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PREDICTION BOUNDS FOR HIGHER ORDER TOTAL
VARIATION REGULARIZED LEAST SQUARES

BY FRANCESCO ORTELLI* AND SARA VAN DE GEER†

Seminar for Statistics, ETH Zürich, *fortelli@ethz.ch; †vsara@ethz.ch

We establish adaptive results for trend filtering: least squares estimation
with a penalty on the total variation of (k − 1)th order differences. Our ap-
proach is based on combining a general oracle inequality for the �1-penalized
least squares estimator with “interpolating vectors” to upper bound the “ef-
fective sparsity.” This allows one to show that the �1-penalty on the kth order
differences leads to an estimator that can adapt to the number of jumps in
the (k − 1)th order differences of the underlying signal or an approximation
thereof. We show the result for k ∈ {1,2,3,4} and indicate how it could be
derived for general k ∈N.

1. Introduction. Total variation penalties have been introduced by Rudin, Osher and
Fatemi (1992) and Steidl, Didas and Neumann (2006). The present paper builds further on
the theory as developed in Tibshirani (2014), Wang et al. (2016), and Guntuboyina et al.
(2020). We show, for k ∈ {1,2,3,4}, a method for proving that the kth order total variation
regularized least squares estimator adapts to the number of jumps in the (k − 1)th order
differences and indicate how this method could be generalized to any k ∈ N. Inspired by
Candès and Fernandez-Granda (2014), our main tool is a well-chosen vector interpolating
the signs of the jumps.

The estimation method we will study is known as trend filtering. See Tibshirani (2020)
for a comprehensive overview and connections. Trend filtering is a special case of the lasso
(Tibshirani (1996)): it is least squares estimation with an �1-penalty on a subset of the coef-
ficients. For trend filtering, the minimization problem can also be formulated as a so-called
analysis problem (Elad, Milanfar and Rubinstein (2007)) with the analysis matrix D being
the kth order differences operator (see equation (2)). Our main result, given in Theorem 1.1,
is based on an oracle inequality for the general analysis problem with arbitrary analysis ma-
trix D ∈ R

m×n, as given in Theorem 2.2. The latter is a modification of results in Dalalyan,
Hebiri and Lederer (2017): we generalize their projection arguments by allowing for adding
“mock” variables to the active set. We furthermore use an improved version of their “com-
patibility constant” (see Remark 2.3) and—up to scaling—refer to its reciprocal as “effective
sparsity”; see Definition 2.1. The effective sparsity for the lasso problem is the number of
active parameters (the sparsity) discounted by a factor due to correlations between variables.
This discounting factor is called the compatibility constant (see Remark 2.3). In our situa-
tion, the effective sparsity can be dealt with invoking what we call an “interpolating vector”
(see Definition 2.3), which can be seen as a quantified noisy version of the so-called dual
certificate used in basis pursuit. See Remark 2.4 for more details.

Consider an n-dimensional Gaussian vector of independent observations Y ∼ Nn(f
0, I )

with unknown mean vector f 0 ∈ R
n, and with known variance var(Yi) = 1, i = 1, . . . , n (see

Remark 2.3 for the case of unknown variance). All our results also hold for Y − f 0 having
independent sub-Gaussian entries with known sub-Gaussian parameter 1. More details on the
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sub-Gaussian case can be found in Remark A.1 in the Supplementary Material (Ortelli and
van de Geer (2021)).

Let D ∈ R
m×n be a given matrix. The analysis estimator is

(1) f̂ := arg min
f ∈Rn

{‖Y − f ‖2
n + 2λ‖Df ‖1

}
,

where we invoke the (abuse of) notation ‖v‖2
n := ∑n

i=1 v2
i /n, v ∈ R

n. We call D ∈ R
m×n the

analysis matrix. The general aim is to show that f̂ is close to the mean f 0 := EY of Y , or to
some approximation f ∈ R

n thereof that has ‖Df ‖0 “small.”
The trend filtering problem has as analysis matrix D the kth order differences operator

�(k) ∈ R
(n−k)×n, which is defined as

(2) �(k)ij :=

⎧⎪⎪⎨
⎪⎪⎩

(−1)l

(
k

l

)
, j = i − l, l ∈ [0 : k], i ∈ D,

0, else,

where D = [k + 1 : n] and k ∈ [1 : n − 1] is fixed. We alternatively call �(k) the kth order
discrete derivative operator. Moreover, we apply the notation

[a : b] = {j ∈N : a ≤ j ≤ b}, 0 ≤ a ≤ b < ∞.

The kth order differences operator �(k) can also be obtained by a recursive relation as the
product of k first-order difference operators of suitable dimensions. The recursive relation is
that to obtain kth order differences for k ≥ 2 we take the first-order differences of the (k−1)th
order differences.

Theorem 2.2 below presents results for the general analysis problem and we apply it in
Theorem 1.1 to the trend filtering problem. This application means that we need to introduce
a “dictionary” as described in Section 2.2, to bound the lengths of the dictionary vectors, and
finally calculate an interpolating vector to obtain a bound for the effective sparsity. We do the
calculations for k ∈ {1,2,3,4} and sketch the way to proceed for general k ∈N.

1.1. Related work. Total variation regularization and trend filtering have been studied
from different angles in a variety of papers. The paper Mammen and van de Geer (1997)
studies numerical adaptivity and rates of convergence. In Kim et al. (2009), it is shown that
interior point methods work well for trend filtering. The paper Tibshirani (2014) clarifies
connections with splines and also has minimax rates. In Wang et al. (2016), trend filtering
on graphs is examined and it has theoretical error bounds in terms of the �1-norm ‖Df ‖1.
The paper Sadhanala and Tibshirani (2019) contains theory for additive models with trend
filtering. The paper Padilla and Chatterjee (2020) extends to quantile regression the idea
of trend filtering. In Sadhanala et al. (2017), trend filtering in higher dimensions is stud-
ied and minimax rates are proved. The paper Chatterjee and Goswami (2019) proposes a
recursive partitioning scheme for higher dimensional trend filtering. Our work is closely re-
lated to the paper Guntuboyina et al. (2020), which concerns the constrained problem as well
as the penalized problem. Our results for the penalized problem with k ∈ {2,3,4} improve
those in Guntuboyina et al. (2020), up to log terms. As a special case, we derive that un-
der a “minimum length condition” saying that the distances between jumps of the (k − 1)th
discrete derivative are all of the same order, and under an appropriate condition on the tun-
ing parameter λ, the prediction error of the penalized least squares estimator is of order
(s0 + 1) log(n/(s0 + 1)) logn/n where s0 is the number of jumps of �(k − 1)f 0 (see Corol-

lary 1.2). For s0 growing at least as log
1

2k−1 n, this is an improvement on Corollary 2.13 in
Guntuboyina et al. (2020) for k ≥ 2. There, for λ/nk−1 � √

log(n/(s0 + 1))/n, the rate is
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shown to be (s0 + 1)2k log(n/(s0 + 1))/n. In fact, we show a more general result where f 0

may be replaced by a sparse approximation. For k = 1, we show the result with a superfluous
log-factor: it is known that in that case the rate of convergence for the prediction error is of
order (s0 + 1) log(n/(s0 + 1))/n; see Guntuboyina et al. (2020) and its references. Our extra
log-factor is due to the use of projection arguments instead of more refined empirical pro-
cess theory. In van de Geer (2020), it is shown that the log-factor for k = 1 can be removed
when invoking entropy arguments, while keeping the approach via interpolating vectors and
effective sparsity.

