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We study the problem of independence testing given independent and
identically distributed pairs taking values in a σ -finite, separable measure
space. Defining a natural measure of dependence D(f ) as the squared L2-
distance between a joint density f and the product of its marginals, we first
show that there is no valid test of independence that is uniformly consistent
against alternatives of the form {f : D(f ) ≥ ρ2}. We therefore restrict at-
tention to alternatives that impose additional Sobolev-type smoothness con-
straints, and define a permutation test based on a basis expansion and a U -
statistic estimator of D(f ) that we prove is minimax optimal in terms of its
separation rates in many instances. Finally, for the case of a Fourier basis on
[0,1]2, we provide an approximation to the power function that offers several
additional insights. Our methodology is implemented in the R package USP.

1. Introduction. Independence is a fundamental concept in both probability and statis-
tics; it distinguishes the former from a mere branch of measure theory, and underpins both
statistical theory and the way practitioners think about modelling. For statisticians, it is fre-
quently important to ascertain whether or not assumptions of independence are realistic, both
to determine whether certain theoretical properties of procedures can be expected to hold,
and to assess the goodness-of-fit of a statistical model.

Classical approaches to independence testing have focused on the simple setting of uni-
variate Euclidean data, and have often only had power against restricted classes of alterna-
tives. These include tests based on Pearson’s correlation (e.g., Pearson (1920)), Spearman’s
rank correlation coefficient (Spearman (1904)), Kendall’s tau (Kendall (1938)) and Hoeffd-
ing’s D (Hoeffding (1948)). However, motivated by a desire to handle the more general data
types that are ubiquitous in modern-day practice, as well as to have power against broader
classes of alternatives, the topic of independence testing has undergone a renaissance in re-
cent years. Since, in settings of interest, no uniformly most powerful test exists (see The-
orem 1 below and the surrounding discussion), several different perspectives and new tests
have emerged, such as those based on the Hilbert–Schmidt independence criterion (Gretton
et al. (2005), Li and Yuan (2019), Meynaoui et al. (2019), Pfister et al. (2018)), distance
covariance (Sejdinovic et al. (2013), Székely, Rizzo and Bakirov (2007)), optimal transport
and multivariate ranks (Deb and Sen (2019), Shi, Drton and Han (2020)), copula transforms
(Kojadinovic and Holmes (2009)), sample space partitioning (Heller et al. (2016)) and near-
est neighbour methods (Berrett and Samworth (2019)). For practical studies with discrete
data, Pearson’s chi-squared independence test remains ubiquitous in the scientific literature,
despite the drawback that its size guarantees rely on pointwise asymptotic arguments that
may fail to control the Type I error in finite samples; see Section 7 below. Independence tests
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for continuous data are also common in applications such as linguistics (Nguyen and Eisen-
stein (2017)), genetics (Steuer et al. (2002)) and public health (Reshef et al. (2011)), and have
also been applied to functional data arising from credit card activity and geomagnetic records
(Gabrys and Kokoszka (2007)).

This plethora of approaches gives rise to natural theoretical questions about the fundamen-
tal statistical difficulty of independence testing. In the setting where the marginal distributions
are both univariate, early asymptotic results on minimax separation rates over certain classes
of alternatives are given in Ingster (1989), Ermakov (1990) and Ingster (1996). There has
been recent work on multivariate settings (Li and Yuan (2019), Meynaoui et al. (2019)), but
many open questions remain.

Another issue with several of the tests mentioned above is that the asymptotic distribution
of the test statistic under the null hypothesis of independence depends on unknown features
of the relevant marginal distributions, so it is difficult to obtain an appropriate critical value.
An attractive approach, therefore, is to use a permutation test, which uses permutations to
mimic the null behaviour of the test statistic. Though the principle has been known for many
decades (e.g., Pitman (1938); Fisher ((1935), Chapter 21)), permutation tests are becoming
increasingly popular in modern statistics and machine learning (e.g., A/B testing), due to
their ease of use and their guaranteed finite-sample Type I error control across the entire
null hypothesis parameter space, assuming only that the data are exchangeable under the
null. Besides (unconditional) independence testing, they have also been studied in problems
such as conditional independence testing (Berrett et al. (2020)), two-sample testing (Chung
and Romano (2013)) and changepoint analysis (Antoch and Hušková (2001)). We also high-
light the work of Chung and Romano (2016), who show how a permutation test based on a
U -statistic can extend the scope of the two-sample Wilcoxon test to null hypotheses of the
form θ(P,Q) = θ0 (where P and Q are the two underlying distributions), providing point-
wise asymptotic size guarantees in general, and exact size guarantees when P = Q. For an
overview of the study of permutation tests see, for example, Lehmann and Romano (2005)
and Pesarin and Salmaso (2010).

In the context of permutation tests for independence, Romano (1989) considered a class of
plug-in test statistics of the form Tn = n1/2δ(P̂n, P̂

X
n P̂ Y

n ), where δ(P,Q) = supV ∈V |P(V )−
Q(V )| for a Vapnik–Chervonenkis class of sets V , and where P̂n, P̂ X

n and P̂ Y
n are the em-

pirical distributions of the data pairs and their marginals, respectively. Fixing a sequence of
alternatives (Pn), he showed that, under the condition that PPn(Tn ≤ t) → H(t) for some
continuous function H , the asymptotic power of his permutation test coincides with that of
the test that uses the true critical value. In the case of univariate marginals, Albert ((2015),
Chapter 4) provides upper bounds on the minimax separation over Besov spaces using a test
based on aggregrating many permutation tests. See also Albert et al. (2015) and Berrett and
Samworth (2019). Despite these aforementioned works, however, there remains great interest
in understanding better the power properties of permutation tests in the context of nonpara-
metric independence testing. Indeed, shortly after an earlier version of this paper was made
publicly available, Kim, Balakrishnan and Wasserman (2020) posted a complementary study
of the power properties of permutation tests, with a greater focus on concentration inequali-
ties for the test statistics as opposed to distributional results.

In this paper, we study the problem of independence testing in a general framework, where
our data consist of independent copies of a pair (X,Y ) taking values in a separable mea-
sure space X × Y , equipped with a σ -finite measure μ. Assuming that the joint distribu-
tion of (X,Y ) has a density f with respect to μ, we may define a measure of dependence
D(f ), given by the squared L2(μ) distance between the joint density and the product of its
marginal densities. This satisfies the natural requirement that D(f ) = 0 if and only if X and
Y are independent. In fact, however, our hardness result in Theorem 1 reveals that it is not
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possible to construct a valid independence test with nontrivial power against all alternatives
satisfying a lower bound on D(f ). This motivates us to introduce classes satisfying an addi-
tional Sobolev-type smoothness condition as well as boundedness conditions on the joint and
marginal densities.

The first main goal of this work is to determine the minimax separation rate of indepen-
dence testing over these classes, and to this end, we define a new permutation test of inde-
pendence based on a U -statistic estimator of D(f ). We refer to this test hereafter as the USP
test, short for U -Statistic permutation test. Theorem 2 in Section 3 provides a very general
upper bound on the separation rate of independence testing; the framework is broad enough
to include both discrete and absolutely continuous data, as well as data that may take values
in infinite-dimensional spaces, for instance. We show how the bound can be simplified in
many special cases of interest, and, in Section 4, how to construct adaptive versions of our
tests that incur only a small loss in effective sample size. Moreover, in Section 5, we go on
to provide matching lower bounds in several instances, allowing us to conclude that our USP
test attains the minimax optimal separation rate for independence testing in such settings. In
Section 6, we elucidate an approximation to the power function of our test at local alterna-
tives, thereby providing a very detailed description of its properties. Numerical properties of
our procedure are studied in Section 7: we first show how an alternative representation of
our test statistic dramatically reduces the computational complexity of our procedure, and
then present a simulation study that reveals the strong empirical performance of our test in
different settings. Section 8 provides further discussion. Proofs of some of our main results
are given in Section 9; for other results, designated with (BKS(2020)), the proofs appear in
the supplementary material (Berrett, Kontoyiannis and Samworth (2021)), where auxiliary
results (labelled with an ‘S’ prefix) are also given. Our methodology is implemented in the R
package USP (Berrett, Kontoyiannis and Samworth (2020)).

Further contributions of this paper are to introduce new sets of tools for studying both per-
mutation tests and U -statistics; we believe both will find application beyond the scope of this
work, in particular because many popular measures of dependence, such as distance covari-
ance and the Hilbert–Schmidt independence criterion, can be estimated using U -statistics.
Specifically, in the proof of Theorem 2, we develop moment bounds for U -statistics com-
puted on permuted data sets. Moreover, Proposition 18 provides normal approximation error
bounds in Wasserstein distance for degenerate U -statistics computed on permuted data sets
(using Stein’s method, and extending earlier results for unpermuted data, e.g., de Jong (1990),
Döbler and Peccati (2019), Rinott and Rotar (1997)), and is the basis for our local power
function result (Theorem 16). Finally, our minimax lower bound (Lemma 11) may also be
of independent interest, in that it provides a general approach to constructing priors over the
alternative hypothesis class whose distance from the null can be explicitly bounded.

Notation. We write N = {1,2,3, . . .}, N0 = N ∪ {0} and, for n ∈ N, let [n] := {1, . . . , n}.
We also write [∞] := N. We write a � b if there exists a universal constant C > 0 such that
a ≤ Cb, and write, for example, a �x b if there exists C > 0, depending only on x, such that
a ≤ Cb. We similarly define a � b and a �x b, and write a � b if a � b and a � b, as well
as a �x b if a �x b and a �x b.

Let Sn denote the set of permutations of [n]. For a measure space (Z,C, ν) define L2(ν) :=
{f : Z → R : ∫

Z f 2 dν < ∞}, with corresponding inner product 〈f,g〉L2(ν) := ∫
Z fg dν and

norm ‖f ‖L2(ν) := 〈f,f 〉1/2
L2(ν)

. For a function f : Z →R, we write ‖f ‖∞ := supz∈Z |f (z)| ∈
[0,∞]; if it is also C-measurable, we write ess infz∈Z f (z) := sup{y ∈ R : ν(f −1(−∞, y)) =
0}.

Let � denote the standard normal distribution function and let �̄ := 1 − �. Given a sam-
ple of independent and identically distributed random variables (X1, Y1), . . . , (Xn,Yn) and a
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σ(X1, Y1, . . . ,Xn,Yn)-measurable random variable W , we write EP (W) or Ef (W) for the
expectation of W when (X1, Y1) has distribution P or density function f . Given probability
measures μ and ν on Z , we write dTV(μ, ν) := supC∈C |μ(C)−ν(C)| for their total variation
distance and, if both μ and ν are absolutely continuous with respect to another measure λ,

then we write dχ2(μ, ν) = {∫Z (dμ/dλ)2

dν/dλ
dλ− 1}1/2 for the square root of their χ2-divergence.

If Z = R, then we write

dW(μ, ν) := inf
(X,Y )∼(μ,ν)

E|X − Y |

for the Wasserstein distance between μ and ν, where the infimum is taken over all pairs
(X,Y ) defined on the same probability space with X ∼ μ and Y ∼ ν. When Z = R, we will
also write

dK(μ, ν) := sup
z∈R

∣∣μ((−∞, z]) − ν((−∞, z])∣∣
for the Kolmogorov distance between μ and ν. If X ∼ μ and Y ∼ ν, we sometimes write
dW(X,Y ) and dK(X,Y ) as shorthand for dW(μ, ν) and dK(μ, ν) respectively. We use 
 to
denote the symmetric difference operation on sets, so that A
B := (A ∩ Bc) ∪ (Ac ∩ B).

Finally, for x = (x1, . . . , xd) ∈ R
d and q ∈ [1,∞), we let ‖x‖q := (

∑d
j=1 |xj |q)1/q , with

the shorthand ‖x‖ := ‖x‖2, and for a matrix A ∈ R
d1×d2 , we let ‖A‖op := supx:‖x‖≤1 ‖Ax‖

and ‖A‖F := {∑d1
j=1

∑d2
k=1 A2

jk}1/2 denote its operator and Frobenius norms, respectively.

2. Problem set-up and preliminaries. Let (X ,A,μX) and (Y,B,μY ) be separable,1

σ -finite measure spaces. In discrete settings, that is, when X is countable, μX would typically
be counting measure on X ; more generally, it may be the relevant Lebesgue measure when X
is a Euclidean space, or an appropriate measure on basis coefficients in infinite-dimensional
examples such as Example 8 below. Both L2(μX) and L2(μY ) are then separable Hilbert
spaces,2 so there exist orthonormal bases (pX

j )j∈J and (pY
k )k∈K of L2(μX) and L2(μY )

respectively, where J and K are countable indexing sets. Writing μ := μX ⊗ μY for the
product measure on X × Y , the product space L2(μ) is also a separable Hilbert space,3 and
has an orthonormal basis given by (pjk)j∈J ,k∈K, where pjk(·,∗) := pX

j (·)pY
k (∗).

