

(−1)�2−1(1+∑b
i=1 �ij ϕil)� if j is even,

with ϕil equal to 0 or 1, and defined by l − 1 = ∑b
i=1 ϕil2b−i in the lth flat (l = 1, . . . ,2b).

COROLLARY 1. The design [D D; D −D] consists of the same number of flats as D.

Now we illustrate Theorem 6 for the case b = 4 and n = 16.

EXAMPLE 7. Consider the 4 × 8 matrix from Xu and Wong’s [36] Example 2:

G =

⎡
⎢⎢⎣

1 0 0 0 2 1 1 1
0 1 0 0 1 3 1 2
0 0 1 0 1 2 3 1
0 0 0 1 1 1 2 3

⎤
⎥⎥⎦ .

All linear combinations of the rows of G over Z4 form a 256 × 8 quaternary linear code Q.
Then a 256 × 16 design D = (d1, . . . , d16) can be obtained via the the Gray map from Q.
As shown in Xu [35], D is of generalized resolution 6.5 and projectivity 7, where a two-
level design is said to have projectivity χ if any χ -factor projection contains a complete 2χ

factorial design, possibly with some points replicated, and χ is the largest integer having that
property (Box and Tyssedal [5]). This is a very useful nonregular design since every regular
design of this size has poorer resolution and projectivity.

Now, we study this QC design from the perspective of a PFD. According to Theorem 6, D

is a 16-PFD defined by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 d1d2

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 d3d4

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 d5d6

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 d7d8

1 1 1 −1 1 −1 −1 −1 −1 −1 −1 1 −1 1 1 1 d3d5d7d9

1 −1 −1 −1 −1 −1 −1 1 −1 1 1 1 1 1 1 −1 d3d5d7d10

1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 1 1 −1 −1 d1d3d7d11

1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 d1d3d7d12

1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 1 −1 d1d3d5d13

1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 d1d3d5d14

1 −1 1 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 d1d5d7d15

1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 d1d5d7d16

.
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Each of the 16 flats is a resolution II, 216−12, where the four basic factors are {d1, d3, d5, d7}
and the 12 generators are {dj = ±d

�1j

1 d
�2j

3 d
�3j

5 d
�4j

7 : j = 2,4,6,8,9, . . . ,16}, with �ij =
γi�(j+1)/2� for i = 1,2,3,4. Consider j = 2; since �(j + 1)/2� = 1, we look to γ1 =
[1,0,0,0]T , the first column of G. Thus, [�12, �22, �32, �42] = γ T

1 = [1,0,0,0] so d2 = ±d1.
This implies that d2 appears in the length-2 defining word d1d2. We list all 12 defining words
in the right-hand side of C. Furthermore, the sign of the defining word associated with dj

(j = 2,4,6,8,9, . . . ,16) and flat l (l = 1, . . . ,24) is⎧⎨
⎩

(−1)�2−1(�1j ϕ1l+�2j ϕ2l+�3j ϕ3l+�4j ϕ4l )� if j is odd,

(−1)�2−1(1+�1j ϕ1l+�2j ϕ2l+�3j ϕ3l+�4j ϕ4l )� if j is even,

with l − 1 = ∑4
i=1 ϕil2b−i . Note that ϕil is the coefficient of 2b−i when l − 1 is converted to

a binary number. For example, [ϕ12, ϕ22, ϕ32, ϕ42] = [0,0,0,1] for l = 2 as 1 = 0 ∗ 23 + 0 ∗
22 + 0 ∗ 21 + 1 ∗ 20. For j = 2, the defining word d1d2’s sign is

(−1)�2−1(�12ϕ1l+�22ϕ2l+�32ϕ3l+�42ϕ4l )� = (−1)�2−1(1+ϕ1l )�

in the lth flat for l = 1, . . . ,24. The coefficient of 23 is 0 for any element in 0 ≤ l − 1 ≤ 7
and 1 for 8 ≤ l − 1 ≤ 15, ϕ1l = 0 and �2−1(1 + ϕ1l)� = 0 for l = 1, . . . ,8 while ϕ1l = 1 and
�2−1(1 + ϕ1l)� = 1 for l = 9, . . . ,16. This defines the first row of C above.