The approach with interpolating vectors is in our view quite natural and lets itself be ex-
tended to other problems. We discuss this briefly in the concluding section, Section 4.

1.2. Organization of the paper. In the next subsection, Section 1.3, we present in Theo-
rem 1.1 an adaptive result for trend filtering, where adaptivity means that the presented bound
for the prediction error can be smaller when f 0 can be well approximated by a vector with
fewer jumps in its (k − 1)th discrete derivative. Section 2 presents in Theorem 2.2 adaptive
and nonadaptive bounds for the general analysis problem, which will be our starting point for
proving Theorem 1.1. We introduce effective sparsity and interpolating vectors in Definitions
2.1 and 2.3.

Section 3 applies the general result of Theorem 2.2 to the case D = �(k). We then need
to introduce a projected dictionary for trend filtering, which is done in Section 3.1. With this
we arrive at nonadaptive, almost minimax rates in Theorem 3.2. In Section 3.3, we construct
interpolating vectors and bounds for the effective sparsity for the case k ∈ {1,2,3,4} and also
sketch how this can be done for general k. With these results in hand, we finish in Section 3.4
the proof of the adaptive bounds for trend filtering with k ∈ {1,2,3,4}. Section 4 concludes
the paper.

The Supplementary Material (Ortelli and van de Geer (2021)) contains a proof of Theo-
rem 2.2. Its arguments are to a large extent in Dalalyan, Hebiri and Lederer (2017) and Ortelli
and van de Geer (2020b), but there are modifications. The Supplementary Material also has
the proofs for Section 3.1 and 3.3.

1.3. Main result for trend filtering. For D = �(k) and D = [k + 1 : n], we let S =
{t1, . . . , ts} ⊆ D, k + 1 ≤ t1 < · · · < ts ≤ n and let t0 := k and ts+1 := n + 1. We define
ni = ti − ti−1, i ∈ [1 : s + 1] and nmax := max1≤i≤s+1 ni . Moreover, for f ∈ R

n we write
(�(k)f )−S := {(�(k)f )j : j ∈ D\S}.

In Theorem 1.1 below, the set S is fixed but arbitrary. The theorem presents an oracle
inequality that allows for a trade-off between approximation error and estimation error by
choosing S and f appropriately, depending on the unknown f 0. However, the tuning param-
eter will then depend on s. Remark 1.5 reverses this viewpoint.

Write for u > 0,

λ0(u) :=
√

2 log(2(n − k − s)) + 2u

n
.

THEOREM 1.1 (Adaptive rates for k = 1,2,3,4). Let k ∈ {1,2,3,4}. There exists con-
stants ck and Ck depending only on k such that the following holds.

Let u > 0 be arbitrary and choose the tuning parameter λ satisfying

λ ≥ ckn
k−1

(
nmax

2n

) 2k−1
2

λ0(u).

Let f ∈ R
n be arbitrary and define the signs

qti := sign(Df )ti , i = [1 : s].
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Write S± := {i ∈ [2 : s] : qti qti−1 = −1} ∪ {1, s + 1}. Assume ni ≥ k(k + 2) for all i ∈ S±.
Finally, let v > 0 be arbitrary. Then with probability at least 1 − e−u − e−v we have∥∥f̂ − f 0∥∥2

n ≤ ∥∥f − f 0∥∥2
n︸ ︷︷ ︸

“approximation error”

+4λ
∥∥(

�(k)f
)
−S

∥∥
1

+
(√

k(s + 1)

n
+

√
2v

n
+ λ�S

)2

︸ ︷︷ ︸
“estimation error”

,

where

(3) �2
S = nCk

( ∑
i∈S±

1 + logni

n2k−1
i

+ ∑
i∈S\S±

1 + logni

n2k−1
max

)
.

To prove this result, we will invoke Theorem 2.2. This requires providing a dictionary and
bounding the effective sparsity given by Definition 2.1. In Section 3.4, we then put the pieces
together.

REMARK 1.1. The quantity �2
S in the above theorem is a bound for the effective sparsity.

REMARK 1.2. One may take c1 = c2 = 2. For mini∈S± ni → ∞, asymptotic expres-
sions for c3 and c4 can be taken to be c3 → 19/2 and by numerical computation, c4 →
2 × 67/2/(18.62) ≈ 56.83. See Section 3.3.1.

REMARK 1.3. Our method of proof is along the lines of Dalalyan, Hebiri and Lederer
(2017). In Ortelli and van de Geer (2020b), it is shown that one can also use this method for
the square-root lasso. This means that as a corollary of Ortelli and van de Geer (2020b), our
result also hold for “square-root” trend filtering, with a choice of the tuning parameter that
does not depend on the variance of the noise.

REMARK 1.4. In Section 3.3.1, we indicate how the bound of Theorem 1.1 could be
established for general k ∈ N.

We formulate a corollary for the case where the distances between jumps are all of
the same order as the maximal distance nmax. To facilitate the statement, we give an
asymptotic formulation. For sequences {an} and {bn} in (0,∞), we use the notation
an = O(bn) if lim supn→∞ an/bn < ∞ and an � bn (or equivalently an = �(bn)) if
also bn/an = O(1). For a sequence of random variables {Zn}, we write Zn = OP(1) if
limM→∞ lim supn→∞ P(|Zn| > M) = 0.

COROLLARY 1.2. Fix k ∈ {1,2,3,4}. Let u � v � logn. Choose S such that

min
i∈[1:s+1]ni � nmax.

Then we can choose λ of order

λ � nk−1
(

1

s + 1

) 2k−1
2

√
logn

n

and for all f ∈ R
n, under this choice, with probability 1 − �(1/n) it holds that∥∥f̂ − f 0∥∥2

n ≤ ∥∥f − f 0∥∥2
n + 4λ

∥∥(
�(k)f

)
−S

∥∥
1

+O
(

s + 1

n
log

(
n

s + 1

)
logn

)
.
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REMARK 1.5. Theorem 1.1 holds for an arbitrary active set S and gives a theoretical
justification for choosing a smaller tuning parameter λ than the universal choice λ/nk−1 �
λ0(u). The tuning parameter λ depends on the maximal distance nmax between jumps in the
active set S. One can therefore incorporate eventual prior knowledge about the true active set
in the tuning via nmax.

In practice, we can also think the other way around. Given a choice of λ (which implicitly
means a choice of nmax), the theorem will hold for a restricted group of active sets: the ones
characterized by

nmax ≤ 2
( √

nλ

ckλ0(u)

) 2
2k−1

.

One can even set nmax = n in the tuning parameter, and thus choose λ/nk−1 ≥
ck2− 2k−1

2 λ0(u) independently of S. The upper bound of Theorem 1.1 can then accommo-
date all S but the rate is worse.

We face a tradeoff in the choice of λ. The choice of λ (and thus of nmax) determines the
set of active sets over which the upper bound could be optimized over, but also influences the
rate of the estimation error. Choosing a smaller λ, that is, a smaller nmax—results in fewer
admitted active sets S but potentially a faster rate in the estimation error.