We may now define the subset F of L2(μ) that consists of all density functions, that is,

F :=
{
f ∈ L2(μ) : ess inf

(x,y)∈X×Y
f (x, y) ≥ 0,

∫
X×Y

f dμ = 1
}
.

Given f ∈ F , we may define the marginal density fX by

fX(x) :=
∫
Y

f (x, y) dμY (y),

and we may analogously define fY . From now on, we will work over the restricted space
F∗ := {f ∈ F : fX ∈ L2(μX), fY ∈ L2(μY )}, though we note that when μX and μY are finite
measures, we have F∗ = F . For f ∈F∗, j ∈ J and k ∈ K, we may define the coefficients

ajk(f ) :=
∫
X×Y

fpjk dμ, aj•(f ) :=
∫
X

fXpX
j dμX, a•k(f ) :=

∫
Y

fY pY
k dμY .

1Recall that we say a measure space (Z,C, ν) is separable if, when equipped with the pseudo-metric d(A,B) :=
ν(A
B), it has a countable dense subset.

2Since we were unable to find this precise statement in the literature, we provide a proof in Lemma S2.
3Likewise, we prove this statement in Lemma S3.
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Then

f = ∑
j∈J

∑
k∈K

ajk(f )pjk, fX = ∑
j∈J

aj•(f )pX
j , fY = ∑

k∈K
a•k(f )pY

k .

We may therefore define the measure of dependence

D(f ) :=
∫
X×Y

{
f (x, y) − fX(x)fY (y)

}2
dμ(x, y)

= ∑
j∈J ,k∈K

{
ajk(f ) − aj•(f )a•k(f )

}2
,

which, for (X,Y ) ∼ f , has the property that D(f ) = 0 if and only if X ⊥⊥ Y .
Given a sample (X1, Y1), . . . , (Xn,Yn) of independent and identically distributed copies

of the pair (X,Y ), we wish to test the null hypothesis H0 : X ⊥⊥ Y of independence. A ran-
domised independence test is measurable function ψ : (X × Y)n → [0,1], with the inter-
pretation that, after observing (X1, Y1, . . . ,Xn,Yn) = (x1, y1, . . . , xn, yn), we reject H0 with
probability ψ(x1, y1, . . . , xn, yn). We write � for the set of all such randomised independence
tests. Further, define the null space P0 as the set of all distributions on X ×Y of pairs (X,Y )

such that X ⊥⊥ Y , and, for a given α ∈ (0,1), define the set of valid size-α independence tests

(1) �(α) :=
{
ψ ∈ � : sup

P∈P0

EP (ψ) ≤ α
}
.

The first part of Theorem 1 below provides a preliminary result on the hardness of the
independence testing problem when the alternative hypothesis H1 consists of all densities f ∈
F∗ of (X,Y ) that satisfy a lower bound constraint on D(f ). In fact, the result can be stated
more generally, allowing in addition for the possibility of a constraint on the smoothness of
the alternatives that we consider. To this end, for an array θ = (θjk)j∈J ,k∈K ∈ [0,∞]J×K,
we define

Sθ (f ) := ∑
j∈J

∑
k∈K

θ2
jk

{
ajk(f ) − aj•(f )a•k(f )

}2
.

Observe that when θ = 0J×K, any nonnegative upper bound on Sθ (f ) becomes vacuous,
so that no smoothness constraint is imposed. This definition of smoothness is motivated by
the nonparametric statistics literature (e.g., Laurent (1996)). An attractive feature is that, in
contrast to some prior literature, smoothness is only imposed on the difference between the
joint density and the product of the marginals, rather than on the individual densities them-
selves; Meynaoui et al. (2019) also adopt a similar approach to ours in this respect. At a high
level, the first part of Theorem 1 is inspired by the work of Janssen (2000) and Shah and
Peters (2020) on the hardness of goodness-of-fit testing and conditional independence testing
respectively, though the proofs are completely different. The second part complements the
first, as discussed below. Note that when μX is a probability measure, the constant function
1 belongs to L2(μX), so can be included in our basis (as below).

THEOREM 1. Suppose that μX and μY are probability measures and that there exist
j0 ∈ J and k0 ∈ K such that pX

j0
(x) = pY

k0
(y) = 1 for all x ∈ X and y ∈ Y . Let n ∈ N and

α ∈ [0,1], and let ψ ∈ � be such that Epj0k0
(ψ) ≤ α. Let θ = (θjk)j∈J ,k∈K ∈ [0,∞)J×K be

given and, for T ∈ [0,∞), define

Mθ (T ) := {
(j, k) ∈ (

J \ {j0}) × (
K \ {k0}) : θjk ≤ T

}
.
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Let θ := infj∈J ,k∈K θjk . Then, for any ε > 0, any ρ ∈ (0,1/ supj,k ‖pjk‖∞] and any r ∈
(θρ,∞), there exists f ∗ ∈ F with Sθ (f

∗) ≤ r2 and D(f ∗) = ρ2 such that

Ef ∗(ψ) ≤ α + ε +
[{(1 + ρ2)n − 1}α

|Mθ (r/ρ)|
]1/2

.

Moreover, there exists a permutation test ψf ∗ ∈ �(α) such that given any β ∈ (0,1 − α), we
can find C = C(α,β) > 0 with the property that Ef ∗(ψf ∗) ≥ 1 − β whenever n > C/ρ2.

As a first conclusion, we can draw from Theorem 1, consider taking θ = 0J×K, so that
|Mθ (r/ρ)| = (|J | − 1)(|K| − 1). In this case, Theorem 1 shows that in infinite-dimensional
problems (where |J × K| = ∞) with probability measures as base measures, there are no
valid tests of independence that have uniformly nontrivial power against alternatives of the
form {f ∈ F : D(f ) ≥ ρ2}, at least for ρ > 0 sufficiently small. The second part of the theo-
rem then implies that in this setting there is no uniformly most powerful test. Thus, to develop
a theory of minimax separation rates for independence testing, it is necessary to make addi-
tional assumptions about the structure of the alternative hypothesis. More generally, under the
conditions of Theorem 1, whenever the set Mθ (r/ρ) is infinite, there are no valid uniformly
nontrivial independence tests against alternatives f ∈ F with Sθ (f ) ≤ r2 and D(f ) ≥ ρ2.
We will therefore assume the following in much of our subsequent work:

(A1) The sets {(j, k) ∈ J ×K : θjk ≤ T } are finite for each T ∈ (0,∞).

Motivated by Theorem 1 above, for � := [0,∞]J×K×(0,∞)×[1,∞), for ξ = (θ, r,A) ∈ �

and for ρ > 0, we will consider the space of alternatives given by

Fξ (ρ) := {
f ∈ F : D(f ) ≥ ρ2, Sθ (f ) ≤ r2,max

(‖f ‖∞,‖fX‖∞,‖fY ‖∞
) ≤ A

}
.

Although we make assumptions about the smoothness of our alternatives, we will not make
any assumptions about the null distributions, and the fact that we are using a permutation
test will guarantee uniform, nonasymptotic control of the probability of Type I error. In other
words, we will prove that our test ψ belongs to �(α) in (1).

Given n ∈ N, α ∈ (0,1), ξ = (θ, r,A) ∈ � and ρ > 0 we define the minimax risk with
respect to Fξ (ρ) as

R(n,α, ξ, ρ) := α + inf
ψ∈�(α)

sup
f ∈Fξ (ρ)

Ef (1 − ψ),

with the convention that R(n,α, ξ, ρ) := α if Fξ (ρ) = ∅. If we are also given a desired
probability of Type II error β ∈ (0,1 − α), then we can consider the minimax separation
radius

ρ∗(n,α,β, ξ) := inf
{
ρ > 0 :R(n,α, ξ, ρ) ≤ α + β

}
.

3. Upper bounds. We now introduce our USP test that will allow us to establish upper
bounds on the minimax separation ρ∗. This is based on a U -statistic estimator of D(f ) with
kernel

h
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
:= ∑

(j,k)∈M

{
pjk(x1, y1)pjk(x2, y2) − 2pjk(x1, y1)pjk(x2, y3)

+ pjk(x1, y2)pjk(x3, y4)
}
,

(2)

where M ⊆ J × K is a truncation set to be chosen later. The motivation for this definition
comes from the observation that for any f ∈ F∗ and when M = J ×K, we have

(3) Ef

{
h
(
(X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)

)} = D(f );
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moreover, as we will see in the proof of Theorem 2 below, whenever � is a uniformly random
element of Sn that is independent of the data, we have

Ef

{
h
(
(X1, Y�(1)), (X2, Y�(2)), (X3, Y�(3)), (X4, Y�(4))

)} = 0.

To reduce the effects of noise accumulation in the estimation of the summands, it will typi-
cally be necessary to choose M in (2) to be a proper subset of J × K. The equality in (3)
then no longer holds exactly for every f ∈ F∗, but an appropriate choice of M allows us to
control the bias-variance trade-off.

For m ≥ 2, let Im := {(i1, . . . , im) ∈ [n]m : i1, . . . , im all distinct}. For x = (x1, . . . , xn) ∈
X n and y = (y1, . . . , yn) ∈ Yn, it is convenient to define

Tx,y := {
(xi, yi) : i ∈ [n]},

and for σ ∈ Sn, set T (σ )
x,y := {(xi, yσ(i)) : i ∈ [n]}. Given independent pairs TX,Y := {(Xi, Yi) :

i = 1, . . . , n} with n ≥ 4, we consider the test statistic

D̂n = D̂M
n (TX,Y ) := 1

4!(n4)
∑

(i1,...,i4)∈I4

h
(
(Xi1, Yi1), . . . , (Xi4, Yi4)

)
.

To define the critical value for our test, let B ∈ N and generate an independent sequence of
uniform random permutations �1, . . . ,�B taking values in Sn, independently of TX,Y . It is
important to note that we can typically choose B to be much smaller than n! (the number of
distinct permutations in Sn); indeed, the choice B = 99 is common for permutation tests. For
each b ∈ [B], we construct the null statistics

(4) D̂(b)
n := D̂M

n

(
T (�b)

X,Y

)
.

Finally, we can define the p-value

(5) P :=
1 + ∑B

b=1 1{D̂n≤D̂
(b)
n }

1 + B
,

and reject the null hypothesis if P ≤ α. Formally, this corresponds to the randomised test
ψα ∈ � , given by

ψα(Tx,y) := P

(
1 +

B∑
b=1

1{D̂M
n (Tx,y)≤D̂M

n (T (�b)
x,y )} ≤ (1 + B)α

)
,

where the only randomness here is in the permutations �1, . . . ,�B . Then, on observing TX,Y ,
we do indeed reject H0 with probability ψα(TX,Y ). Under the null hypothesis, the sequence
of data sets TX,Y ,T (�1)

X,Y , . . . ,T (�B)
X,Y is exchangeable, so every ordering of the components

of (D̂M
n (TX,Y ), D̂M

n (T (�1)
X,Y ), . . . , D̂M

n (T (�B)
X,Y )) is equally likely if we break ties uniformly

at random. In particular, the rank of D̂M
n (TX,Y ) among these B + 1 observations, which

is a lower bound on the numerator in (5), is uniformly distributed on {1, . . . ,B + 1}, so
ψα ∈ �(α).

A naive implementation of the test has computational complexity O(n4B|M|), due to
the need to calculate fourth-order U -statistics. However, using an alternative representa-
tion of our test statistic inspired by Song et al. (2012), we can reduce the complexity to
O(n2B(|J0| + |K0|) when M = J0 ×K0. See Section 7.1 for further details.

The following theorem provides a general upper bound on the minimax separation rate,
and is obtained using the above test.
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THEOREM 2. Fix α,β ∈ (0,1) such that α + β < 1 and let ξ = (θ, r,A) ∈ �. Then there
exists C = C(α,β,A) > 0 such that when n ≥ 16, we have

ρ∗(n,α,β, ξ) ≤ C inf
M⊆J×K

max
{

r

inf{θjk : (j, k) /∈ M} ,
min(‖h‖1/2∞ , |M|1/4)

n1/2 ,
1

n1/2

}
.