The first b = 4 rows of C correspond to the length 2 defining words, while the remaining
words are length 4. Thus, each flat is an even design; that is, it contains eight fold-over pairs
of runs. The last 4 columns of G each involve three odd values; for instance, γ8 = [1,2,1,3]T
so the generators for d15 and d16 are defined by ±d1d5d7. Since a different entry is even in
γ5, . . . , γ8, all four three-factor interactions are used as generators. Interestingly, if one drops
the last row of G, the 3 × 8 matrix generates Xu and Wong’s [36] recommended 64-run,
16-factor design. Thus, for some cases, there is a nesting of G matrices for good QC designs
as b increases.

Quaternary code designs of size N = 42 are of class 4.1.4 or 4.2.1, that is, either a 4-PFD or
a regular fraction. QC designs of size N = 43 are from class 8.2.8, 8.8.8, 8.11.4 or 8.12.1. QC
designs of size 44 fall into 14 different classes. While it is prohibitive to identify all classes for
16-PFDs, the Supplementary Material lists the 14 classes for 256-run QC designs. Therein,
classes 16.Q7.16 and 16.Q8.8 have the same aliasing index distribution and so do classes
16.Q9.16 and 16.Q10.8. Example 7 is of class 16.Q8.8 (see Table S.2 of the Supplementary
Material); once reduced, it is class 8.2.8.

Xu and Wong [36] present QC designs with N = 256 and n ≤ 64, with generalized reso-
lution of 4 for the designs with 31 or more factors. They acknowledge the limitations of their
forward selection method, as they were unable to obtain any resolution 4 QC design with
more than 68 factors. However, following their Lemma 1, for any QC design with N = 4b,
there are 4b−1 eligible columns of G with an odd number of odd values. A resolution 4 QC
design with n = N/2 factors is produced from G consisting of these 4b−1 columns. This pro-
duces as even design, that is, D = [Hn;−Hn], where Hn is an order n Hadamard matrix. The
Supplementary Material gives the results for b = 4: the 4 × 64 matrix G and code to generate
H128. Larger QC designs with the maximal number of factors can be constructed similarly.
For example, the N = 45, n = 512 QC design is constructed taking G as the 5 × 256 matrix
having all eligible columns with 1, 3 or 5 odd entries.

8. Constructing split-plot parallel flats designs. Split-plot designs are widely used in
industrial applications when there are some processing factors that are difficult, expensive or
time-consuming to change from one level to another. In such situations, a useful strategy is to



3034 C. WANG AND R. W. MEE

implement some or all runs with a specific level combination of such hard-to-change factors
in succession. We call the hard-to-change factors whole-plot factors and the others subplot
factors. One can find more general theory about split-plot designs in Addelman [2], Wooding
[34] and Bingham and Sitter [3]. In this section, we provide methods for constructing D-
efficient split-plot designs for model (5), making use of parallel flats designs.

Note that when taking the initial regular design D0 to be a resolution I fraction, nw ≥ 1
factors are constant within a flat. The resulting f -PFD can be run as a split-plot design by
randomizing the order of the flats and then randomizing the runs within a flat. The nw fac-
tors whose level remains unchanged in each flat are the whole-plot factors while the other
ns = n − nw factors are the subplot factors. From Section 3, all gp,f nonequivalent D can be
obtained and from which we can identify the D-optimal one. (See Appendix C for enumer-
ating Resolution I and Resolution II regular fractions.) This is a straightforward method for
constructing D-optimal split-plot design when p is not too large. However, it becomes com-
putationally infeasible to identify all gp,f nonequivalent designs when p and/or f is large.
Now we present a method to solve this problem by constructing the whole-plot and subplot
designs separately.