Alternatively, the tuning parameter could be selected by sample splitting.

REMARK 1.6. Theorem 1.1 improves on Corollary 2.13 by Guntuboyina et al. (2020) by
replacing (s0 + 1)2k with (s0 + 1) logn. This is possible because of the increased flexibility
in the choice of the tuning parameter λ. Moreover, we allow for a sparse approximation f of
f 0 and present a sharp oracle inequality. The paper Guntuboyina et al. (2020), also studies
the constrained problem where they arrive at rates which are up to log-terms comparable to
ours for the regularized problem when taking f = f 0.

Suppose we are in the setting of Corollary 1.2. Corollary 2.13 by Guntuboyina et al. (2020)
requires λ/nk−1 � √

log(n/(s + 1))/n to obtain the rate

(s0 + 1)2k

n
log

(
n

s0 + 1

)
.

If we choose λ/nk−1 � λ0(logn) � logn in Theorem 1.1, we find the rate

(s + 1)2k

n
log

(
n

s + 1

)
logn

and we retrieve with f = f 0 and S = S0 the rate by Guntuboyina et al. (2020) up to a
log term. But the requirement on our tuning parameter is more flexible. By allowing for a
smaller tuning parameter, we replace (s + 1)2k by (s + 1) logn. Our improved rate has still
an additional logarithmic term and is therefore at least as good as the one by Guntuboyina
et al. (2020) only if s0 grows at least as log

1
2k−1 n.

It in fact suffices to choose λ0(u) of order
√

log logn/n + √
log s/n instead of

√
logn/n

This follows from the fact that the basis functions used to construct the trend filtering es-
timator (cf. Section 3.1) form a VC class and from using bounds for weighted empirical
processes.

To remove the extra log-term in our result altogether, the paper van de Geer (2020) uses a
strategy to transform the Euclidean norm to a weighted Euclidean norm and then applies en-
tropy bounds. This allows one to move the log term coming from λ0(u) to the term involving
the dimension of the space we project on. The paper van de Geer (2020) applies this tech-
nique for the case k = 1. It exploits the fact that for a space of functions with total variation
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bounded by a constant the entropy is of the same order for all L2-norms. We are not sure
whether this is the case for k > 1. The proof technique in van de Geer (2020) still shares the
main idea using effective sparsity, but is definitely more involved and leads to many large and
unspecified constants (coming from the entropy bounds, Dudley’s entropy integral and from
bounding weighted empirical processes).

2. Adaptive bounds for the general analysis estimator. Recall the analysis problem

(4) f̂ := arg min
f ∈Rn

{‖Y − f ‖2
n + 2λ‖Df ‖1

}
,

where D ∈ R
m×n is a given analysis matrix, λ > 0 is a tuning parameter and ‖v‖2

n := ‖v‖2
2/n,

v ∈R
n.

To be able to state Theorem 2.2—a modification of results in Dalalyan, Hebiri and Lederer
(2017) (see Remark 2.3)—we introduce some notation in Section 2.1, and then describe the
dictionary (Section 2.2) and the effective sparsity (Section 2.3). Theorem 2.2 can then be
found in Section 2.4. To apply it, one needs to upper bound the effective sparsity. This is done
in Lemma 2.4, which invokes interpolating vectors as defined in Definition 2.3 of Section 2.5.
Theorem 2.2 and Lemma 2.4 combined serve as starting point for proving the result for trend
filtering in Theorem 1.1.

2.1. Some notation. The rows of the analysis matrix D ∈ R
m×n are indexed by a set D of

size |D| = m. We consider a set S ⊆ D, which is arbitrary and can be chosen as the active set
of an “oracle” that trades off “approximation error” and “estimation error” (see Theorem 2.2).
The size of S is denoted by s := |S|. We define for a vector bD ∈R

m with index set D,

bS := {bj }j∈S, b−S := {bj }j∈D\S.

We let N−S := {f ∈ R
n : (Df )−S = 0} = {f ∈ R

n : (Df )j = 0 ∀j ∈ D\S} and write rS :=
dim(N−S). As benchmark for our result, consider the active set S0 := {j : (Df 0)j �= 0}. If S0

were known, the least squares estimator

f̂LSE := arg min
f ∈N−S0

‖Y − f ‖2
n

would satisfy, for all v > 0, with probability at least 1 − e−v ,

∥∥f̂LSE − f 0∥∥
n ≤

√
rS0

n
+

√
2v

n
.

This follows from a concentration bound for chi-squared random variables; see Lemma 1
in Laurent and Massart (2000). An aim is to show that the estimator f̂ converges with the
same rate

√
rS0/n, modulo log-factors. In fact, we aim at showing this type of result with

f 0 potentially replaced by a sparse approximation. We hope to be able to choose the active
set S of a sparse approximation such that rS is small. On the other hand, as we will see, the
distance of the “nonactive” variables to the linear space N−S will play an important role: the
smaller this distance, the less noise is left to be overruled by the penalty. Therefore, we allow
for the possibility to extend N−S to a larger linear space N̄−S ⊇ N−S . This can be done for
instance by adding some “mock” active variables to the active set. We let r̄S = dim(N̄−S).
Thus, r̄S ≥ rS but in our application to trend filtering we will choose them of the same order.

For U and V being two linear subspaces of Rn spanned by {ui} and {vj }, we define the
direct product of U and V as the linear space spanned by {ui} ∪ {vj }.
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2.2. The dictionary. Given the linear space N̄−S ⊇ N−S we can decompose a vector
f ∈R

n into its projection fN̄−S
onto N̄−S and its projection onto the orthocomplement N̄⊥−S ,

which we call its antiprojection:

f = fN̄−S
+ fN̄⊥−S

.

The antiprojection is the part we want to overrule by the penalty. For this purpose, we define a
dictionary �−S := {ψ−S

j }j∈D\S ∈ R
n×(m−s) such that for all f ∈R

n and for b−S = (Df )−S,

fN̄⊥−S
= �−Sb−S.

In general, there can be several choices for �−S . In the application to trend filtering that we
consider in this paper, �−S will be uniquely defined. (When N̄S = N−S , it holds that �−S =
D′−S(D−SD′−S)−1 with D−S being the matrix D with the rows indexed by S removed.)

2.3. Effective sparsity. The effective sparsity will be invoked to establish adaptive
bounds.

Fix some u > 0. Its value will occur in the confidence level of the inequalities in Theo-
rem 2.2. We define

(5) λ0(u) :=
√

2 log(2(m − s)) + 2u)

n
.

In what follows, we assume that the tuning parameter λ satisfies

(6) λ ≥ max
j∈D\S

∥∥ψ−S
j

∥∥
nλ0(u).

For a vector w−S with 0 ≤ wj ≤ 1 for all j ∈D\S, we write

(1 − w−S)(Df )−S := {
(1 − wj)(Df )j

}
j∈D\S.

DEFINITION 2.1 (Effective sparsity). Let qS ∈ {−1,+1}s be a sign vector. The noiseless
effective sparsity is

�2(S, qS) := (
max

{
q ′
S(Df )S − ∥∥(Df )−S

∥∥
1 : ‖f ‖n = 1

})2
.