An explicit upper bound showing the dependence of C on its arguments is given in (29)
in the proof of Theorem 2. To give a heuristic explanation of the terms in the bound in
Theorem 2, observe that in order for our test to have high power, we want ρ2 to dominate
the sum of the bias of the test statistic and its standard deviation under the null. The first
term represents this bias, which is induced by truncating the sum in (2) to indices that lie
in M. The second term arises from bounding the variance of our U -statistic in terms of the
symmetrised kernel h̄, defined formally in (16) below. More precisely, under the null, our
test statistic is a degenerate U -statistic, that is, E{h̄((x, y), (X2, Y2), (X3, Y3), (X4, Y4))} =
0 for all x ∈ X , y ∈ Y , so its variance can be bounded above by a constant multiple
of n−2 Var{h̄((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))}. This latter expression can in turn be
bounded by min(‖h‖2∞, |M|)/n2. The final term in the maximum represents the parametric
rate of convergence, and is generally unavoidable.

3.1. Discrete case. As a first application of Theorem 2, consider the relatively simple
problem of testing independence with discrete data, where for some J,K ∈ N ∪ {∞} we
have X = [J ] and Y = [K] and we take μX and μY to be the counting measures on X and Y
respectively. For j, x ∈ [J ] and k, y ∈ [K], we can define the basis functions pX

j (x) := 1{x=j}
and pY

k (y) := 1{y=k}. In this case, we have ‖h‖∞ ≤ 2 independently of M, and we may take
M = [J ] × [K] so that there is in fact no truncation and our test statistic is an unbiased
estimator of D. Note here that, since μX and μY are not probability measures, Theorem 1
does not apply, and we will see that no structural assumptions are necessary on the alternative
hypothesis. Indeed, we take ξ = (0[J ]×[K],1,1) ∈ �, so that our alternative hypothesis class
is simply

Fξ (ρ) =
{
f ∈F : ∑

j∈[J ],k∈[K]

{
f (j, k) − fX(j)fY (k)

}2 ≥ ρ2
}
.

The following result is a straightforward corollary of Theorem 2, noting that the cases where
n < 16 can be handled using the fact that ρ∗(n,α,β, ξ) ≤ 21/2 for all n.

COROLLARY 3. Fix α,β ∈ (0,1) such that α + β < 1. Then there exists C = C(α,β) ∈
(0,∞) such that

ρ∗(n,α,β, ξ) ≤ Cn−1/2.

This behaviour should be contrasted with that found in Diakonikolas and Kane (2016),
where the strength of the dependence is measured by the L1 distance rather than the L2
distance, and where the minimax optimal separation rates depend on the alphabet sizes; in

fact, they are given by J 1/4K1/4

n1/2 max(1, J 1/4/n1/4,K1/4/n1/4).
In fact, in this discrete setting, we can give a relatively simple, explicit form for the test.

To this end, for j ∈ [J ], k ∈ [K], let Njk := ∑n
i=1 1{Xi=j,Yi=k}, let Nj+ := ∑K

k=1 Njk and
let N+k := ∑J

j=1 Njk . Then, omitting terms that only depend on Nj+ and N+k (and hence
remain fixed under permutation, so are irrelevant for the test), our test statistic becomes

T̂n := 1

n(n − 3)

J∑
j=1

K∑
k=1

(
Njk − Nj+N+k

n

)2
− 4

n2(n − 2)(n − 3)

J∑
j=1

K∑
k=1

NjkNj+N+k.
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Thus, the test statistic can be computed using only the contingency table counts, as opposed
to the original data. Moreover, the permutated data sets may also be generated using only
these counts: indeed, writing N

(1)
jk for the (j, k)th cell count under an independent, uniformly

random permutation of the original data, we have

P
((

N
(1)
jk

) = (njk)|TX,Y

) = (
∏J

j=1 Nj+!)(∏K
k=1 N+k!)

n!∏J
j=1

∏K
k=1 njk!

,

whenever (njk) is such that
∑K

k=1 njk = Nj+ for all j ∈ [J ] and
∑J

j=1 njk = N+k for all k ∈
[K]. This formula simplifies the computation of the permuted data sets, and one can sample
from this distribution using Patefield’s algorithm (Patefield (1981)), which is implemented in
the R function r2dtable.

3.2. Sobolev and infinite-dimensional examples. To apply Theorem 2 in general, when a
useful bound on ‖h‖∞ is not available, we instead control the right-hand side by controlling
|M|. We remark that, when there exist j0 ∈ J and k0 ∈ K such that pX

j0
(x) = pY

k0
(y) = 1

for all x, y, then aj0k = a•k , ajk0 = aj•, aj0• = 1, a•k0 = 1, so the j = j0 and k = k0 terms
do not contribute to the value of D(·) and Sθ (·) does not depend on (θj0k)k∈K or (θjk0)j∈J .
Thus the choice of M in the definition of D̂M

n does not need to contain any (j, k) with
j = j0 or k = k0. For notational convenience, we will adopt the convention that, in such cases,
θjk = ∞ if either j = j0 or k = k0. When (A1) holds it is possible to arrange {θjk : θjk < ∞}
in increasing order, so that there exists a bijection ω : N → {(j, k) : θjk < ∞} such that
θω(1) ≤ θω(2) ≤ · · · . Given t ∈ (0,∞), define4

m0(t) := min
{
m ∈ N : m1/2θ2

ω(m) > t
}
.

We can now simplify the conclusion of Theorem 2 under (A1).

COROLLARY 4. Fix α,β ∈ (0,1) such that α + β < 1 and let ξ = (θ, r,A) ∈ �. Assume
(A1). Then there exists C = C(α,β,A) > 0 such that when n ≥ 16, we have

(6) ρ∗(n,α,β, ξ) ≤ C inf
m∈Nmax

{
r

θω(m)

,
m1/4

n1/2

}
≤ Cm

1/4
0 (nr2)

n1/2 .

We now further specialise our upper bound by making a specific choice of J , K and
weights (θjk : j ∈ J , k ∈ K); such a choice yields a concrete upper bound on the minimax
rate of independence testing for densities lying in a Sobolev space, as we illustrate in the
example that follows. See Example 13 and Proposition 14 below for a discussion of optimality
of this bound.

COROLLARY 5. Fix α,β ∈ (0,1) such that α + β < 1, fix dX, dY ∈ N and sX, sY , r,

A > 0. Writing J = N
dX

0 , K = N
dY

0 , set θjk = ‖j‖sX
1 ∨ ‖k‖sY

1 whenever j �= 0[dX] and
k �= 0[dY ] and θjk = ∞ otherwise. Then, with θ = {θjk : j ∈ J , k ∈ K}, there exists C =
C(dX,dY ,α,β,A) > 0 such that if n ≥ 16 and nr2 ≥ 1, then

ρ∗(n,α,β, ξ) ≤ C

(
rd

n2s

)1/(4s+d)

,

where d := dX + dY , s := d/(dX/sX + dY /sY ) and ξ = (θ, r,A).

4Here and throughout, if ω(m) = (j, k), we interpret θω(m) as θjk and pω(m) as pjk .
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The upper bound in Corollary 5 is obtained using our U -statistic permutation test. Here,
θω(m) �sX,sY ,dX,dY

ms/d , so we can balance the two terms in the maximum in Corollary 4 by
taking M = {ω(1), . . . ,ω(m)} with m �sX,sY ,dX,dY

(nr2)2d/(4s+d). A natural application of
(a minor variant of) this corollary is to absolutely continuous data, which for simplicity we
restrict to lie in [0,1]dX × [0,1]dY . In this setting, the Fourier basis functions are an obvious
choice.

EXAMPLE 6. Let X = [0,1]dX and Y = [0,1]dY , equipped with dX-dimensional
Lebesgue measure μX and dY -dimensional Lebesgue measure μY , respectively. Taking
J := {(a,m) : a ∈ {0,1},m ∈ N

dX

0 } \ {(1,0[dX])} and K := {(a,m) : a ∈ {0,1},m ∈ N
dY

0 } \
{(1,0[dY ])}, we can define the orthonormal Fourier basis functions5 for L2([0,1]dX) given by
pX

0,0 := 1 and for m = (m1, . . . ,mdX
) �= 0[dX],

(7) pX
a,m(x1, . . . , xdX

) := 21/2 Re

(
e−aπi/2

dX∏
�=1

e−2πim�x�

)
.

The Fourier basis functions {pY
a,m : (a,m) ∈ K} for L2([0,1]dY ) are defined similarly, but

with dY replacing dX . For j = (aX,mX) ∈ J , k = (aY ,mY ) ∈ K and sX, sY > 0, we can then
take θjk = ‖mX‖sX

1 ∨ ‖mY ‖sY
1 , θ = {θjk : j ∈ J , k ∈ K} and ξ = (θ, r,A) ∈ � to conclude

from Corollary 4 that ρ∗(n,α,β, ξ) ≤ C(rd/n2s)1/(4s+d) when n ≥ 16 and nr2 ≥ 1, as in
Corollary 5.

We mention here that Li and Yuan (2019) and Meynaoui et al. (2019) consider Gaus-
sian kernel-based Hilbert–Schmidt Independence Criterion tests of independence in similar
Sobolev settings to that in Example 6. Assuming the same level of Sobolev smoothness s for
both the joint and marginal distributions, Li and Yuan (2019) show that the critical consis-
tency level is of order n−2s/(4s+d) over tests that have asymptotically nominal size. Meynaoui
et al. (2019) obtain the same rate in a nonasymptotic setting and only impose smoothness
conditions on the difference between the joint and marginal distributions, at the expense of
restricting the smoothness s to be at most 2, and having bounded null densities.

In fact, Corollary 4 also provides explicit upper bounds for certain infinite-dimensional
models. Corollary 7 below illustrates this for a particular choice of J , K and weights (θjk :
j ∈ J , k ∈ K).

COROLLARY 7 (BKS(2020)). Let N<∞
0 := {m = (m1,m2, . . .) ∈ N

N

0 : ∑∞
�=1 1{m� �=0} <

∞}, and let J = K := {(a,m) : a ∈ {0,1},m ∈ N
<∞
0 } \ {(1,0)}. For m = (m1,m2, . . .) ∈

N
<∞
0 , write |m| := max�∈N �2m�, and if j = (a,m) ∈ J , write |j | := |m|. For j ∈ J , k ∈ K

with |j | ∧ |k| > 0, and sX, sY > 0, set

θjk = exp
(
sX|j |1/2) ∨ exp

(
sY |k|1/2)

,

and if either |j | = 0 or |k| = 0 then set θjk = ∞. Define the increasing function M : [0,∞) →
[0,∞) by

M(t) := exp

( ∞∑
�=1

log
(

1 +
⌊

t

�2

⌋))
− 1

5The fact that these functions form an orthonormal basis for L2([0,1]dX ) follows from a very similar (in fact,
slightly simpler) argument to that given in Lemma S4, which relates to Example 8 below. The main difference is
that in this example our functions are defined on finite-dimensional spaces.
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and write

m0,sX,sY (t) := min
{
m ∈N : M

(
log2(t/m1/2)

4s2
X

)
M

(
log2(t/m1/2)

4s2
Y

)
<

m

4

}
.

(i) Fix α,β ∈ (0,1) such that α +β < 1 and fix r, sX, sY ,A > 0. Then, with ξ = (θ, r,A) ∈
� there exists C = C(α,β, sX, sY ,A) > 0 such that when n ≥ 16 and nr2 ≥ C we have

ρ∗(n,α,β, ξ) ≤ Cm
1/4
0,sX,sY

(nr2)

n1/2 .

(ii) Writing s := 2/(s−1
X + s−1

Y ) and given ε ∈ (0,4s), there exists C ′ = C′(sX, sY , ε) > 0
such that when t ≥ C′ we have

t
2c0−ε

2s+c0 ≤ m0,sX,sY (t) ≤ t
2c0+ε

2s+c0 ,

where c0 := ∑∞
�=1{�−1/2 − (� + 1)−1/2} log(1 + �) = 1.65 . . . .

We will see in Proposition 15 below that the rate given in the first part of Corollary 7 is
optimal in regimes of n and r of interest in the context of Example 8 below. The second
part of the corollary shows that, if we ignore subpolynomial factors in nr2, then we have
ρ∗(n,α,β, ξ) �α,β,sX,sY ,A (rc0/ns)1/(2s+c0). By comparison with Corollary 5, we can there-
fore interpret c0 as the ‘effective dimension’ of each of X and Y , when θ is selected in this
way.

EXAMPLE 8. As an application of Corollary 7, consider the infinite-dimensional setting
where X = Y = [0,1]N := {(x1, x2, . . .) : x� ∈ [0,1] for all � ∈ N}, equipped with the Borel
σ -algebra in the product topology, and where μX = μY is the distribution of an infinite se-
quence (U1,U2, . . .) of Unif[0,1] random variables. It follows from an application of the
Stone–Weierstrass theorem (see Lemma S4) that an orthonormal basis for L2(μX) is then
given by {pX

a,m(·) : (a,m) ∈ J }, where pX
0,0 := 1 and for m �= 0N,

pX
a,m(x1, x2, . . .) := 21/2 Re

(
e−aπi/2

∞∏
�=1

e−2πim�x�

)
.