Method 3 is for constructing a design with f whole plots of size 2ns−p .

1. Obtain a D-optimal two-level design of size f for the nw whole plot factors.
2. Let D0,s be an initial 2ns−p design of the subplot factors with resolution ≥ II. Then

according to Section 3, obtain all gp,f nonequivalent f -PFDs.
3. For each one of the gp,f nonequivalent f -PFDs, assign one whole-plot treatment

combination to the h0 flat of the subplot design, and assign the remaining f − 1 treatment
combinations to flats in (f − 1)! different ways. Each produces a split-plot design with nw

whole-plot factors, ns subplot factors and f 2ns−p runs.
4. Choose the best one from all (f − 1)!gp,f split-plot designs for estimating model (5)

by a comprehensive examination.

We add several remarks regarding Method 3:

• Step 1 may be repeated with other nonisomorphic D-optimal designs for the whole-plot
factors.

• In step 2, the initial design for the subplot factors is a 2ns−p design of resolution ≥ II. The
enumeration of resolution II designs is presented in Appendix C.

• If gp,f is very large and some of the gp,f nonequivalent f -PFDs have the same cfv, one
may reduce the number of subplot designs considered in Step 3 by removing f -PFDs with
duplicate cfv’s to obtain vp,f candidate designs for the split-plot factors, where vp,f is the
number of the unique cfv’s based on D0,s .

• Using Method 1, there are gp+nw,f cases to be considered for a given D0. With Method
3, we reduce it to (f − 1)!gp,k (or (f − 1)!vp,k) by considering whole-plot and subplot
designs separately.

We illustrate Method 3 for a split-plot design having 3 whole-plot factors and 7 split-plot
factors in 8 whole plots of size 8.

EXAMPLE 8. With Method 1, let D0 be a 210−7 design of resolution I, where 3 factors
(W1, W2, W3) have unchanged level and the remaining 7 factors (S1, . . . , S7) form the 27−4

III
design. Then there are g7,8 = 1.1170e10 nonequivalent 8-PFDs to be examined, which is
computationally infeasible. Consider Method 3 instead. First, specify the 23 design as the
design for the whole-plot factors. Each whole plot consists of a resolution III, 27−4 design in
the 7 split plot-factors. There are g4,8 = 870 nonequivalent 8-PFDs based on D0,s , the initial
design just for the split-plot factors, and they produce v4,8 = 24 unique cfv’s. Now for each
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of the 24 8-PFDs with unique cfv’s, assign the level combination (1,1,1) to the first flat, and
consider all possible cases of assigning the other seven combinations into the remaining flats.
This produces 7!v4,8 = 120,960 eligible split-plot designs. By a comprehensive search, the
64 treatment combinations defined by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 −1 −1 −1 −1 1 1 1 W1
1 −1 1 −1 1 1 −1 −1 W2
1 −1 1 1 −1 −1 1 −1 W3
1 −1 1 −1 1 −1 −1 1 S1S2S4
1 1 −1 1 −1 −1 −1 1 S1S3S5
1 1 1 −1 −1 −1 1 −1 S2S3S6
1 1 1 1 1 1 −1 −1 S1S2S3S7

is a D-efficient 8-PFD for estimating model (5). Since no regular 210−4 design can estimate
(5), the literature does not list a split-plot design of this size. However, there are algorithms
for generating split plot designs. JMP, implementing the algorithm of Jones and Goos [17],
produced a design with D-efficiency only 0.33% higher than our 8-PFD. This illustrates the
usefulness of the parallel flats designs for constructing split-plot designs.