The noisy effective sparsity is

�2(S, qS,w−S) := (
max

{
q ′
S(Df )S − ∥∥(1 − w−S)(Df )−S

∥∥
1 : ‖f ‖n = 1

})2
,

where

wj = ∥∥ψ−S
j

∥∥
nλ0(u)/λ, j ∈D\S,

with λ satisfying (6).

REMARK 2.1. The effective sparsity can be interpreted as the effective number of param-
eters one has to estimate. With the universal choice of the tuning parameter λ/nk−1 � λ0(u),
the fast rate is of order �2(S, qS,w−S) logn/n.

For the trend filtering problem, we will derive in Section 3.3 bounds on the noisy effective
sparsity that, when mini∈[s+1] ni � nmax, scale as

�2(S, qS,w−S) =O
(
(s + 1)2k log

(
n/(s + 1)

))
, k ∈ {1,2,3,4}.

The log term is due to the noise. As shown in Corollary 1.2, we can choose the tuning pa-
rameter smaller than the universal choice λ/nk−1 � λ0(u) thanks to the projection arguments
by Dalalyan, Hebiri and Lederer (2017) in the background. Thus, we can obtain the rate
(s + 1)/n up to logarithmic terms.
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REMARK 2.2. On the slightly negative side, when applying Theorem 2.2 one may need
to choose λ strictly larger than (but of the same order as) required in (6) in order to have a
“well-behaved” effective sparsity. On the positive side, depending on the situation, one may
improve upon λ0(u) in (5) using bounds for weighted empirical processes.

2.4. Main result for the general analysis problem. Recall that the set S is arbitrary. In
the following theorem, the set S and also its vector f ∈ R

n can be chosen to optimize the
bounds by trading off approximation error and estimation error. The theorem provides adap-
tive bounds (oracle inequalities) since the trade-off depends on the unknown signal f 0.

THEOREM 2.2. Let u > 0, v > 0 and let the tuning parameter λ satisfy (6). Then ∀f ∈
R

n the following bounds hold:

• a nonadaptive bound: with probability at least 1 − e−u − e−v ,∥∥f̂ − f 0∥∥2
n ≤ ∥∥f − f 0∥∥2

n + 4λ‖Df ‖1

+
(√

r̄S

n
+

√
2v

n

)2
;

• and an adaptive bound: with probability at least 1 − e−u − e−v ,∥∥f̂ − f 0∥∥2
n ≤ ∥∥f − f 0∥∥2

n + 4λ
∥∥(Df )−S

∥∥
1

+
(√

r̄S

n
+

√
2v

n
+ λ�(S, qS,w−S)

)2
,

where qS = sign(Df )S .

PROOF OF THEOREM 2.2. See Appendix A in the Supplementary Material (Ortelli and
van de Geer (2021)). �

REMARK 2.3. Theorem 2.2 is a modification of the findings by Dalalyan, Hebiri and
Lederer (2017) who study the lasso problem. Theorem 2.2 is in terms of the analysis prob-
lem, as in Ortelli and van de Geer (2020b). We furthermore allow for augmentation of N−S .
Moreover, Dalalyan, Hebiri and Lederer (2017) and Ortelli and van de Geer (2020b) replace
�(S, qS,w−S) by the larger quantity max{‖(Df )S‖1 −‖(1−w−S)(Df )−S‖1 : ‖f ‖n = 1} =:√

rS/κ(S,w−S) where κ2(S,w−S) is called the “compatibility constant.” The paper Ortelli
and van de Geer (2020b) derives oracle results for the square-root analysis problem, which is
the analysis version of the square-root lasso introduced by Belloni, Chernozhukov and Wang
(2011). Joining these findings allows to derive a square-root version of Theorem 2.2, which
can be applied to the case of unknown noise variance (see also Remark 1.3).

2.5. Interpolating vectors. To upper bound the effective sparsity, one may invoke inter-
polating vectors.

DEFINITION 2.3 (Interpolating vector). Let qS ∈ {−1,+1}s be a sign vector. We call the
completed vector q ∈ R

m with index set D an interpolating vector (that interpolates the given
signs at S).

LEMMA 2.4. Let qS ∈ {−1,+1}s be a sign vector. The noiseless effective sparsity
�2(S, qS) satisfies

�2(S, qS) ≤ inf
{
n
∥∥D′q

∥∥2
2 : q interpolating, |qj | ≤ 1 ∀j ∈ D\S}

.
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The noisy effective sparsity �2(S, qS,w−S) satisfies

�2(S, qS,w−S) ≤ inf
{
n
∥∥D′q

∥∥2
2 : q interpolating, |qj | ≤ 1 − wj ∀j ∈D\S}

,

where

wj = ∥∥ψ−S
j

∥∥
nλ0(u)/λ, j ∈D\S,

with λ satisfying (6).

PROOF OF LEMMA 2.4. We only prove the statement of the lemma for the noisy case as
the argument is the same for the noiseless case. For any vector q−S with |qj | ≤ 1 −wj for all
j ∈D\S, it is true that for all f ,∥∥(1 − w−S)(Df )−S

∥∥
1 ≥ q−S(Df )−S.

Therefore, for all f ,

q ′
S(Df )S − ∥∥(1 − w−S)(Df )−S

∥∥
1 ≤ q ′Df ≤ √

n
∥∥D′q

∥∥
2‖f ‖n. �

REMARK 2.4. To bound the effective sparsity invoking interpolating vectors, as the
above lemma does, we were inspired by the dual certificates as applied in Candès and
Fernandez-Granda (2014). These have also been used in other works. The paper Candès
and Fernandez-Granda (2014) considers the superresolution problem and develops an inter-
polating function to establish exact recovery in the noiseless problem. The requirement on
this interpolating function is that it is in the range of the transpose of the design matrix. Dual
certificates can be found in earlier work as well; see, for example, Candès and Plan (2011).
The latter applies a “near” dual certificate to deal with noisy measurements. However, their
“nearness” appears to be restricted to a special setting. In Tang, Bhaskar and Recht (2015),
the approach is related to ours but very much tied down to the noisy superresolution problem.
We are not aware of any work where an explicit connection is made between dual certificates
and compatibility constants, the latter being related to the reciprocal of effective sparsity; see
Remark 2.3. The relation between dual certificates and interpolating vectors on the one hand
and compatibility on the other hand, appears to have been hidden in the literature. Moreover,
the notion of compatibility has developed itself over the years. In, for example, Boyer, De
Castro and Salmon (2017), it is shown that compatibility conditions do not hold for super-
resolution, but they show it for an older version of compatibility, not for the newer version
based on κ2(S,w−S).

3. Application of Theorem 2.2 when D = �(k). In order to apply Theorem 2.2 with
D = �(k), we need to establish a bound for the length of the columns of an appropriate
dictionary �−S . This is done in Section 3.1. Then we can apply the first part of Theorem 2.2
and this will, as we will see in Section 3.2, result in the minimax rate up to log-terms. Next, for
the application of the second part of Theorem 2.2 to obtain adaptive results, we upper bound
the effective sparsity using an appropriate interpolating vector. This is done in Section 3.3.
We then have all the material to establish Theorem 1.1, as summarized in Section 3.4.