We may take the same basis for L2(μY ), so that pY
a,m = pX

a,m for all a ∈ {0,1} and m ∈ N
<∞
0 .

Then Corollary 7 provides an upper bound on the minimax separation rate of independence
testing in this example.

4. Adaptation. The practical implementation of our USP tests requires a choice of the
truncation set M. The optimal choice of M, which yields the separation rates described in
the previous section, typically depends on both θ and r , which may be unknown in prac-
tice. In this section, we therefore describe adaptive versions of our tests, that do not require
knowledge of any unknown parameters and whose minimax risk can be shown in many cases
to be only slightly inflated compared with the optimal tests. Our initial setting is rather gen-
eral, but assumes that J × K has an ordering that is respected by every θ considered. Since
this assumption does not hold in the setting of Corollary 5 unless sX = sY (as the relative
magnitudes of sX and sY affect the ordering of θ ), we also illustrate the way in which this
assumption can be relaxed, so that it remains possible to adapt to both of the unknown pa-
rameters separately in this Sobolev example.

To describe this initial setting, let ω : N→ J ×K be injective, and, for a given θ0 > 0, let
�(ω, θ0) ⊆ [0,∞]J×K denote the set of all θ = (θjk)j∈J ,k∈K such that ω is a bijection from
N to {(j, k) ∈ J ×K : θjk < ∞} and

θ0 ≤ θω(1) ≤ θω(2) ≤ · · · .
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Here, ω denotes an ordering of J × K that ranks the importance of departures from in-
dependence in each direction. In our Sobolev example with sX = sY , we could take ω to
be any ordering of (N

dX

0 \ {0[dX]}) × (N
dY

0 \ {0[dY ]}) such that, writing (jm, km) := ω(m),
we have that max(‖j1‖1,‖k1‖1) ≤ max(‖j2‖1,‖k2‖1) ≤ · · · . Taking γ := �2 log2 n�, let
K∗ := {2j : j ∈ [γ ]}. Our adaptive procedure can now be described as follows. Given a
desired Type II error probability β ∈ (0,1 − α), for each m ∈ K∗, carry out the permuta-
tion test from Section 3 with M = {ω(1), . . . ,ω(m)} and B ≥ 2(

γ
αβ

− 1) to yield p-values

p(1), . . . , p(γ ). If mini∈[γ ] p(i) < α/γ , then we reject H0. As we have applied a standard
Bonferroni correction, the Type I error of this omnibus test is controlled at the level α. The
following result concerns its power.

PROPOSITION 9. Let ω and θ0 > 0 be as above, and suppose that α ∈ (0,1), β ∈ (0,1 −
α), R0 > 0 and A ≥ 1. Assume further that f ∈ Fξ (ρ) for some ξ = (θ, r,A) ∈ � with
θ ∈ �(ω, θ0) and r ∈ (0,R0]. Then there exists C = C(α,β,R0, θ0,A) > 0 such that we
reject H0 with probability at least 1 − β whenever n ≥ C and

ρ ≥ C max
{

log1/4 n

n1/2 m
1/4
0

(
nr2

log1/2 n

)
,

log1/2 n

n1/2

}
.

Comparing this result with the upper bound on the optimal separation in Corollary 4, we
see that the price we pay for adaptation is that our effective sample size is reduced from n to
n/ log1/2 n, at least provided that m0(nr2/ log1/2 n) � logn.

As mentioned above, in some applications, the set J × K will not be naturally ordered.
Nevertheless, it may be the case that J and K are ordered separately, and in these cases it
is still possible to adapt to unknown parameters. Consider the setting of Corollary 5, and
define γX := �(2/dX) log2 n� and KX := {2j : j ∈ [γX]} (with γY and KY defined simi-
larly). Similarly to before, given a desired Type II error probability β ∈ (0,1 − α), for each
(mX,mY ) ∈ KX × KY , carry out the permutation test from Section 3 with M ≡ MmX,mY

=
{(j, k) ∈ N

dX

0 × N
dY

0 : 1 ≤ ‖j‖1 ≤ mX,1 ≤ ‖k‖1 ≤ mY } and B ≥ 2(
γXγY

αβ
− 1) to yield p-

values {p(mXmY ) : (mX,mY ) ∈ KX × KY }. This test again controls the Type I error at level
α, and the following result shows that the critical separation radius is inflated by at most a
logarithmic factor in n.

PROPOSITION 10. Assume the setting of Corollary 5. Given R0 > 0, suppose that r ≤
R0. Then there exists C = C(α,β,R0, sX, sY , dX, dY ,A) > 0 such that we reject H0 with
probability at least 1 − β whenever n ≥ C and

(8) ρ ≥ C

{
rd

(n/ logn)2s

}1/(4s+d)

.

We note that a similar procedure could be applied in the setting of Corollary 7 to obtain
an adaptive test there, too. Finally, in this section, we remark that in a more restricted setting
it may be possible to improve the logn dependence to log logn dependence using the very
recent concentration results of Kim, Balakrishnan and Wasserman (2020).

5. Lower bounds. The goal of this section is to provide lower bounds to allow us to
study the optimality of our USP test in different contexts. Slightly more precisely, we wish
to determine the maximal departure from independence (measured in terms of our quantity
D(·)) that no valid independence test could reliably detect; equivalently, we seek the minimal
separation level at which a valid independence test could have nontrivial power, uniformly
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over the alternatives in our classes. To this end, we first prove a general lemma (Lemma 11
below), and then illustrate how it can be applied in different settings of interest.

Our lower bound results actually apply to a weaker notion of minimax risk, and will hold
in settings where our base measures on X and Y are probability measures, and where our
orthonormal bases contain the constant function 1, so that there exist j0 ∈ J and k0 ∈ K such
that pX

j0
(x) = 1 and pk0(y) = 1 for all x ∈X and y ∈ Y . Define

R̃(n, ξ, ρ) := inf
ψ∈�(1)

{
Epj0k0

(ψ) + sup
f ∈Fξ (ρ)

Ef (1 − ψ)
}
,

which only controls the sum of the error probabilities, and only considers a simple null, and
further define

ρ̃∗(n, γ, ξ) := inf
{
ρ > 0 : R̃(n, ξ, ρ) ≤ γ

}
.

Then, for any n ∈ N, ξ ∈ �, α,β ∈ (0,1) with α + β < 1, and ρ ∈ (0,∞), we have that
R̃(n, ξ, ρ) ≤ R(n,α, ξ, ρ) and, therefore, also that ρ̃∗(n,α + β, ξ) ≤ ρ∗(n,α,β, ξ). When
our upper and lower bounds match, in terms of the separation rates, the problems of indepen-
dence testing with simple and composite nulls are equivalent, and we have the same rates of
convergence if we control the sum of error probabilities or if we control the error probabilities
separately.

We are now in a position to state our main, general lower bound lemma. Recall that a
Rademacher random variable ξ takes values 1 and −1, each with probability 1/2.

LEMMA 11. Suppose that μX and μY are probability measures and that there ex-
ist j0 ∈ J and k0 ∈ K such that pX

j0
(x) = pY

k0
(y) = 1 for all x ∈ X and y ∈ Y . Let

(ajk)j∈J \{j0},k∈K\{k0} be a deterministic square-summable array of real numbers, let
(ξjk)j∈J \{j0},k∈K\{k0} be an independent and identically distributed array of Rademacher
random variables, and define a random element of L2(μ) by

p := pj0k0 + ∑
j∈J \{j0},k∈K\{k0}

ajkξjkpjk.

Assume {p ∈ F} is an event, and define f to be a random element of F that has the same
distribution as p|{p ∈ F}. Writing EP

⊗n
f for the resulting mixture distribution on (X × Y)n

and Ppj0k0
for the distribution on X ×Y with density pj0k0 , we have that

d2
TV

(
P

⊗n
pj0k0

,EP⊗n
f

) ≤ exp( (n+1)2

2
∑

j∈J \{j0},k∈K\{k0} a
4
jk)

4P(p ∈ F)2 − 1

4
.

Suppose that the f defined in Lemma 11 takes values in Fξ (ρ) with probability one. Then
we have that

R̃(n, ξ, ρ) ≥ inf
ψ∈�(1)

{
Epj0k0

(ψ) +EPf (1 − ψ)
} ≥ 1 − dTV

(
P

⊗n
pj0k0

,EP⊗n
f

)
,

which reduces the problem of finding lower bounds for the minimax risk R̃(n, ξ, ρ) to the
choice of an appropriate separation ρ and prior distribution over Fξ (ρ).

The main challenge in applying Lemma 11 is in finding a suitable upper bound for
P(p /∈ F). Provided p̄ := supj∈J ,k∈K ‖pjk‖∞ < ∞, we can ensure that P(p /∈ F) = 0 by
simply imposing the constraint that

∑
j∈J \{j0},k∈K\{k0} |ajk| ≤ 1/p̄. If we do this then, we

can prove the lower bound in Theorem 12 below.
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THEOREM 12. Suppose that μX and μY are probability measures and that there exist
j0 ∈ J and k0 ∈ K such that pX

j0
(x) = pY

k0
(y) = 1 for all x ∈ X and y ∈ Y . Assume that

p̄ < ∞, and fix γ ∈ (0,1) and ξ = (θ, r,A) ∈ � such that (A1) holds. Then there exists
c = c(γ,A) ∈ (0,∞) such that

ρ̃∗(n, γ, ξ) ≥ c sup
m∈N

min
(

r

θω(m)

,
m1/4

n1/2 ,
1

m1/2p̄

)
.

Thinking of γ = α +β , this lower bound matches the upper bound in Theorem 2 in certain
cases, up to terms depending only on α, β and A, as we now explain. Suppose that nr2 ≥ θ2,
which means that m0(nr2) ≥ 2, so we only rule out the case where the sample size is so small
that the optimal truncation level is to include only one basis function. Suppose further that
m0(nr2) ≤ Cn2/3/p̄4/3 for some C = C(α,β,A), which amounts to asking that the optimal
truncation level does not grow too fast, or equivalently, that our alternatives are not too rough.
Then

sup
m∈N

min
(

r

θω(m)

,
m1/4

n1/4 ,
1

m1/2p̄

)
≥ min

({m0(nr2) − 1}1/4

n1/2 ,
1

{m0(nr2) − 1}1/2p̄

)

≥ m0(nr2)1/4

n1/2 min
(
2−1/4,C−3/4)

.

(9)

A comparison of Corollary 4 and (9) allows us to conclude that our U -statistic permutation
test attains the minimax optimal separation rate in wide generality (i.e., with few restrictions
on the underlying spaces and the sequence θ ), provided that nr2 is sufficiently large and
m0(nr2) ≤ Cn2/3/p̄4/3. The following example illustrates this latter condition in a specific
case.

EXAMPLE 13. Write ζ = (sX, sY , dX, dY ,α,β,A). In our d-dimensional Sobolev set-
ting of Example 6, when t ≥ 1, we have m0(t) �ζ t2d/(4s+d), and hence when n2s−d �ζ r3d

we have that m0(nr2) �ζ n2/3. Since we may take p̄ = 21/2, it therefore follows that when
nr2 ≥ 1 and n2s−d �ζ r3d , the lower bound (9) holds and this matches the upper bound from
Corollary 4.

Despite the attractive conclusions that can be drawn from Theorem 12, it remains desir-
able to weaken further the smoothness requirements on our alternatives. It turns out that in
certain settings, we can use empirical process techniques to lower bound the P(p ∈ F) term
in Lemma 11 without a bound on

∑
j∈J \{j0},k∈K\{k0} |ajk|. This allows us to substantially

widen the range of smoothnesses under which our upper and lower bounds match. We first
illustrate this approach in our Sobolev example.

PROPOSITION 14. In the context of Example 6, fix γ ∈ (0,1). Then there exist c1, c2 ∈
(0,∞), each depending only on dX , dY , γ , sX , sY and A, such that if nr2 ≥ 2 and
(rd/n2s)1/(4s+d) ≤ c1/ log1/2(nr2), then

ρ̃∗(n, γ, ξ) ≥ c2

(
rd

n2s

)1/(4s+d)

.

Thus, the lower bound of Proposition 14 matches the upper bound of Example 6 when
(rd/n2s)1/(4s+d) ≤ c1/ log1/2(nr2), or equivalently when m0(nr2) �ζ n2/ log2(nr2). This
condition is rather weak, and holds whenever the minimax separation rate is polynomially
decreasing in rd/n2s . Compared with Example 13, Proposition 14 extends the parameter
regime over which the lower bound on the minimax separation rate for independence testing
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matches the upper bound of Example 6, by also covering lower smoothness cases where
n2s−d � r3d .