9. Designs composed of flats from different families. The split plot design in the pre-
vious section can also be constructed by combining two 210−5 fractions. Flats 1, 6, 7, 8
form a regular 210−5 with defining words {W1, W2W3S1S2S4, W2W3S1S3S5, W3S2S3S6,
W2S1S2S3S7}, while flats 2 – 5 have defining words {−W1, W2S1S2S4, −W2S1S3S5,
W2W3S2S3S6, S1S2S3S7}. Each 210−5 has a defining contrast subgroup of size 32, but these
subgroups share the following independent words: W1, S2S3S4S5 and W2W3S1S6S7. Thus,
the combined group has 5 + 5 − 3 = 7 independent words, so the 64-run design can be parti-
tioned into eight 210−7 fractions from the same family.

The parallel flats structure for any design constructed by concatenating two 2n−p regular
fractions is readily understood in terms of the size of the combined defining contrast sub-
group; for our example that size is 27.

THEOREM 7. Let 2o be the size of the combined defining contrast subgroup for two
regular 2n−p fractions. Note that o ≤ n. If o < n, then the concatenated design consists of
f = 21+o−p parallel flats of size 2n−o.

Pajak [23] and Pajak and Addelman [24] present series of designs for estimating model
(5) based on concatenating regular 2n−p designs from different families. Recently, Vazquez
and Xu [32] proposed a new class of nonregular designs by concatenating f 2n−p designs
from different families formed by permuting a subset of basic factors. They provided many
strength-3 nonregular designs of this class with large run sizes. Based on the same D0, let
the resulting designs from Vazquez and Xu [32] and this article be DV X and D, respectively.
According to Theorems 1 and 2 in Vazquez and Xu [32], DV X has π complete words, and
f (2p −π − 1) partial words with aliasing index of 1/f , where π is the number of generating
words of specific types for D0. By our method, D have 2p − 1 words with aliasing index
in {f/f, (f − 2)/f, . . . , (f − 2�f/2�)/f }. Note that when f is even, (f − 2�f/2�)/f = 0,
indicating that some complete words in D0 can be removed in D. For instance, in Example 3,
take D0 as design 10-6.1, then all eight words of length 3 can be removed in D. In this way,
we can get strength-t PFDs based on D0 with lower strength, which is not the case for the
concatenated designs from Vazquez and Xu [32]; that is, if a strength-t design DV X is needed,
then the underlying design D0 must be of strength t or higher. In addition, the concatenated
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designs from Vazquez and Xu [32] may have repeat runs while our PFDs do not (unless a
flat is repeated). Thus, PFDs with distinct flats are more suitable for computer experiments
where the simulations are deterministic.

In some cases, DV X will be an f 2i -PFD for some i ≥ 1, as presented in the following
theorem.

THEOREM 8. Let D0 be a regular 2n−p design, and D1, . . . ,Df −1 be f − 1 isomorphic
copies by applying linear permutation li to the factors in a subset of basic factors (whose
cardinality is a prime number) for i = 1,2, . . . , f − 1. Given Zb = {1, . . . , b}, for an integer
u, a linear permutation lu over Zb is the permutation such that lu(x) = (x − 1+u)(modb)+
1, for x ∈ Zb. Then the concatenated design DVX = (DT

0 ,DT
1 , . . . ,DT

f −1)
T , is a f 2o−p-

PFD, where each flat is a 2n−o design and 2o is the size of the group constructed from all
f (2p − 1) words of D0,D1, . . . and Df −1.

We illustrate with a small example.

EXAMPLE 9. Given n = 9, p = 4, f = 3, let D0 be the minimum aberration 29−4
IV design

with basic factors 1, 2, 3, 4 and 5, and generators 6 = 123, 7 = 124, 8 = 125 and 9 = 1345
(provided by the supplemental material of Vazquez and Xu [32]).

The defining relation of D0 is

I = 1236 = 1247 = 1258 = 13459

= 3467 = 3568 = 24569 = 4578 = 23579 = 23489

= 12345678 = 15679 = 14689 = 13789 = 26789.