3.1. The dictionary when D = �(k). We start with some remarks, whose purpose is
mainly to introduce some further notation. Note that by definition, ND := {f ∈ R

n : (Df )j =
0 ∀j ∈ D}. For vectors f ⊥

ND , a dictionary is denoted by �D. If D has full row rank
(which will be the case for D = �(k) see Wang, Smola and Tibshirani (2014)) it holds
that �D = D′(DD′)−1. This is the Moore–Penrose pseudo inverse D+ of D. Let now
� = {ψj }nj=1 ∈ R

n×n be a “complete” dictionary, which means that we can write each f ∈R
n
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as f = �b, where bD = Df . Then obviously �D = {(ψj )N⊥
D

}j∈D is formed by the projec-
tions of the dictionary vectors ψj with index in D on the ortho-complement of the space
spanned by {ψj ′ }j ′ /∈D . Moreover, the dictionary �−S = {ψ−S

j }j∈D\S for vectors f ⊥
N−S

has
ψ−S

j = (ψj )N⊥−S
= (ψD

j )N⊥−S
.

As said, we may want to augment the space N−S to a larger linear space N̄−S so that
the antiprojections will have smaller length. This is done by taking the direct product of N−S

with a space spanned by additional linearly independent vectors {φj } with φj /∈N−S for all j .
We call these additional vectors “mock” variables. One may pick them in the set {ψj }j∈D\S
(or {ψD

j }j∈D\S ) in which case we call them “mock” active variables.

We now first present upper bounds for {‖ψj‖2
2}j∈D\S for the case D = �(k) for general k.

In the Supplementary Material (Ortelli and van de Geer (2021)), we give exact expressions
for k ∈ {1,2,3} to illustrate that the corresponding bounds are sharp.

3.1.1. The dictionary for general k: Upper bounds. We take N̄−S as the direct product
of N−S and the space spanned by {ψti+1, . . . ,ψti+k−1}si=1 (assuming ts + k − 1 ≤ n). In this
way, we disconnect the system into s + 1 components each having the same structure. The
matrix D with the rows indexed by S ∪ {ti + 1, . . . , ti + k − 1}si=1 removed is a block matrix.
The space N̄−S has dimension r̄S = rS + s(k −1) = k(s +1). One may apply a reformulation
for the subintervals {[ti−1 + 1 : ti − 1]}s+1

i=1 , to arrive at upper bounds for the lengths of the
columns of �−S from upper bounds for the lengths of the columns of �(k)+.

LEMMA 3.1 (An upper bound for the length of the columns of �(k)+). We have that for
j ∈ [k + 1 : n] ∥∥ψD

j

∥∥2
2 ≤ min

(
(j − k)2k−1, (n + 1 − j)2k−1)

.

PROOF OF LEMMA 3.1. See Appendix B in the Supplementary Material (Ortelli and van
de Geer (2021)). �

It follows that

(7)
∥∥ψ−S

ti−1+j

∥∥2
2 ≤ min

(
j2k−1, (ni − j)2k−1)

, j ∈ [1 : ni − 1], i = [1 : s + 1].
Recall our abuse of notation ‖ · ‖2

n = ‖ · ‖2
2/n. We get

max
j∈[1:ni−1]

∥∥ψ−S
ti−1+j

∥∥2
n ≤ (ni/2)2k−1

n
, i = [1 : s + 1].

We conclude that the requirement (6) on the tuning parameter is met when

(8) λ ≥ nk−1
(

nmax

2n

) 2k−1
2

√
2 log(2(n − s − k)) + 2u

n
.

3.2. An almost minimax rate. Although minimax rates are not the main theme of this
paper, we present a result in this direction because it comes almost for free.

THEOREM 3.2. Let u > 0, v > 0 and let the tuning parameter λ satisfy (8). Then it holds
that ∀f ∈ R

n, with probability at least 1 − e−u − e−v ,

∥∥f̂ − f 0∥∥2
n ≤ ∥∥f − f 0∥∥2

n + 4λ‖Df ‖1 +
(√

k(s + 1)

n
+

√
2v

n

)2
.
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PROOF OF THEOREM 3.2. This follows from applying the first, that is, the nonadaptive
result of Theorem 2.2, and invoking that its requirement (6) on the tuning parameter λ is met
if we impose the bound given in (8). �

COROLLARY 3.3. Recall that requirement (8) on λ depends on S and the choice of S is
free in Theorem 3.2. We can take S such that mini∈[1:s+1] ni � nmax in which case nmax/n �
1/s. Then we may take

λ � nk−1
(

1

s

) 2k−1
2

√
logn

n
.

Now s is still a free parameter. Choosing s by a trade off, that is, in such a way that λ/nk−1 �
s/n, we get for nk−1‖�(k)f ‖1 ≤ 1 (say)∥∥f̂ − f 0∥∥2

n ≤ ∥∥f − f 0∥∥2
n +OP

(
n− 2k

2k+1 log
1

2k+1 n
)
.

For f = f 0, this corresponds, up to the log-factor, to the minimax rate over {f 0 :
nk−1‖�(k)f 0‖1 ≤ 1} (Donoho and Johnstone (1998)).

REMARK 3.1. To obtain Corollary 3.3 from Theorem 3.2, we choose s not depending
on nk−1‖�(k)f ‖1 by trading off λ/nk−1 � s/n. Thus, the choice of the tuning parameter λ

dictated by Corollary 3.3 does not depend on nk−1‖�(k)f ‖1.
Alternatively, we can choose s depending on nk−1‖�(k)f ‖1 by trading off λ‖�(k)f ‖1 �

s/n. Then the choice of the tuning parameter λ does depend on nk−1‖�(k)f ‖1. If
nk−1‖�(k)f ‖1 =O(1), the rates obtained are the same.

It is remarkable that f can be chosen arbitrarily. Therefore, the upper bound holds for the
infimum over all f . If we tune the estimator depending on nk−1‖�(k)f ‖1, then the upper
bound holds for the infimum over all f with the chosen value for nk−1‖�(k)f ‖1.

By applying the idea of the square root lasso (Belloni, Chernozhukov and Wang (2011)) to
analysis estimators as in Ortelli and van de Geer (2020b), we can tune the square root version
of trend filtering independently of the noise variance σ 2.

3.3. Interpolating vectors and effective sparsity for D = �(k). Observe that for D =
�(k) it holds that (D′q)k+j = ((−1)k�(k)q)j for j ∈ [1 : n − 2k] (this is in the background
of partial integration). The above observation leads in the noiseless case to taking q as piece-
wise kth degree polynomial interpolation. To avoid boundary effects, one may use an in-
terpolation including the points t0 := k and ts+1 := n + 1, with qt0 = qts+1 = 0. Moreover,
still in the noiseless case, if there is no sign change (i.e., qti−1qti = 1) one can simply take
qti−1+j = qti for j ∈ [1 : ni − 1].

In the noisy case, one can use a similar interpolation except near the active points in S,
where we need to change to powers of (2k − 1)/2 instead of k. This is due to the requirement
|qj | ≤ 1 − wj for all j ∈ D from Lemma 2.4 and to the form of the weights following from
(7). It has an effect on the constants involved in the interpolating vector and, moreover, for
ti−1 + j near the active points, the absolute kth discrete derivative |�(k)qti−1+j | behaves like
1/

√
j . It follows from the next lemma that this leads to an additional logarithmic factor as

compared to the noiseless case.