We remark that Proposition 14 generalises to more abstract settings. Assume that X and
Y are equipped with metrics τX and τY , respectively, and write H(·,X ) and H(·,Y) for
the corresponding metric entropies. Suppose that there exist κ1, κ2 ≥ 0 and functions �1, �2 :
(0,∞) → (0,∞) that are slowly varying at infinity such that H(u,X ) = u−2κ1�1(1/u) and
H(u,Y) = u−2κ2�2(1/u); thus, if X = [0,1]dX , then we may take κ1 = 0 and �1(u) =
dX logu. Suppose further that there exist α1, α2, β1, β2 > 0 such that∣∣pjk(x, y) − pjk

(
x′, y′)∣∣ �ζ ‖j‖α1

1 τX
(
x, x′)β1 + ‖k‖α2

1 τY
(
y, y′)β2

for all x, x′ ∈ X , y, y′ ∈ Y , j ∈ J , k ∈ K, where ζ does not depend on n, r , x, x′, y, y′,
j , k. In our Sobolev example, then we may take α1 = α2 = β1 = β2 = 1. Finally, assume
that p̄ < ∞. Then, taking ξ = (θ, r,A) ∈ � and γ ∈ (0,1), writing γ1 := κ1

β1((sX/α1)∧1)
and

γ2 := κ2
β2((sY /α2)∧1)

, and setting s = d(dX/sX + dY /sY )−1, similar calculations to those in the
proof of Proposition 14 reveal that

ρ̃∗(n, γ, ξ) �ζ

(
rd

n2s

)1/(4s+d)

whenever max(γ1, γ2) < 1 and r �ζ,ε min(n
2s(1−γ1)

d+4sγ1
−ε

, n
2s(1−γ2)

d+4sγ2
−ε

) for some ε > 0. Thus, we
match the upper bound of Corollary 5 even in this more general setting.

Our final lower bound applies similar empirical process techniques to show that the rate
found by applying the first part of Corollary 7 to Example 8 for our infinite-dimensional
example is optimal in certain regimes of (n, r).

PROPOSITION 15 (BKS(2020)). Let X , Y , μX , μY , (pjk), J and K be as in Corollary 7
and Example 8. Fix α,β ∈ (0,1) such that α + β < 1 and r, sX, sY ,A > 0. For j ∈ J , k ∈ K,
let θjk = exp(sX|j |1/2)∨ exp(sY |k|1/2), and let ξ = (θ, r,A) ∈ �. Recalling the definitions of
s and c0 from Corollary 7, suppose that r2 ≤ ns/(s+c0)−ε for some ε > 0. Then there exist C =
C(α,β, sX, sY ,A, ε) > 0 and C′ = C′(α,β, sX, sY ,A, ε) > 0 such that when min(n,nr2) ≥
C′ we have

ρ∗(n,α,β, ξ) ≥ Cm
1/4
0,sX,sY

(nr2)

n1/2 .

6. Power function. In this section, we provide an approximation to the power function
of our USP test from Section 3. For simplicity of exposition, we will restrict attention to
the case where the X = Y = [0,1], and work with the Fourier basis (7) with respect to the
respective Lebesgue base measures μX and μY . Recall that in this case, J = K = ({0,1} ×
N0) \ {(1,0)}. We will consider test statistics D̂n with

M = ({0,1} × [M]) × ({0,1} × [M])
for a tuning parameter M ∈ N which will typically be large so that D̂n is approximately
normally distributed. When M is large and the dependence between X and Y is weak, we
will see that the variance of D̂n can be approximately expressed in terms of

σ 2
M,X ≡ σ 2

M,X(f ) := 2M + 1 +
2M∑
m=1

(2M + 1 − m)
{
a(0,m)•(f )2 + a(1,m)•(f )2}

� M‖fX‖2
L2(μX)
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as M → ∞, and the corresponding quantity σ 2
M,Y , in which fX and μX above are replaced

with fY and μY , respectively, and aj•(f ) for j ∈ J is replaced with a•k(f ) for k ∈ K.
Define AM,X ≡ AM,X(f ) := 1+∑2M

m=1(|a(0,m)•(f )|+ |a(1,m)•(f )|), with the correspond-
ing definition of AM,Y . We will see that the quantities AM,X and AM,Y , which when f ∈ F
are both o(M1/2) as M → ∞ by Lemma S5 in the supplement, will play a role in controlling
the normal approximation error of our test statistic and the corresponding null statistics.

THEOREM 16 (BKS(2020)). In the above setting, let f ∈ F with ‖f ‖∞ < ∞, let α ∈
(0,1) and let B ∈ N. Write

�f :=
(n
2

)1/2 ∑
(j,k)∈M{ajk(f ) − aj•(f )a•k(f )}2

σM,XσM,Y

and, with s = �α(B + 1)� − 1, let BB−s,s+1 ∼ Beta(B − s, s + 1). Let

δ∗ := max
{ �

1/2
f

M1/2 ,
1

M1/2 ,D(f )1/4,

(
M2

n

)1/2
,
AM,XAM,Y

M

}1/3
.

Then there exists C = C(‖f ‖∞, α) > 0 such that the p-value P in (5) satisfies∣∣Pf (P ≤ α) −E�̄
(
�−1(BB−s,s+1) − �f

)∣∣ ≤ C min
{
B4/3δ∗,

(
B−1/3 ∨ δ1/3∗

)}
.

To understand the implications of this theorem, first consider the case where the null hy-
pothesis holds, so that �f = 0, and further assume for simplicity that α(B + 1) is an integer.
Then the conclusion states that∣∣Pf (P ≤ α) − α

∣∣ ≤ C min
{
B4/3δ∗,

(
B−1/3 ∨ δ1/3∗

)}
,

though in fact, we already know that Pf (P ≤ α) = α in this special case. More generally,
Theorem 16 provides an approximation to the local power of our test when D(f ) is small
and both n and M are large, with M2/n small. It could be used by practitioners to guide the
choice of B in cases where computation is expensive: given an anticipated effect size �f , one
can compare E�̄(�−1(BB−s,s+1)−�f ) to �̄(�−1(1−α)−�f ) to understand the trade-off
between computation and power. Note also that �̄(�−1(1 − α) − �f ) is the limiting power
of the oracle test that has access to the marginal distributions.

To illustrate Theorem 16, we conducted some simulations to verify the accuracy of the
approximate power function. For a parameter ρ ∈ [0,1/2], we considered independent copies
of pairs (X,Y ) with density function

(10) fρ(x, y) = 1 + 2ρ sin(2πx) sin(2πy)

for x, y ∈ [0,1], so that, marginally, X,Y ∼ U [0,1]. For these densities, we have D(fρ) = ρ2

and σ 2
M,X = σ 2

M,Y = 2M + 1. In our simulations, we take n = 300, M = 7, B = 99 and
α = 0.1 so that

�fρ =
(

300
2

)1/2

ρ2/15 = ρ2 × 14.1 . . . .

Figure 1 plots the theoretical approximate power function, given by E�̄(�−1(BB−s,s+1) −
�f ), and the empirical power function, which was computed by averaging over 700 inde-
pendent repetitions of the experiment for each value of ρ. The simulations reveal a good
agreement between our approximations and empirical performance.

The proof of Theorem 16 uses careful bounds for the error in normal approximations to
degenerate U -statistics, as well as corresponding bounds in the case where the U -statistic
is computed on a permuted data set. In the unpermuted case, such bounds have been well
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FIG. 1. The theoretical approximate power function from Theorem 16 (black), and an empirical estimate of the
true power function (red); error bars show two standard deviations. Here, the data were generated according to
(10) with n = 300, B = 99, α = 0.1, M = 7.

studied, inspired by the work of Hall (1984) and de Jong (1990), who established asymptotic
normality results for degenerate U -statistics. This is interesting because, in the classical the-
ory, the asymptotic distribution of a degenerate U -statistic of order 2, for a fixed h, is given by
a weighted infinite sum of independent chi-squared random variables (e.g., Serfling ((1980),
page 194)). Indeed, from the form of the first term on the right-hand side of (11) below, it is
not clear that a normal approximation error will be small. However, if we allow h to depend
on the sample size n, then the weights in the infinite sum may become more diffuse, so that a
normal approximation may be more appropriate. In our setting, the truncation set M will typ-
ically depend on n, in which case we are in a situation where the U -statistic kernel depends
on the sample size. Rinott and Rotar (1997) derived error bounds in the normal approximation
with respect to classes of probability integral metrics that include the Kolmogorov distance.
Döbler and Peccati (2017, 2019) extended these results in two directions, first by working
with multivariate U -statistics, and second by controlling the normal approximation error in
the L1-Wasserstein distance. We present a consequence of Döbler and Peccati ((2019), Theo-
rem 3.3) below, because it it will help to contextualise our (new) error bound in the permuted
case, which appears as Proposition 18.

PROPOSITION 17 (Döbler and Peccati ((2019), Theorem 3.3)). For n ≥ 2, let Z1, . . . ,Zn

be independent and identically distributed random elements in a measurable space Z ,
and let h : Z × Z → R be a symmetric measurable function that satisfies Eh(z,Z1) = 0
for all z ∈ Z and E{h(Z1,Z2)

2} = 1. Write g(x, y) := E{h(x,Z1)h(y,Z1)} and U :=
1
2

(n
2

)−1/2 ∑
i∈I2

h(Zi1,Zi2). With W ∼ N(0,1), there exists a universal constant C > 0 such
that for n ≥ 2 we have

(11) dW(U,W) ≤ C max
[
E

1/2{h4(Z1,Z2)}
n1/2 ,E1/2{

g2(Z1,Z2)
}]

.

As mentioned above, Proposition 18 below extends Proposition 17 to the case of a per-
muted data set and, therefore, provides a useful stepping stone for analysing the power prop-
erties of permutation tests based on degenerate U -statistics.
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PROPOSITION 18 (BKS(2020)). For n ≥ 4, let (X1, Y1), . . . , (Xn,Yn) be independent
and identically distributed random elements in a product space Z = X × Y and let � be
a uniformly random element of Sn, independent of (Xi, Yi)

n
i=1. Let h : Z × Z → R be a

symmetric measurable function that satisfies

Eh
(
(x, y),

(
x′, Y1

)) = Eh
(
(x, y),

(
X1, y

′)) = 0

for all x, x′ ∈ X and y, y′ ∈ Y , and also satisfies Eh2((X1, Y2), (X3, Y4)) = 1. Write
g((x, y), (x′, y′)) := E{h((x, y), (X1, Y2))h((x′, y′), (X1, Y2))} and

U := 1

2

(
n

2

)−1/2 ∑
(i1,i2)∈I2

h
(
(Xi1, Y�(i1)), (Xi2, Y�(i2))

)
.

Then, with W ∼ N(0,1), there exists a universal constant C > 0 such that

dW(U,W) ≤ C max
[

1

n1/2 max
σ∈S4

E
1/2{

h4(
(X1, Yσ(1)), (X2, Yσ(2))

)}
,

E
1/2{

g2(
(X1, Y2), (X3, Y4)

)}
,E

∣∣E{
h
(
(X1, Y2), (X3, Y1)

)|X3, Y2
}∣∣].

(12)

Comparing the bounds in Propositions 17 and 18, we see three differences caused by the
permutation. The first term in (12) is slightly inflated by the maximum over the 24 permu-
tations in S4; the second term involves distinct indices, which is to be expected since most
permutations of Sn have only a small number of fixed points; and finally, there is an additional
third term, which vanishes if X1 and Y1 are independent.

In fact, for a full description of the power properties of our permutation test, we require
a multivariate normal approximation error bound for the random vector consisting of the
original test statistic and the B test statistics computed on the permuted data sets. Since
this statement is more complicated, we defer it to the online supplement (Lemma S1). Its
main message for our purposes, however, is that these B + 1 statistics are approximately
independent, which is what facilitates the power function approximation in Theorem 16.

7. Numerical results. In this section, we examine the empirical performance of our USP
test, comparing it with alternative approaches where appropriate. We consider discrete, ab-
solutely continuous and infinite-dimensional settings, following the main examples given
earlier. First, however, we show how our test statistic can be computed much more efficiently
than might initially appear to be the case.