(6)

Consider D1, an isomorphic copy of D0 formed by applying the linear permutation l1 to the
set of basic factors. The permutation transforms 1 → 2, 2 → 3, 3 → 4, 4 → 5 and 5 → 1.
The defining relation of D1 is

I = 2346 = 2357 = 1238 = 12459

= 4567 = 1468 = 13569 = 1578 = 13479 = 34589

= 12345678 = 12679 = 25689 = 24789 = 36789.

(7)

Let D2 be the second isomorphic copy formed by applying l2 to the set of basic factors, where
l2 maps 1 → 3, 2 → 4, 3 → 5, 4 → 1 and 5 → 2. The defining relation of D2 is

I = 3456 = 1347 = 2348 = 12,359

= 1567 = 2568 = 12469 = 1278 = 24579 = 14589

= 12345678 = 23679 = 13689 = 35789 = 46789.

(8)

We can see that each of the defining relations (6), (7) and (8) can be generated by the first four
independent words, and these three defining relations have 12345678 in common. Further-
more, all these 43 unique words can be generated by the following eight independent words
(i.e., o = 8): w1 = 1236, w2 = 1247, w3 = 1258, w4 = 13,459, w5 = 2346, w6 = 2357,
w7 = 12459 and w8 = 12359. For example, 1238 = w1w2w3w5w6, 3456 = w1w2w4w6w7,
1347 = w2w4w7 and 2348 = w2w3w6. In this way, each of D0, D1 and D2 can be divided
into 16 29−8 parallel flats according to the signs of these eight words. Specifically, design D0
can be divided into 16 29−8 design by the 16 combinations

{
(w1,w2,w3,w4,w5,w6,w7,w8) : w1 = w2 = w3 = w4 = I,w5,w6,w7,w8 = ±I

}
,



TWO-LEVEL PARALLEL FLATS DESIGNS 3037

indicating D0 is a 16-PFD defined by

C0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w4

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 w5
−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 w6
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 w7
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 w8

.

D1 can be divided into 16 29−8 design by the 16 combinations{
(w1,w2,w3,w4,w5,w6,w7,w8) : w5 = w6 = w7 = w1w2w3w5w6 = I

}
,

that is, D1 is a 16-PFD defined by

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 w1
−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 w2

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 w3
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 w4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w7

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 w8

.

D2 can be divided into 16 29−8 design by the 16 combinations{
(w1,w2,w3,w4,w5,w6,w7,w8) : w8 = w1w2w4w6w7 = w2w4w7 = w2w3w6 = I

}
,

that is, D2 is a 16-PFD defined by

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 w1
−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 w2

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 w3
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 w4
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 w5
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 w6

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 w7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w8

.

Obviously, all these 48 29−8 are from the same family, so DV X = (DT
0 ,DT

1 ,DT
2 )T , is

a 48-PFD defined by C = (C0,C1,C2). It is easily checked that there is one column
(1,1,1,1,1,1,1,1)T with frequency 3, and three columns (1,−1,−1,−1,1,1,1,1)T ,
(1,1,1,1,−1,1,1,1)T and (1,1,1,1,1,1,1,−1)T with frequency 2 in C. This means that
one flat is repeated three times and three flats are repeated twice in the resulting 48-PFD.

The 48-PFD above has one complete word, 12345678. Let D−1 denote the design obtained
by reversing the sign of factor 8 in D1. By concatenating D0, D−1 and D2, we obtain the 9-
factor 96-run design of strength 3 shown in their Table 1. For this design 12345678 becomes
a partial word with aliasing index 1/3 (see Table S.10 in the supplemental material of Vazquez
and Xu [32]). D−1 is a 16-PFD with

C−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 w1

−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 w2

−1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 w3

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 w4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 w7

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 w8

,
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where C−1 is obtained by switching the signs of the rows of C1 corresponding to words
containing factor 8 in D1. Correspondingly, the resulting design D′

V X = (DT
0 ,DT−1,D

T
2 )T

is a 48-PFD defined by C′ = (C0,C−1,C2). It is easily checked that there are two columns
(1,1,1,1,1,1,1,1)T and (1,1,1,1,−1,1,1,1)T with frequency 2 in C′, indicating that two
flats repeat twice.