LEMMA 3.4. Let for some d ∈ N, d ≥ 2k,

qj := (j)
2k−1

2 , j = 0, . . . , d.

Then for some constant C̃k , ∥∥�(k)′q
∥∥2

2 ≤ C̃2
k (1 + logd).
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PROOF OF LEMMA 3.4. See Appendix C in the Supplementary Material (Ortelli and van
de Geer (2021)). �

For each given k the interpolating vector, we suggest below can be computed by solving
a system of linear equations. We construct an interpolating vector giving place to a suitable
bound on the effective sparsity by joining sufficiently many polynomial pieces in a smooth
enough way. The required smoothness depends on the order of the differences considered in
the trend filtering problem. For kth order differences, we match the polynomial pieces and
their first k − 1 discrete derivatives. Matching discrete derivatives gives a certain number of
equations that the coefficients of the polynomial pieces of the interpolating vector have to
satisfy. Both the number of equations and the number of coefficients depend on the number
of pieces into which we split an interval, that is, on the number of different polynomial pieces
we allow. The number of splits is then obtained by equating the number of equations with the
number of coefficients. Because we work in the discrete setting, these splits need to contain
sufficiently many points: at least k each. Indeed, matching the k − 1 discrete derivatives of
two polynomials at a given point corresponds to matching the two polynomials at the given
point and at the k − 1 previous ones.

Once we have computed an interpolating vector q by joining polynomial pieces by deriva-
tives matching, we still have to check that it satisfies the requirements to be an interpolating
vector. That is, it must hold qj ≤ 1 −wj = 1 −‖ψ−S

j ‖nλ0(u)/λ for all j ∈D\S and |qj | ≤ 1
for all j ∈D. Sufficient conditions are that the resulting q is monotone and λ is chosen large
enough. Indeed, if λ/λ0(u) is large, the weights w become small and the requirements on the
interpolating vector q become weaker. This can be read from the formula for w in Defini-
tion 2.1 and Lemma 2.4.

It is not clear whether the interpolation is monotone between two active points. We verify
the monotonicity for k = {1,2,3,4} in Sections 3.3.2, 3.3.3, 3.3.4 and 3.3.5, respectively. In
other words, Section 3.3.1 presents the general idea, and the four following subsections work
out the details for k ∈ {1,2,3,4}.

3.3.1. Construction of an interpolating vector. Define

S± := {
i ∈ [2 : s] : qti qti−1 = −1

} ∪ {1, s + 1}
and let t0 = k and ts+1 = n + 1. We call [t0 : t1] the left boundary interval and [ts : ts+1] the
right boundary interval. We assume that

(9) ni ≥ k(k + 2) ∀i ∈ S±.

For i ∈ S±, we split [ti−1 : ti] into k + 2 subintervals of equal (Lebesgue) size when k is
even, and into k + 1 subintervals when k is odd. We call these subintervals the local subin-
tervals. By (9), we are assured that each local subinterval has at least k elements. We call the
left (right) subinterval of [ti−1 : ti] the left (right) local boundary interval. The other subin-
tervals of the split will be called the local interior intervals. We will define qj for each local
subinterval and join them by discrete derivatives matching, the latter having the following
meaning. Let p1(j) and p2(j) be two functions of j ∈ [k + 1 : n]. We then say that their
(k − 1)th order discrete derivatives match at the point j0 ∈ [2k + 1 : n] if p1(j) = p2(j) for
j ∈ [j0 − k + 1 : j0].
• The continuous version of the interpolating vector. A continuous interpolation q : [0,1] →

[−1,1] with q(0) = 1 and q(1) = −1 can be constructed as follows. We choose q antisym-
metric around x = 1/2, that is, given q(x) for x ∈ [0,1/2] we let q(x) := −q(1 − x) for
x ∈ [1/2,1]. We split [0,1] into N intervals of equal size where N = k + 2 if k is even,
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and N = k + 1 if k is odd. Call these subintervals {[xl−1, xl]}Nl=1 (thus x0 = 0, xN = 1 and
xN/2 = 1/2). For x ∈ [x0, x1], we let

q(x) := 1 − a0x
2k−1

2 ,

where the constant a0 > 0 is to be determined. For x ∈ [xN−1, xN ], we then have

q(x) = −1 + a0(1 − x)
2k−1

2 .

For x ∈ [xN/2−1, xN/2+1], we let q(x) = aL(1/2 − x)L + · · · + a1(1/2 − x) be a linear
combination of odd powers of (1/2 − x) where L = k − 1 if k is even and L = k if k is
odd. By the antisymmetry, it remains do define q(x) for x ∈ [x1, xN/2−1]. For x ∈ [xl−1, xl]
with l ∈ {2, . . . ,N/2 − 1}, we let q(x) := bl,kx

k + · · · + bl,1x + bl,0 be a polynomial of
degree k. We choose the coefficients {{aj }, {bl,j }} by derivatives matching: solving a linear
system with k(k/2) equations and k(k/2) unknowns when k is even, and with k(k − 1)/2
equations and k(k − 1)/2 unknowns when k is odd. The resulting function q : [0,1] → R

is interpolating between +1 and −1 and it is continuous with k − 1 continuous derivatives,
such that the kth left derivative is piecewise constant except on the left boundary inter-
val where it behaves like −1/

√
x and the right boundary interval where it behaves like

(−1)k/
√

1 − x. For a given k, the coefficients {{aj }, {bl,j }} can be given explicitly and it
can then be checked whether q is a decreasing function on the interval [0,1] (or stays away
from ±1). We did this for k ∈ {1,2,3,4} below.

• The case of a sign change. If qti qti−1 = −1, we apply a discrete version of the continuous
function q described above. One way to do this is using the map ti−1 + j �→ qti−1q(j/ni)

for j ∈ [1 : ni − 1]. Alternatively, one may apply discrete derivatives matching. We take
qti−1+j antisymmetric around the midpoint of [ti−1 : ti]. We choose qti−1qti−1+j := 1 −
a0(j/ni)

2k−1
2 for j in the left local boundary interval (and thus qti−1qti−j = −1 + a0(1 −

j/ni)
2k−1

2 at the right local boundary interval) where a0 > 0 depends on k and ni . At
the two local interior intervals around the midpoint of [ti−1, ti], we take qti−1+j a linear
combination of odd powers l ≤ k of (j − ni/2). At the other interior intervals, we let
qti−1+j be a polynomial of degree k. Then we choose the coefficient a0 and the coefficients
of the polynomials by discrete derivatives matching. For mini∈S± ni → ∞, the coefficient
a0 converges to its continuous counterpart a0. We conclude a0 � 1. The same is true for
the other coefficients in the interpolation.

• The boundary intervals. We set qt0 = 0, and {qt0+j }n1−1
j=1 an interpolating vector constructed

as for the case of a sign change, except that we now interpolate between 0 and ±1 instead of
between 1 and −1. A similar construction is made for the right boundary interval [ts : ts+1]
where we set qts+1 = 0.