7.1. Computational trick. Our test statistic D̂n can be rewritten similarly to the test statis-
tics in Song et al. (2012) to allow for quicker computation, in the case that M = J0 ×K0 for
some J0 ⊆ J and K0 ⊆ K. Define matrices J = (Ji1i2)

n
i1,i2=1, K = (Ki1i2)

n
i1,i2=1 by

Ji1i2 := ∑
j∈J0

pX
j (Xi1)p

X
j (Xi2) and Ki1i2 := ∑

k∈K0

pY
k (Yi1)p

Y
k (Yi2),

and let J̃ and K̃ be the corresponding matrices with the diagonal entries set to zero. Then,
writing 1 ∈ R

n for the all-ones vector, we have that

D̂n = 1

n(n − 1)

∑
(i1,i2)∈I2

Ji1i2Ki1i2 − 2

n(n − 1)(n − 2)

∑
(i1,i2,i3)∈I3

Ji1i2Ki1i3

+ 1

n(n − 1)(n − 2)(n − 3)

∑
(i1,i2,i3,i4)∈I4

Ji1i3Ki2i4
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= 1

n(n − 1)

n∑
i1,i2=1

J̃i1i2K̃i1i2 − 2

n(n − 1)(n − 2)

(
n∑

i1,i2,i3=1

J̃i1i2K̃i1i3 −
n∑

i1,i2=1

J̃i1i2K̃i1i2

)

+ 1

n(n − 1)(n − 2)(n − 3)

×
(

n∑
i1,i2,i3,i4=1

J̃i1i3K̃i2i4 − 4
n∑

i1,i2,i3=1

J̃i1i2K̃i1i3 + 2
n∑

i1,i2=1

J̃i1i2K̃i1i2

)

=
{

1

n(n − 1)
+ 2

n(n − 1)(n − 2)
+ 2

n(n − 1)(n − 2)(n − 3)

}
tr(J̃ K̃)

−
{

2

n(n − 1)(n − 2)
+ 4

n(n − 1)(n − 2)(n − 3)

}
1T J̃ K̃1 + 1T J̃11T K̃1

n(n − 1)(n − 2)(n − 3)

= tr(J̃ K̃)

n(n − 3)
− 21T J̃ K̃1

n(n − 2)(n − 3)
+ 1T J̃11T K̃1

n(n − 1)(n − 2)(n − 3)
.

From this final expression, we can see that D̂n can be computed in O(n2(|J0| + |K0|)) oper-
ations, with the most time-consuming part being the computation of the matrices J̃ and K̃ .

7.2. Discrete settings. Here, we study two different examples, to illustrate the effects of
sparse and dense dependence. The first is a 6×6 contingency table, so that J = K = 6, where
the cell probabilities are of the form

f (j, k) = 2−(j+k)

(1 − 2−J )(1 − 2−K)
+ ε(1{j=k=1} + 1{j=k=2}) − ε(1{j=1,k=2} + 1{j=2,k=1}),

for j, k ∈ [6]. Here, ε ≥ 0 measures the strength of the dependence; in fact, D(f ) = 4ε2. Our
second example has J = K = 8 and cell probabilities of the form

f (j, k) = 1

JK
+ (−1)j+k−1ε,

for which D(f ) = JKε2. Thus, the main difference between the examples is in the number of
cells affected by the perturbation: in the first case, only the summands in D(f ) corresponding
to (j, k) ∈ {1,2} × {1,2} are nonzero, whereas in the second example, all summands are
nonzero.

Figure 2 plots estimates, computed as sample averages over 10,000 repetitions, of the
power of our USP test as a function of ε in the two examples, with n = 100 in Figure 2(a)
and n = 50 in Figure 2(b). In both cases, we set α = 0.05 and B = 99. For comparison, we
also plot corresponding power estimates for two versions of Pearson’s chi-squared test. The
first, corresponding to the more usual practice in applications, uses as a critical value for the
test the (1 − α)th quantile of the chi-squared distribution with (J − 1)(K − 1) degrees of
freedom; the second computes the critical value using a permutation procedure similarly to
that employed for our USP test. The advantage of the second approach is that it controls the
Type I error at the nominal level. In both cases, our USP test has greater power than both
versions of Pearson’s test, particularly in the first example, which is especially striking given
that the chi-squared quantile version of Pearson’s test is anticonservative there.

7.3. Sobolev example. In this subsection, we consider a setting originally studied by
Sejdinovic et al. (2013). For ω ∈ N and (x, y) ∈ [0,1]2, define the density function

fω(x, y) = 1 + sin(2πωx) sin(2πωy).
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FIG. 2. Estimated power functions in the two discrete settings for our U -statistic permutation test (black),
as well as Pearson’s chi-squared test with chi-squared quantile (red) and quantile obtained from permutations
(green). Error bars show three standard errors; other parameters: α = 0.05, B = 99, n = 100 (left), n = 50
(right).

Berrett and Samworth (2019) also consider this family of densities, and explain why it be-
comes increasingly difficult to detect the dependence as ω increases, despite the fact that
the mutual information does not depend on ω. In fact, we also have D(fω) = 1/4 for every
ω ∈ N, so this measure of dependence does not depend on ω either.

In Figure 3, we plot estimates of the power of our USP test, computed over 2000 repetitions
with n = 100,200. The choice of M is made as in Section 6, with M = 2,4. As alternative
approaches, we also study the HSIC test of Gretton et al. (2005), which is implemented in
the R package dHSIC (Pfister and Peters (2017)), the MINTav test of Berrett and Samworth
(2019), implemented in the R package IndepTest (Berrett, Grose and Samworth (2018))
with k ∈ [5], a test based on the empirical copula process described by Kojadinovic and
Holmes (2009) and implemented in the R package copula (Hofert et al. (2017)) and a test
based on distance covariance implemented in the R package energy (Rizzo and Szekely
(2017)). For these comparison methods, we used the default tuning parameter values recom-

FIG. 3. Estimated power functions in the Sobolev example for our U -statistic permutation test (black) with
M = 2, n = 100 (left) and M = 4, n = 200 (right), HSIC (red), distance covariance (blue), copula (purple) and
MINTav (green). Error bars show two standard errors; other parameters: α = 0.05, B = 99.
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mended by the corresponding authors. The fact that the departures in this example are aligned
with a single basis function for each choice of ω means that the power of our USP test is con-
stant for ω ≤ M , and it performs extremely well in these cases. Once ω exceeds M , the test
has no better than nominal power, as expected. Thus, M determines the number of directions
of departure from independence that we can hope to detect with our USP test (we have 4M2

coefficients to estimate). Increasing the value of M would provide nontrivial power for larger
values of ω, but would sacrifice some power for smaller values of ω.

7.4. Infinite-dimensional example. Our final example concerns potentially correlated
Brownian motions on [0,1], as an illustration of our USP test applied to functional data.
More precisely, our data come in the form of pairs (X,Y ), where X = (Xt)t∈[0,1] is a stan-
dard Brownian motion, and where, for some r ∈ [0,1] and for another standard Brownian
motion Z = (Zt )t∈[0,1] that is independent of X, we have that Y = (Yt )t∈[0,1] is given by

Yt = rXt + (
1 − r2)1/2

Zt .

Thus, marginally, Y is also distributed as a standard Brownian motion.
By the Wiener representation of Brownian motion (e.g., Kahane (1997)), we can write

Xt = 21/2
∞∑

�=1

η�

sin((� − 1/2)πt)

(� − 1/2)π
,

where (η�)
∞
�=1 is a sequence of independent, standard normal random variables. For any

W = (Wt)t∈[0,1] ∈ L2[0,1], we can compute the transformed coefficients

u�(W) := �

(
21/2(� − 1/2)π

∫ 1

0
Wt sin

(
(� − 1/2)πt

)
dt

)

for � ∈ N. We can therefore consider testing the independence of the random vectors
(u1(X), . . . , uL(X)) and (u1(Y ), . . . , uL(Y )), for some suitably chosen truncation level L.
For �,m ∈ N and x ∈ L2[0,1], let pX

�m(x) := 21/2 cos(2πmu�(x)), and define pY
�m(·) simi-

larly. The U -statistic kernel in this example can be written as

h
(
(x1, y1), . . . , (x4, y4)

) =
L∑

�1,�2=1

M∑
m1,m2=1

{
pX

�1m1
(x1)p

Y
�2m2

(y1)p
X
�1m1

(x2)p
Y
�2m2

(y2)

− 2pX
�1m1

(x1)p
Y
�2m2

(y1)p
X
�1m1

(x2)p
Y
�2m2

(y3)

+ pX
�1m1

(x1)p
Y
�2m2

(y2)p
X
�1m1

(x3)p
Y
�2m2

(y4)
}
,

where L,M ∈ N. In Figure 4, we plot the power functions of our USP test, estimated over
2000 repetitions, for three different sample sizes, namely n ∈ {50,100,200}, with L = 2 and
M = 1. As expected, the power of our test increases with both r and n.

8. Discussion and outlook. In this paper, we have introduced a new permutation test of
independence based on a U -statistic estimator of the squared L2-distance between a joint dis-
tribution and the product of its marginals. Our methodology extends naturally to the problem
of testing mutual independence of several random elements. We have further demonstrated its
minimax optimality in various settings; to the best of our knowledge, this is the first time that
minimax optimality results have been established for such permutation tests. We conclude
by explaining how closely related ideas can be used to provide new goodness-of-fit tests and
two-sample tests with desirable properties.

Consider Z1, . . . ,Zn
iid∼ P ∈ P , where P is a dominated class of distributions on a sep-

arable, σ -finite measure space (Z,C, ν). Suppose further that we wish to test H0 : P = P0
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FIG. 4. Estimated power functions for testing the independence of two Brownian motions with n = 50 (black),
n = 100 (red) and n = 200 (green). Error bars show two standard errors; other parameters: α = 0.05, B = 99,
L = 2, M = 1.

against H1 : P �= P0, where P0 ∈ P . Then, writing f and f0, respectively, for the Radon–
Nikodym derivatives of P and P0 with respect to ν, we can construct a U -statistic estimator
of the squared L2(ν) distance between f and f0 in a very similar spirit to (4). Since the null
hypothesis is simple, there is no need for permutations, and we can obtain a critical value for
the test by sampling from P0.

For two-sample tests, we can let Y = {0,1}, so that testing the independence of X and Y

amounts to testing the equality of the distributions X|{Y = 0} and X|{Y = 1}. A small obser-
vation here is that the sample sizes from each conditional distribution are random (having a
binomial distribution), whereas these are often treated as fixed in the usual two-sample testing
formulation. Our methodology and theory apply directly to this problem, therefore, further
extending its scope.

9. Proofs of main results.

PROOF OF THEOREM 1. Since ψ is bounded, we have that ψ ∈ L2(
⊗n

i=1 μ). Given
j ∈ J , k ∈ K and I ⊆ [n] we write

bI
jk :=

〈
ψ,

n⊗
i=1

{1{i∈I }pjk + 1{i /∈I }pj0k0}
〉
L2(

⊗n
i=1 μ)

.

Since r > θρ, we have that Mθ (r/ρ) �=∅. For (j, k) ∈ Mθ (r/ρ) to be chosen later consider
f ∗ ≡ f ∗

jk := pj0k0 + ρpjk ∈ F , which satisfies Sθ (f
∗) = θ2

jkρ
2 ≤ r2 and D(f ∗) = ρ2. Then

by Cauchy–Schwarz,

Ef ∗(ψ) =
〈
ψ,

n⊗
i=1

f ∗
〉
L2(

⊗n
i=1 μ)

= Epj0k0
(ψ) + ∑

∅ �=I⊆[n]
ρ|I |bI

jk

≤ α + {(
1 + ρ2)n − 1

}1/2
{ ∑
∅ �=I⊆[n]

(
bI
jk

)2
}1/2

.

(13)
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Now, observe that ∑
(j,k)∈Mθ (r/ρ)

∑
∅ �=I⊆[n]

(
bI
jk

)2 ≤ ‖ψ‖2
L2(

⊗n
i=1 μ)

= Epj0k0

(
ψ2) ≤ α.

Hence, for any η > 0 we may choose (j, k) ∈ Mθ (r/ρ) such that∑
∅ �=I⊆[n]

(
bI
jk

)2 ≤ α

|Mθ (r/ρ)| + η.

The first claim of Theorem 1 follows from this combined with (13).
For the second part, first note the definitions of �, Fξ (ρ) and ρ∗(n,α,β, ξ) immediately

after (A1). For the choice of j , k in the first part of the proof, let θ ′ = (θ ′
j ′k′)j ′∈J ,k′∈K be

given by

θ ′
j ′k′ :=

{
0 if j ′ = j and k′ = k,

∞ otherwise.

Now f ∗ ∈ F(θ ′,r ′,2)(ρ) for any r ′ > 0. Applying Theorem 2 with M = {(j, k)} then yields
that there exists C = C(α,β) > 0 such that ρ∗(n,α,β, ξ) ≤ C1/2/n1/2. In other words, there
exists ψf ∗ ∈ �(α) such that Ef ∗(ψf ∗) ≥ 1 − β whenever n > C/ρ2. Finally, the proof of
Theorem 2 reveals that ψf ∗ may be taken to be a permutation test (in fact the permutation
test described in Section 3 with M = {(j, k)}), as required. �

PROOF OF THEOREM 2. Consider the test of Section 3. Choose B ≥ 2( 1
αβ

− 1), and
suppose f ∈ F∗ were such that

(14) D(f ) ≥ max
[
2
∣∣Ef

(
D̂n − D̂(1)

n

) − D(f )
∣∣,{

8

αβ
Varf

(
D̂n − D̂(1)

n

)}1/2]
.