10. Summary and future work. In this article, we present a theory enumerating all f -
PFD for any f ≥ 3. Two methods were given to search for the best f -PFD, given an initial
design. The first method is exhaustive in its search, which works efficiently for the cases
f ≤ 10 with p = 3,4, f ≤ 8 with p = 5, f ≤ 5 with p = 6, f ≤ 4 with p = 7 or 8. For
other cases, when gp,f is too large to list all possible S-vectors, we can search within each
parallel flats class, as discussed in Section 6, for an assignment that minimizes the aliasing
index for all the shortest words of D0’s defining relation. These methods are feasible, easy
to implement and useful in both theoretical research and practical applications. We leave for
future work creation of an algorithm that automates Method 2.

Several authors have advocated using parallel flats designs with partial replication, in order
to provide a pure error estimate of the error variance; see the recent paper by Tsai and Liao
[31] and the references therein. Earlier, we calculated the number of possible f -PFDs, tp,f ,
assuming that the f flats were distinct. One can relax that requirement so that the methods
proposed in this article cover cases where a specified number of flats are repeated. Most
simply, suppose the flat corresponding to h0 appears r + 1 times (r > 0), while f − 1 other
flats each appear once. This produces a f.r-PFD with f.r = f + r . Note that the number
of combinations remains unchanged; that is, tp,f.r = tp,f independent of r . One must adjust
the S-vector as follows: Sf.r (s) = Sf (s) + r ∗ 12p−1. This partial replication provides r2n−p

degrees of freedom for estimating the error variance. We leave further details to the reader.
Another research direction worth pursuing is to consider constructing a parallel flats design

by augmenting an arbitrary initial design. The task would be to specify the size of the flats
(i.e., specify p), and then determine the minimal number of runs to create a PFD.

APPENDIX A: VIFS FOR 5-PFDS

For a 5-PFD D, we present the VIFs for effects in alias sets of length 2, 3, 4 and 5, when
the model (5) is estimable. Table A.1 lists the different VIF values, according to the aliasing
index distribution of the defining words for each alias chain from D0. Table A.1 also lists
the value of |XT

j Xj |1/λ, where λ is the number of columns of Xj ; the D-efficiency of D is
the geometric mean of these numbers. The case IDs are λ.x, where λ denotes the size of the
alias set and x is the number of aliasing indices of 3/5. In two cases, described below, the
VIFs depend on the pattern of aliasing indices, not only on their frequency. It is interesting
to note that the determinants are equal for several different aliasing index distribution cases.
Surprisingly, case 5.5, which has the most aliasing indices of 3/5 has the third best VIFs for
alias sets of size 5.

For both λ = 4 and 5, there is one aliasing index distribution where the VIFs depend on the
pattern of the correlations in the XT

j Xj/N matrix. Let Ei (i = 1, . . . , λ) denote the effects
corresponding to the λ columns of Xj . Cases 4.3a and 4.3b are differentiated as follows. If
one effect Ei appears in all three words with aliasing index 3/5, then we have case 4.3b and
Ei has VIF = 35/8. Cases 5.4a and 5.4b are differentiated as follows. If one effect Ei appears
in all four words with aliasing index 3/5, then we have case 5.4b and Ei has VIF = 10.