• The case of no sign change. When qti qti−1 = 1, we take

qti qti−1+j := 1 −
(

4j (ni − j)

ninmax

) 2k−1
2

, j = [1 : ni − 1].
• Joining the intervals {[ti−1 : ti]}s+1

i=1 . By the above construction, the first order differences

for j ∈ [ti−1 : ti−1 + k] or j ∈ [ti − k : ti] are all of order n
−(2k−1)/2
i and in fact of order

n
−(2k−1)/2
max if there is no sign change. This means we can glue the interpolations for the

intervals {[ti−1, ti]}s+1
i=1 together and have the kth discrete derivatives matching up to a

finite (depending on k) number of terms of order n
−(2k−1)/2
i (or even n

−(2k−1)/2
max ).

• The kth derivative of q . The following bound holds: for some constant Ck ,

n
∥∥�(k)′q

∥∥2
2 ≤ Ckn

[ ∑
i∈S±

1 + logni

n2k+1
i

+ ∑
i /∈S±

1 + logni

n2k+1
max

]
.

This follows from the construction of q and from Lemma 3.4.
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• The requirement qj ≤ 1 − wj , j ∈ D\S. Recall the definition of the weights wj =
‖ψ−S

j ‖nλ0(u)/λ for all j ∈ D\S; cf. Definition 2.1 and Lemma 2.4. For i /∈ S±, we have
|qti−1+j | ≤ 1 − wti−1+j , j ∈ [1 : ni − 1] by construction as long as λ satisfies (8). To con-
clude the same for i ∈ S±, we strengthen the requirement (8) to: for an appropriate constant
ck ≥ 1 depending only on k,

(10) λ ≥ ckn
k−1

(
nmax

2n

) 2k−1
2

√
2 log(2(n − s − k)) + 2u)

n
.

It can be shown that if the interpolations for i ∈ S± are monotone, then one can take as
mini∈S± ni → ∞,

(11) ck →
⎧⎨
⎩2(k + 2)

2k−1
2 /a0, k even,

2(k + 1)
2k−1

2 /a0, k odd.

Equation (11) results by solving, for the boundary intervals, q(1/(k + 2)) = 1 − a0(k +
2)− 2k−1

2 /2 ≤ 1−maxj wj for k even and q(1/(k+1)) = 1−a0(k+1)− 2k−1
2 /2 ≤ 1−maxj wj

for k odd, where w depends on λ. The factor 1/2 comes from the fact that we consider the
boundary intervals, where the interpolation happens between 1 and 0 or −1 and 0 (and not
between 1 and −1).

It is not a priori clear to us that the interpolations i ∈ S± are monotone. We check this for
k = {1,2,3,4} in the next 4 subsections.

3.3.2. Interpolating vector and effective sparsity for k = 1. The case k = 1 has been well
studied; see Guntuboyina et al. (2020) and its references. We include it here to highlight the
additional argument needed when k > 1. In the noiseless case and when k = 1, we take a
linear interpolation of (q1 := 0, q ′

S, qn+1 := 0). At a sign change: qti−1qti = −1, we take a
linear interpolation between plus and minus one over an interval of length ni . The slope in
this interval will then be 2/ni , which gives a contribution 4/ni to the bound for the effective
sparsity. Similar observations can be made for the boundary interval [t0 : t1] where we face
a boundary effect due to partial integration because q2 = 1/n1 �= 0. For the right boundary
interval [ts : ts+1], we see the same boundary effect. So for k = 1,

�2(S, qS) ≤ n

n2
1

+ n

n1
+ ∑

qti
qti−1=−1

4n

ni

+ n

ns+1
+ n

n2
s+1

.

REMARK 3.2. In presence of a “staircase pattern”—consecutive entries of (Df )S having
the same sign—the interpolating vector q for the noiseless case can be chosen to be constant
between consecutive entries of qS having the same sign. Therefore, staircase patterns seem to
favour prediction, while for f = f 0 they are known to negatively affect sign consistency of
the first-order differences. A sufficient and almost necessary condition for sign consistency
of the first- order differences in the case of the fused lasso is the irrepresentable condition
by Zhao and Yu (2006). Qian and Jia (2016) prove that in presence of staircase patterns in
(Df 0)S0 the irrepresentable condition holds if and only if the jumps involved in the staircase
patterns occur at consecutive entries.

In the noisy case, and when i ∈ S± we use a scaled discrete variant of

q(x) :=
{+1 − √

2x, 0 ≤ x ≤ 1/2,

−1 + √
2(1 − x), 1/2 ≤ x ≤ 1.
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When qti−1qti = −1, we let

(12) qti−1+j qti−1 := q(j/ni) =
⎧⎨
⎩+1 −

√
2j/ni, j ∈ [1 : ni/2],

−1 +
√

2(ni − j)/ni, j ∈ [ni/2 : ni].
At the boundary intervals, say the left boundary interval, we let q1 := 0 and

(13) q1+j qt1 :=
⎧⎨
⎩

√
j/(2n1), j ∈ [1 : n1/2],

1 −
√

(n1 − j)/(2n1), j ∈ [n1/2 : n1].
If qti qti−1 = 1, we take for j ∈ [1 : ni − 1]
(14) qti−1+j qti−1 := 1 −

√
4j (ni − j)/(ninmax).

In other words, at locations ti , with i ∈ [2 : s], where the signs do not change (i.e., qti = qti−1 )
one may choose “less steep” interpolations.

With this choice for q , we get by straightforward calculations: for λ satisfying (10) with
c1 = 1, and for a universal constant C1

�2(S, qS,w−S) ≤ n
∥∥�(1)′q

∥∥2
2

≤ C1n

[
1 + logn1

n1
+ ∑

qti
qti−1=−1

1 + logni

ni

+ ∑
qti

qti−1=1

1 + logni

nmax
+ 1 + logns+1

ns+1

]
.

3.3.3. Interpolating vector and effective sparsity for k = 2. The splitting scheme for the
noisy case of Section 3.3.1 applied to k = 2 gives as continuous interpolation

q(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1 − 2

5
(4x)3/2, 0 ≤ x ≤ 1

4
,

3

5
4
(

1

2
− x

)
,

1

4
≤ x ≤ 3

4
,

−1 + 2

5
43/2(1 − x)3/2,

3

4
≤ x ≤ 1.

Else, we may use a simpler alternative solution, namely

qalt(x) :=
⎧⎪⎨
⎪⎩

+1 − (2x)3/2, 0 ≤ x ≤ 1

2
,

−1 + (
2(1 − x)

)3/2
,

1

2
≤ x ≤ 1.

Then qalt is decreasing, qalt and q′
alt are continuous and

q′′
alt(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 3√
2x

, 0 < x <
1

2
,

+ 3√
2(1 − x)

,
1

2
≤ x < 1.

Consider now a sign change: qti qti−1 = −1. We may assume without loss of generality that
ni is even. (If ni is odd, we take qti−1+1 = qti−1 , which is possible because ti−1 + 1 is set to
be a “mock” active variable and replace ni by ni − 1.) For j ∈ [1 : ni/2], define

(15) qti−1+j qti−1 := qalt(j/ni) =
{+1 − (2j/ni)

3/2, j ∈ [1 : ni/2],
−1 + (

2(ni − j)/ni

)3/2
, j ∈ [ni/2 : ni].
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At the boundary intervals, say the left boundary interval, we let q2 = 0. Again we may without
loss of generality, assume n1 is even (otherwise we let q3 = 0 and replace n1 by n1 −1). Then
let

(16) q2+j qt1 :=
{√

2(j/n1)
3/2, j ∈ [1 : n1/2],

1 − √
2
(
(n1 − j)/n1

)3/2
, j ∈ [n1/2 : n1].