Then, by two applications of Markov’s inequality, we would have that

Pf (P > α) = Pf

(
1 +

B∑
b=1

1{D̂n≤D̂
(b)
n } > (1 + B)α

)
≤ 1 + BPf (D̂n ≤ D̂

(1)
n )

(1 + B)α

≤ 1

(1 + B)α

[
1 + B Varf (D̂n − D̂

(1)
n )

{Ef (D̂n − D̂
(1)
n )}2

]
≤ 1

(1 + B)α

(
1 + Bαβ

2

)
≤ β.

We may think of D̂n − D̂
(1)
n as an estimator of D(f ), so that (14) ensures that the strength of

the dependence D(f ) outweighs the bias and standard deviation of the estimator so that we
can detect the dependence using our test, up to the given probabilities of error. The remainder
of the proof is dedicated to bounding the bias and variance for a given ξ ∈ �, which enables us
to choose ρ so that (14) holds for all f ∈ Fξ (ρ), and hence ensures that ρ∗(n,α,β, ξ) ≤ ρ.
Henceforth we will write � as shorthand for �1; moreover, for some ρ > 0 to be chosen
later, we fix f ∈ Fξ (ρ) and write D, ajk , aj•, a•k instead of D(f ), ajk(f ), aj•(f ), a•k(f ),
respectively.

Given (i1, i2) ∈ I2 write σi1i2 ∈ Sn for the transposition of i1 and i2, and note that �
d=

� ◦ σi1i2 . Thus (�(1),�(2))
d= (�(1),�(3)), so for every (j, k) ∈M we have that

pjk(X1, Y�(1))pjk(X2, Y�(2))
d= pjk(X1, Y�(1))pjk(X2, Y�(3)).

Similarly, pjk(X1, Y�(1))pjk(X2, Y�(3))
d= pjk(X1, Y�(2))pjk(X3, Y�(4)), so that

E
(
D̂(1)

n

) = ∑
(j,k)∈M

E
{
pjk(X1, Y�(1))pjk(X2, Y�(2))

− 2pjk(X1, Y�(1))pjk(X2, Y�(3)) + pjk(X1, Y�(2))pjk(X3, Y�(4))
} = 0.
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Thus, using our Sobolev smoothness condition to bound the truncation error,∣∣E(
D̂n − D̂(1)

n

) − D
∣∣ = ∣∣E(D̂n) − D

∣∣ =
∣∣∣∣ ∑
(j,k)∈M

(ajk − aj•a•k)2 − D

∣∣∣∣
= ∑

(j,k)∈(J×K)\M
(ajk − aj•a•k)2 ≤ r2

inf{θ2
jk : (j, k) /∈ M} .

(15)

We now turn to bounding Var(D̂n − D̂
(1)
n ). First write h̄ for the symmetrised version of h,

given by

h̄
(
(x1,y1), . . . , (x4, y4)

) := 1

4!
∑

σ∈S4

h
(
(xσ(1), yσ(1)), . . . , (xσ(4), yσ(4))

)
.(16)

By, for example, Serfling ((1980), Lemma A, page 183), we have that

Var(D̂n) = Var
(

1

4!(n4)
∑

(i1,...,i4)∈I4

h̄
(
(Xi1, Yi1), . . . , (Xi4, Yi4)

))

=
(
n

4

)−1 4∑
c=1

(
4
c

)(
n − 4
4 − c

)
ζc,

(17)

where ζc := Var(E{h̄((X1, Y1), . . . , (X4, Y4))|(X1, Y1), . . . , (Xc,Yc)}), and moreover, ζ1 ≤
ζ2 ≤ ζ3 ≤ ζ4. For each j ∈ J write KM

j := {k ∈ K : (j, k) ∈ M} and for each k ∈ K write

JM
k := {j ∈ J : (j, k) ∈ M}. Then, using Cauchy–Schwarz,

ζ1 = Var
(
E

{
h̄
(
(X1, Y1), . . . , (X4, Y4)

)|(X1, Y1)
})

= 1

4
Var

( ∑
(j,k)∈M

(ajk − aj•a•k)
{
pjk(X1, Y1) − pX

j (X1)a•k − aj•pY
k (Y1)

})

≤ 3A

4

{∥∥∥∥ ∑
(j,k)∈M

(ajk − aj•a•k)pjk

∥∥∥∥2

L2(μ)

+
∥∥∥∥ ∑
(j,k)∈M

(ajk − aj•a•k)pX
j a•k

∥∥∥∥2

L2(μX)

+
∥∥∥∥ ∑
(j,k)∈M

(ajk − aj•a•k)aj•pY
k

∥∥∥∥2

L2(μY )

}

≤ 3A

4

[
D + ∑

j∈J

{ ∑
k∈KM

j

(ajk − aj•a•k)a•k
}2

+ ∑
k∈K

{ ∑
j∈JM

k

(ajk − aj•a•k)aj•
}2]

≤ 3AD

4

(
1 + ‖fY ‖L2(μY ) + ‖fX‖L2(μX)

) ≤ 9A2D

4
.

(18)

Observe that we have

ζ4 = Var h̄
(
(X1, Y1), . . . , (X4, Y4)

) ≤ Varh
(
(X1, Y1), . . . , (X4, Y4)

)
.

One possibility, therefore, is to simply apply the bound ζ4 ≤ ‖h‖2∞. On the other hand, by
Cauchy–Schwarz, we can say that

ζ4 ≤ A4
∫
X×Y

. . .

∫
X×Y

h2(
(x1, y1), . . . , (x4, y4)

)
dμ(x1, y1) . . . dμ(x4, y4)

≤ 18A4
∫
X×Y

∫
X×Y

{ ∑
(j,k)∈M

pjk(x, y)pjk

(
x′, y′)}2

dμ(x, y) dμ
(
x′, y′)

≤ 18A4|M|.

(19)
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We therefore have that

(20) Var(D̂n) ≤ 16ζ1

n
+ 72ζ4

n(n − 1)
≤ 36A2D

n
+ 72 min(‖h‖2∞,18A4|M|)

n(n − 1)
.

Next, with the same functions h and h̄ as above, we may write

D̂(1)
n = 1

4!(n4)
∑

(i1,...,i4)∈I4

h̄
(
(Xi1, Y�(i1)), . . . , (Xi4, Y�(i4))

)
.

A simplifying property of h̄ is that for every (x, y) ∈ X ×Y ,

E
{
h̄
(
(x, y), (X1, Y2), (X3, Y4), (X5, Y6)

)} = 0.(21)

Since we also have to deal with the uniformly random permutation �, we cannot directly
appeal to standard U -statistic theory for our bounds on Var(D̂(1)

n ). However, we can develop
an analogue of (17) by writing

Var
(
D̂(1)

n

) = 1

4!(n4)
∑

(i1,...,i4)∈I4

Cov
(
h̄
(
(X1, Y�(1)), . . . , (X4, Y�(4))

)
,

h̄
(
(Xi1, Y�(i1)), . . . , (Xi4, Y�(i4))

))

= 1(n
4

) 4∑
c=0

(
4
c

)(
n − 4
4 − c

)
Cov

(
h̄
(
(X1, Y�(1)), . . . , (X4, Y�(4))

)
,(22)

h̄
(
(X1, Y�(1)), . . . , (Xc,Y�(c)), (X5, Y�(5)), . . . , (X8−c, Y�(8−c))

))

=: 1(n
4

) 4∑
c=0

(
4
c

)(
n − 4
4 − c

)
ζ̃c.

For c = 2,3,4, we will use the crude bound

max(ζ̃2, ζ̃3, ζ̃4) ≤ max
σ∈Sn

E
{
h2(

(X1, Yσ(1)), . . . , (X4, Yσ(4))
)}

≤ min
(‖h‖2∞,18A8|M|),(23)

similar to (19). To bound ζ̃0 and ζ̃1, we must first bound two combinatorial probabilities.
First,

P
(∣∣[7] ∩ {

�(1), . . . ,�(7)
}∣∣ ≥ 1

) ≤ 7P
(
�(1) ∈ [7]) = 49

n
.

Now, similarly,

P
(∣∣[8] ∩ {

�(1), . . . ,�(8)
}∣∣ ≥ 2

) ≤
(

8
2

)
P

(
�(1),�(2) ∈ [8])

= 2
(

8
2

)2

P
(
�(1) = 1,�(2) = 2

) = 1568

n(n − 1)
.

(24)
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The first of these allows us to use (21), Cauchy–Schwarz and (23) to write

ζ̃1 = Cov
(
h̄
(
(X1, Y�(1)), . . . , (X4, Y�(4))

)
,

h̄
(
(X1, Y�(1)), (X5, Y�(5)), (X6, Y�(6)), (X7, Y�(7))

))
≤ P

([7] ∩ {
�(1), . . . ,�(7)

} = ∅
)
E

{
h̄
(
(X1, Y8), (X2, Y9), (X3, Y10), (X4, Y11)

)
× h̄

(
(X1, Y8), (X5, Y12), (X6, Y13), (X7, Y14)

)}
+ 49

n
max
σ∈Sn

E
{
h2(

(X1, Yσ(1)), . . . , (X4, Yσ(4))
)}

≤ 49

n
min

(‖h‖2∞,18A8|M|).

(25)

Finally, we may now use (21), Cauchy–Schwarz, (23) and (24) to similarly write

ζ̃0 = Cov
(
h̄
(
(X1, Y�(1)), . . . , (X4, Y�(4))

)
, h̄

(
(X5, Y�(5)), . . . , (X8, Y�(8))

))
≤ 1568

n(n − 1)
min

(‖h‖2∞,18A8|M|).(26)

From (22), (23), (25), (26), we have now established that

Var
(
D̂(1)

n

) ≤ ζ̃0 + 16

n
ζ̃1 + 72

n(n − 1)
max(ζ̃2, ζ̃3, ζ̃4)

≤ 2424 min(‖h‖2∞,18A8|M|)
n(n − 1)

.

(27)

Thus, from (20) and (27) we deduce that

(28) Var
(
D̂n − D̂(1)

n

) ≤ 72A2D

n
+ 4992 min(‖h‖2∞,18A8|M|)

n(n − 1)
.

Now by substituting (15) and (28) into (14) we can see that if

D(f ) ≥ max
{

2r2

inf{θ2
jk : (j, k) /∈M} ,

1152A2

nαβ
,

283 min(‖h‖∞,5A4|M|1/2)

{n(n − 1)αβ}1/2

}
,(29)

then we have controlled the error probabilities as required. �

PROOF OF COROLLARY 5. There exists C = C(dX,dY ) ∈ (1,∞) such that for any T >

0 we have∣∣{(j, k) ∈ J ×K : θjk ≤ T
}∣∣ = ∣∣{j ∈ J : ‖j‖sX

1 ≤ T
}∣∣∣∣{k ∈ K : ‖k‖sY

1 ≤ T
}∣∣

≤ (
T 1/sX + 1

)dX
(
T 1/sY + 1

)dY < C(T ∨ 1)d/s .

From this, we can infer that if m > C then θω(m) > (m/C)s/d , and so

m0
(
nr2) ≤ max

{
C,

(
nr2)2d/(4s+d)

C4s/(4s+d)} ≤ C
{(

nr2) ∨ 1
}2d/(4s+d)

.

It now follows from (6) that there exists C = C(dX,dY ,α,β,A) > 0 such that if n ≥ 16 and
nr2 ≥ 1 then

ρ∗(n,α,β, ξ) ≤ C

(
rd

n2s

)1/(4s+d)

,

as required. �
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PROOF OF PROPOSITION 9. By (29) in the proof of Theorem 2, we see that we reject
H0 with probability at least 1 − β , provided that n ≥ 16 and

ρ2 ≥ min
m∈K∗

max
{

2r2

θ2
ω(m+1)

,
1152A2γ

nαβ
,

1415A4m1/2γ 1/2

{n(n − 1)αβ}1/2

}
.