APPENDIX B: DETAILS FOR EXAMPLE 5

With p = 6, there are
∏5

i=0(64 − 2i ) = 20.16 billion different Yates row orders for class
6.1.6. Design 10-6.1 has eight length-3 words appearing in positions 1, 2, 4, 7, 8, 20, 44, 48
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TABLE A.1
Block efficiencies and VIFs for 5-PFDs

Length of chain: λ Case Aliasing index distribution |XT
j Xj /N |1/λ VIF distribution

2 2.0 (11/5) 0.979796 (225/24)

2.1 (13/5) 0.800000 (225/16)

3 3.0 (31/5) 0.964057 (315/14)

3.1 (13/5,21/5) 0.800000 (215/8,15/4)

3.2 (23/5,11/5) 0.726848 (15/2,25/3)

4 4.0 (61/5) 0.951366 (435/32)

4.1 (13/5,51/5) 0.800000 (235/16,25/4)

4.2 (23/5,41/5) 0.672717 (135/8,25/2,115/8)

4.3a (33/5,31/5) 0.672717 (25/2,215/8)

4.3b (33/5,31/5) 0.672717 (135/8,315/8)

5 5.0 (101/5) 0.940863 (510/9)

5.1 (13/5,91/5) 0.800000 (25/2,35/4)

5.2 (23/5,81/5) 0.606287 (110,25,25/2)

5.3 (33/5,71/5) 0.606287 (25,35/2)

5.4a (43/5,61/5) 0.606287 (15,45/2)

5.4b (43/5,61/5) 0.606287 (110,45/2)

5.5 (53/5,51/5) 0.606287 (55/2)

fv denotes the number of effects, f , with VIF = v.

of L. Fixing rows 7, 11, 21 as the first three basic rows defines the Yates order for the first
7 rows as {7, 11, 12, 21, 18, 30, 25}. This eliminates the first four words of length 3 and
reduces the number of choices to

∏5
i=3(64 − 2i ) = 86,016. Rows 13, 3, 54 for the next basic

rows produced the lowest G-aberration of all these remaining orders. The resulting 6-PFD
has cfv = [(0,0,18)4, (0,8,0)5, (1,0,7)6, (0,4,0)7, (0,0,5)8] and C matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

1 −1 −1 −1 1 1 F1F2F5
1 −1 −1 1 −1 1 F1F3F6
1 −1 1 −1 1 −1 F2F3F7
1 −1 1 −1 −1 1 F1F4F8
1 −1 −1 1 1 1 F2F3F4F9
1 1 −1 −1 1 −1 F1F2F3F4F10

Taking several other choices for the first 3 rows resulted in designs with identical or worse
cfv.

APPENDIX C: CONSTRUCTION METHOD OF TWO-LEVEL FRACTIONAL
FACTORIAL DESIGNS WITH SMALL RUNS

Chen, Sun and Wu [8] proposed an algorithm for constructing complete sets of regular
designs with resolution R ≥ III. In this section, we generalize the algorithm to obtain com-
plete sets of regular designs with resolution R = II and R = I. In this way, we can obtain all
nonequivalent parallel flats designs for any fixed size by considering all regular designs with
resolution R ≥ I for D0.

C.1. Basic idea. Two designs are isomorphic if one can be obtained from the other by
row permutations, column permutations and sign switches of columns (Hedayat, Sloane and
Stufken [14]). Any regular 2n−p design with R ≥ III is isomorphic to a subset of the columns
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of H2n−p ; we take the b = n−p basic columns with indices 1,2, . . . ,2n−p−1 and p additional
columns. When considering designs with R = II, two or more columns are identical. Thus,
for R ≥ II, there are (2b − 1)p cases to be considered. Let Dn,p denote the complete set
of nonisomorphic, unreplicated 2n−p designs with resolution ≥ II. We apply a sequential
construction method that does not need to traverse all (2b − 1)p cases to obtain Dn,p . Given
Dn−1,p−1, we construct Dn,p by assigning the additional factor to any column of H2b (besides
h0). There are 2n−p − 1 ways to assign this factor. Therefore, we obtain a class of designs,
denoted by D̃n,p with cardinality

{# of designs in Dn−1,p−1} × (
2n−p − 1

)
.

Clearly, D̃n,p ⊃ Dn,p . However, some designs in D̃n,p are isomorphic, so we need the fol-
lowing isomorphism check.