Finally, if there is no sign change: qti qti−1 = 1, we let

(17) qti−1+j qti−1 := 1 −
(

4j (ni − j)

ninmax

)3/2
.

Thus when λ satisfies (10) for an appropriate constant c2, then for a constant C2 the bound
(3) is true for the effective sparsity.

3.3.4. Interpolating vector and effective sparsity for k = 3. For the noisy case, we invoke
a scaled and discrete variant of

(18) q(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+1 − 4

19
(4x)

5
2 , 0 ≤ x ≤ 1

4
,

− 5

38
43

(
1

2
− x

)3
+ 35

38
4
(

1

2
− x

)
,

1

4
≤ x ≤ 3

4
,

−1 + 4

19
45/2(1 − x)

5
2 ,

3

4
≤ x ≤ 1,

which can be derived using the construction for the continuous version of the interpolating
vector for general k, given in Section 3.3.1. Note that q is decreasing, q, q′ and q′′ are contin-
uous.

If ni/4 ∈N, the rescaled and discrete variant when qti = −1, qti−1 = 1 is

(19) qti+j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − ā0(4j/ni)
5/2, 1 ≤ j ≤ ni/4,

−ā343(
(ni/2 − j)/ni

)3 + ā14(ni/2 − j)/ni, ni/4 ≤ j ≤ 3ni/4,

−1 + ā045/2(
(ni − j)/ni

)5/2
, 3ni/4 ≤ i ≤ ni,

where ā0, ā1 and ā3 can be calculated using the following lemma with d = ni/4. (In the
notation of Section 3.3.1, a0 = 43/2ā0, a1 = 4ā1 and a3 = 43ā3.)

LEMMA 3.5. Let d ∈ N and define

α1 := [�(d + 1)5/2]
d3/2 = (d + 1)5/2 − d5/2

d3/2 ,

γ1 := [�d3]
d2 := d3 − (d − 1)3

d2 ,

α2 := [�(2)(d + 2)5/2]
d1/2 := [�(d + 2)5/2] − [�(d + 1)5/2]

d1/2 ,

γ2 := [�(2)d3]
d

:= [�d3] − [�(d − 1)3]
d

.

Let

ā0 := γ2

γ2 − α2 + (γ1α2 + α1γ2)
,
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ā3 := α2

γ2 − α2 + (γ1α2 + α1γ2)
,

ā1 := γ1α2 + α1γ2

γ2 − α2 + (γ1α2 + α1γ2)
,

and for j ∈ {d, d + 1, d + 2}
qj := 1 − ā0j

5/2/d5/2,

pj := −ā3(2d − j)3/d3 + ā1(2d − j)/d.

Then

�(l)qd+l = �(l)pd+l , l ∈ {0,1,2}.

PROOF OF LEMMA 3.5. See Appendix C in the Supplementary Material (Ortelli and van
de Geer (2021)). �

The values of the parameters ā0, ā1 and ā3 in the above lemma depend on d , but one easily
checks that for d → ∞: α1 ≈ 5/2, γ1 ≈ 3, α2 ≈ 15/4 and γ2 ≈ 6. Hence ā0 ≈ 4

19 , ā3 ≈ 5/38
and ā1 ≈ 35/38 as in (18). If ni/4 /∈ N, we have similar calculations: the discrete derivatives
are then to match at say �ni/4� and �3ni/4�. (By the same arguments as for k = 2, one may
without loss of generality assume that ni is even.)

For the boundary intervals, we have similar expressions and when qti−1qti = 1 we take qj ,
j ∈ [ti−1 : ti], as for the general k case. This gives when λ satisfies (10) for some appropriate
constant c3, then for a constant C3 the bound (3) for the effective sparsity.

3.3.5. Interpolating vector and effective sparsity for k = 4. For k = 4 and i ∈ S±, we
take a scaled and discrete version of the function q : [0,1/2] → [0,1] defined (up to rounding
errors) as

q(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − (18.62)x7/2, 0 ≤ x ≤ 1

6
,

(44.34)x4 − (46.19)x3 + (10.16)x2 − (1.10)x + 1.05,
1

6
≤ x ≤ 1

3
,

−(12.93)(1/2 − x)3 + (4.23)(1/2 − x),
1

3
≤ x ≤ 1

2
.

The function q, illustrated in Figure 1, is decreasing with q, q′, q′′ q′′′ continuous. It
was calculated by solving 8 equations with 8 unknowns, following the description in Sec-
tion 3.3.1. We can now reason as in Section 3.3.4 to obtain for λ satisfying (8) the bound (3)
for the effective sparsity where ck and Ck are appropriate constants.

3.4. Proof of Theorem 1.1. Taking N̄−S as the direct product of N−S and an appropriate
space spanned by (k − 1)s additional variables, we derived in Section 3.1.1 a bound for the
length of the columns of the dictionary �−S . With these, we saw that the requirement (6)
for λ can is true when (8) holds. Then in Sections 3.3.2, 3.3.3, 3.3.4 and 3.3.5, we derived a
bound for the effective sparsity �2(S, qS,w−S) when (8) is strengthened to (10). Theorem 1.1
thus follows from the adaptive bound in Theorem 2.2 for the general analysis problem.
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FIG. 1. The function q : [0,1/2] → [0,1] for k = 4.

4. Conclusion. The sharp oracle inequalities with fast rates show that for k ∈ {1,2,3,4}
the estimator adapts to the unknown number of jumps in the (k − 1)th discrete derivative
and provide finite-sample prediction bounds. In particular, these show that the prediction
error of the total variation regularized estimator is upper bounded by the optimal trade-off
between approximation error and estimation error. The key tool for providing these results is
bounding the effective sparsity using interpolating vectors. However, we are not able to prove
that the approach we use to find an interpolating vector for k ∈ {1,2,3,4} gives a suitable
interpolating vector for general k. Thus, although for each given finite k we can check by
computer whether our construction gives an interpolating vector; the problem remains open
for general k.

The approach we use allows extensions to other problems as well, for instance, higher
dimensional extensions. See Ortelli and van de Geer (2020a) where the Vitali variation serves
as regularizer. For total variation on graphs, one may apply the fact that the dictionary can be
formed by counting the number of times an edge is used when traveling from a given node to
all other nodes. This can then be done on the subgraphs formed by removing the active edges.
For graphs with cycles there are several paths from one node to another. One may then choose
those that allow for a smooth interpolating vector. Finally, the approach can be extended to
estimation problems with �1-penalty on the discrete derivative but loss functions other than
least squares (see van de Geer (2020) for the case of logistic loss with total variation penalty
on the canonical parameter).
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SUPPLEMENTARY MATERIAL

Supplement to “Prediction bounds for higher order total variation regularized least
squares” (DOI: 10.1214/21-AOS2054SUPP; .pdf). In Appendix A, we prove Theorem 2.2.
In Appendix B, we provide proofs for Section 3.1 and in Appendix C for Section 3.3.
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