C.2. Isomorphism check. To identify isomorphic regular designs, we can first partition
all designs into different categories according to their word length patterns with the defini-
tion wlp = (a2, a3, . . . ), where ai is the number of length i words in the defining contrast
subgroup. Designs with different word length patterns are obviously nonisomorphic. There-
fore, we only need to examine the isomorphism of designs with the same word length pattern.

Here, we use an isomorphism check similar to that proposed in Chen, Sun and Wu [8]. The
difference is that we take designs with duplicate columns into account while they do not. Con-
sider the two 25−3 designs D1 = {h1, h2, h1h2, h1h2, h1h2} and D2 = {h1, h2, h1, h1, h1h2}.
Each of these designs has wlp = (3,3,0,1). To check isomorphism between D1 and D2, we
apply the following 4-step algorithm:

1. Select two independent columns from D2, say, {h1h2, h2}. There are three choices.
2. Select a relabeling map from {h1h2, h2} to {h∗

1, h
∗
2}, that is, h∗

1 = h1h2, h∗
2 = h2.

There are two choices.
3. Write the remaining columns {h1, h1, h1} in D2 as interactions of {h∗

1, h
∗
2}, that is,

h1 = h∗
1h

∗
2. Then D2 can be written as {h∗

1, h
∗
2, h

∗
1h

∗
2, h

∗
1h

∗
2, h

∗
1h

∗
2}.

4. Compare the new representation of D2 with that of D1. If they match, they are iso-
morphic, and the process stops. Otherwise, return to step 2 and try another map of {h∗

1, h
∗
2}.

When all the relabeling maps are exhausted, return to step 1 and find another two independent
columns.

With this algorithm, a map will be found eventually if two designs are isomorphic. If there
is no such map, then the two designs are nonisomorphic. Using this algorithm, we find all
2n−p designs with R ≥ 2. For designs of size 2, there is only one independent column, h1, and
each Dn,p consists of a single member. For designs of size 4 and 8, see the Supplementary
Material, where Table S.2 (S.3) lists the 4-run (8-run) designs in Dn,p for n = 3, . . . ,11
(n = 4, . . . ,11).

Now consider the set of nonisomorphic 2n−p designs with resolution R = I, denoted by
DI

n,p . Any regular design of R = I becomes a design of R ≥ II after removing every column
that equals h0. Thus, DI

n,p can be obtained by adding column h0 once to every design in
Dn−1,p−1, twice to every design in Dn−2,p−2, . . . , p times to Dn−p,0. Note that Dn−p,0 con-
tains just one design, the full 2b. Obviously, all these designs are nonisomorphic with each
other. Thus, DI

n,p has cardinality

p∑
i=1

{# of designs in Dn−i,p−i}.

For example, there are 16 (= 6+4+3+2+1) nonisomorphic 27−5 designs with resolution I.



TWO-LEVEL PARALLEL FLATS DESIGNS 3041

In summary, the generalized method for getting complete sets of regular designs with
resolution R ≥ I is efficient. And it ensures the acquisition of complete nonequivalent parallel
flat design for any fixed size by taking the initial regular design to be all these regular designs
with resolution R ≥ I.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Two-level parallel flats designs” (DOI: 10.1214/21-
AOS2071SUPP; .pdf). Table S.1 lists all parallel flats classes for f = 7,8,9, extending the
parallel flats classes in Table 6. Table S.2 lists the 12 possible parallel flats classes for QC
designs of 256 runs. Table S.3 lists the 4-run designs with resolution R ≥ II for n = 3, . . . ,11
while Table S.4 lists the 8-run designs with resolution R ≥ II for n = 4, . . . ,11. S5, S6 and
S7 provide the proofs of Theorems 2, 3 and 6, respectively, while S8 provides the 4 × 64
matrix G and code to generate H128 in Section 7.
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