Since m0(t) ≤ t2/θ4
0 + 1, there exists n0 = n0(R0, θ0) ≥ 16 such that for all n ≥ n0 we have

m0(nr2/ log1/2 n) ≤ 2γ + 1. But then, for n ≥ max(n0, e
3),

min
m∈K∗

max
{

2r2

θ2
ω(m+1)

,
1152A2γ

nαβ
,

1415A4m1/2γ 1/2

{n(n − 1)αβ}1/2

}

≤ 21/2 min
m∈[2γ ]\{1} max

{
2r2

θ2
ω(m+1)

,
1152A2γ

nαβ
,

1415A4m1/2γ 1/2

{n(n − 1)αβ}1/2

}

�A,α,β min
m∈{3,4,...,2γ +1} max

{
r2

θ2
ω(m)

,
logn

n
,
m1/2 log1/2 n

n

}

≤ max
{

log1/2 n

n
m

1/2
0

(
nr2

log1/2 n

)
,

logn

n

}
,

and the result follows. �

PROOF OF PROPOSITION 10. As in the proof of Proposition 9, by (29) in the proof of
Theorem 2, we see that we reject H0 with probability at least 1 − β provided that n ≥ 16 and

ρ2 ≥ min
mX∈KX
mY ∈KY

max
{

2r2

m
2sX
X ∨ m

2sY
Y

,
1152A2γXγY

nαβ
,

1415A4|MmX,mY
|1/2(γXγY )1/2

{n(n − 1)αβ}1/2

}
.

Since |MmX,mY
| �dX,dY

m
dX

X m
dY

Y , if (mX,mY ) were not restricted to lie in KX ×KY , then we

would maximise the right-hand side here by taking m
sX
X � m

sY
Y �α,β,dX,dY ,A (nr2/ logn)

2s
4s+d .

In fact, recalling that d/s = dX/sX + dY /sY , we have that

(
nr2/ logn

) 2s
sX(4s+d) �R0,sX,sY ,dX,dY

(
n

logn

) 2
4sX+dX+dY sX/sY � n2/dX ≤ 2γX .

As in the proof of Proposition 9, then we may choose (mX,mY ) ∈ KX × KY so as to ensure
that the separation in (8) suffices to guarantee power at least 1 − β . �

PROOF OF LEMMA 11. We will prove that

d2
TV

(
P

⊗n
pj0k0

,EP⊗n
f

) ≤ exp(n2

2
∑

j∈J \{j0},k∈K\{k0} a
4
jk)

4P(p ∈ F)2 − 1

4

in the case that n is even. If, on the other hand, n is odd then we will use the fact that
dTV(ν⊗n

1 , ν⊗n
2 ) ≤ dTV(ν

⊗(n+1)
1 , ν

⊗(n+1)
2 ) for any probability measures ν1, ν2 to complete the

proof.
Let f (1), f (2) be independent copies of f and let p(1), p(2) be independent copies of p.

Then we have that
1

4
+ d2

TV
(
P

⊗n
pj0k0

,EP⊗n
f

) ≤ 1

4
+ 1

4
d2
χ2

(
P

⊗n
pj0k0

,EP⊗n
f

)

= 1

4

∫
X×Y

. . .

∫
X×Y

(
E

{
f (x1, y1) . . . f (xn, yn)

})2
dμ(xn, yn) . . . dμ(x1, y1)
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=
E{〈p(1), p(2)〉n

L2(μ)
1{p(1),p(2)∈F}}

4P(p(1), p(2) ∈ F)
≤

E{〈p(1), p(2)〉n
L2(μ)

}
4P(p ∈F)2 ,

and all that remains is to bound the numerator in this final expression. Let (ξ
(1)
jk ), (ξ

(2)
jk ) be

independent copies of (ξjk) and write

Y := ∑
j∈J \{j0},k∈K\{k0}

a2
jkξ

(1)
jk ξ

(2)
jk

d= ∑
j∈J \{j0},k∈K\{k0}

a2
jkξjk.

The random variable Y has a distribution that is symmetric about the origin, so for odd m

we have E(Ym) = 0. For m,r ∈ N with r ≤ m, write Am,r := {α = (α1, . . . , αr) ∈ N
r : α1 +

· · · + αr = m} and (2m − 1)!! = (2m − 1)(2m − 3) . . .3 = (2m)!
m!2m for the double factorial. It is

also convenient to define the multinomial coefficient: for N ∈ N and m1, . . . ,mr ∈ N0 with
m1 + · · · + mr = N , we set(

N

m1,m2, . . . ,mr

)
:= N !

m1!m2! . . .mr ! .

Then, for every m ∈ {0,1, . . . , n/2}, we have

E
(
Y 2m) = ∑

j1,...,jm∈J \{j0}
k1,...,k2m∈K\{k0}

a2
j1k1

. . . a2
j2mk2m

E(ξj1k1 . . . ξj2mk2m
)

=
m∑

r=1

∑
α∈Am,r

∑
(j1,k1),...,(jr ,kr )

distinct

a
4α1
j1k1

. . . a
4αr

jrkr
× 1

r!
(

2m

2α1,2α2, . . . ,2αr

)

=
m∑

r=1

∑
α∈Am,r

∑
(j1,k1),...,(jr ,kr )

distinct

a
4α1
j1k1

. . . a
4αr

jrkr
× (2m − 1)!!( m

α1,...,αr

)
r!(2α1 − 1)!! . . . (2αr − 1)!!

≤
m∑

r=1

∑
α∈Am,r

∑
(j1,k1),...,(jr ,kr )

distinct

a
4α1
j1k1

. . . a
4αr

jrkr
× (2m − 1)!!( m

α1,...,αr

)
r!

= (2m − 1)!!
( ∑

j∈J \{j0},k∈K\{k0}
a4
jk

)m

.

It therefore follows that

E
{〈
p(1), p(2)〉n

L2(μ)

} = E
{
(1 + Y)n

} =
n/2∑
m=0

(
n

2m

)
E

(
Y 2m)

≤
n/2∑
m=0

1

m!
(

n2

2

∑
j∈J \{j0},k∈K\{k0}

a4
jk

)m

≤ exp
(

n2

2

∑
j∈J \{j0},k∈K\{k0}

a4
jk

)
,

as required. �

PROOF OF THEOREM 12. For m ∈ N, set

cm := min
(

r2

θ2
ω(m)

,
(2m)1/2

n + 1
log1/2(

1 + (1 − γ )2)
,
(A − 1)2 ∧ 1

mp̄2

)
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and

aω(�) :=
{
c1/2
m /m1/2 for � ∈ [m],

0 otherwise.

Then, with the convention that ∞ · 0 = 0, we have

(30)
∑

j∈J \{j0},k∈K\{k0}
θ2
jka

2
jk = cm

m

m∑
�=1

θ2
ω(�) ≤ cmθ2

ω(m) ≤ r2.

Moreover,

∑
j∈J \{j0},k∈K\{k0}

a4
jk = c2

m

m
≤ 2

(n + 1)2 log
(
1 + (1 − γ )2)

,

and

(31)
∑

j∈J \{j0},k∈K\{k0}
ajk‖pjk‖∞ = m1/2c1/2

m p̄ ≤ (A − 1) ∧ 1.

Now, writing ρ = {∑J \{j0},k∈K\{k0} a
2
jk}1/2, observe that the random element p of L2(μ)

defined in Lemma 11 has D(p) = ρ2 with probability one. Furthermore, from (30) and (31),
we have with probability one that p ∈ Fξ (ρ). Since only finitely many elements of the set
{ajk : j ∈ J \ {j0}, k ∈ K \ {k0}} are nonzero, {p ∈ F} is an event, so by Lemma 11 and the
discussion immediately following it, we have

ρ̃(n, γ, ξ)2 ≥ sup
m∈N

∑
j∈J \{j0},k∈K\{k0}

a2
jk = sup

m∈N
cm,

and the result follows. �

PROOF OF PROPOSITION 14. For m = �nr2�2d/(4s+d), we set

dm = min
(

r2

θ2
ω(m)

,
(2m)1/2

n + 1
log1/2(

1 + (1 − γ )2)) �sX,sY ,dX,dY ,γ

(
rd

n2s

)2/(4s+d)

and

aω(�) :=
{
d1/2
m /m1/2 for � ∈ [m],

0 otherwise.

The rest of this proof is dedicated to showing that, for the p constructed in the statement of
Lemma 11, we have

P(p /∈ F) = P
(

ess inf
x∈X ,y∈Y p(x, y) < 0

)
< 1 −

√
1 + (1 − γ )2

1 + 4(1 − γ )2 ,

from which the result will follow from Lemma 11. We define the random function

F(x, y) := 1 − p(x, y) = − ∑
j∈J \{j0},k∈K\{k0}

ajkξjkpjk(x, y)

and aim to bound P(ess supx∈X ,y∈Y F(x, y) > 1). The space X × Y can be equipped with
the pseudo-metric

τ
(
(x, y),

(
x′, y′)) :=

[ ∑
j∈J \{j0},k∈K\{k0}

a2
jk

{
pjk(x, y) − pjk

(
x′, y′)}2

]1/2
,
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which satisfies

δ := sup
x∈X ,y∈Y

τ
(
(x, y), (x0, y0)

) ≤ 4
{ ∑

j∈J \{j0},k∈K\{k0}
a2
jk

}1/2
= 4d1/2

m

for any (x0, y0) ∈ X × Y . Now, for m = (m1, . . . ,mdX
) ∈ N

dX

0 and x = (x1, . . . , xdX
) ∈

X , we write 〈m,x〉X := ∑dX

�=1 m�x�; similarly, for m = (m1, . . . ,mdY
) ∈ N

dY

0 and y =
(y1, . . . , ydY

) ∈ Y , we write 〈m,y〉Y := ∑dY

�=1 m�y�. Then, for any x, x′ ∈ X and y, y′ ∈ Y ,

τ
(
(x, y),

(
x′, y′))2

≤ 4
∑

(aX,mX)∈J \{j0}
(aY ,mY )∈K\{k0}

a2
jk

{∣∣e−2πi〈mX,x−x′〉X − 1
∣∣ + ∣∣e−2πi〈mY ,y−y′〉Y − 1

∣∣}2

≤ 32π2
∑

(aX,mX)∈J \{j0}
(aY ,mY )∈K\{k0}

a2
jk

(
1 ∧ 〈

mX,x − x′〉2
X + 1 ∧ 〈

mY ,y − y′〉2
Y

)

≤ 32π2
∑

(aX,mX)∈J \{j0}
(aY ,mY )∈K\{k0}

a2
jk

{(‖mX‖1
∥∥x − x′∥∥∞

)2(sX∧1) + (‖mY ‖1
∥∥y − y′∥∥∞

)2(sY ∧1)}

≤ 64π2r2 max
{∥∥x − x′∥∥2(sX∧1)

∞ ,
∥∥y − y′∥∥2(sY ∧1)

∞
}
.

(32)

For u, v > 0, let H∞(u,X ) and H∞(v,Y) be the u- and v-metric entropies of X and Y ,
respectively, with respect to the appropriate supremum metric; thus, for example, there exists
XN := {x1, . . . , xN }, where logN = H(u,X ), such that given any x ∈ X , there exists xj∗ ∈
XN with ‖x − xj∗‖∞ ≤ u. It follows from (32) that, if H(w,X ×Y) is the w-metric entropy
of (X ×Y, τ ) in the metric τ , then

H(w,X ×Y) ≤ H∞
((

w

8πr

)1/(sX∧1)

,X
)

+ H∞
((

w

8πr

)1/(sY ∧1)

,Y
)

≤ dX log
(

1 +
(

8πr

w

)1/(sX∧1))
+ dY log

(
1 +

(
8πr

w

)1/(sY ∧1))

≤
(

dX

sX ∧ 1
+ dY

sY ∧ 1

)
log(1 + 8πr/w).

This choice of metric allows us to write, for any λ ∈ R, x, x′ ∈X and y, y′ ∈ Y ,

logEeλ{F(x,y)−F(x′,y′)} = ∑
j∈J \{j0}
k∈K\{k0}

log cosh
(
λajk

{
pjk(x, y) − pjk

(
x′, y′)})

≤ λ2

2

∑
j∈J \{j0}
k∈K\{k0}

a2
jk

{
pjk(x, y) − pjk

(
x′, y′)}2 = λ2

2
τ
(
(x, y),

(
x′, y′))2

.

(33)

We now apply a chaining argument. For each t ∈ N, let δt := δ2−t , and let Zt denote a δt -net
of X × Y with respect to the pseudo-metric τ . Let z0 = (x0, y0) be an arbitrary element of
X × Y and Z0 := {z0}. Then, for each t ∈ N0, we can define a map �t : X × Y → Zt such
that τ(z,�t(z)) ≤ δt . Noting that EF(x0, y0) = 0 and writing Ft := F ◦ �t , we have for
every T ∈ N that

E
(

ess sup
x∈X ,y∈Y

F(x, y)
) ≤ E

(
ess sup

x∈X ,y∈Y
FT (x, y) + ess sup

x∈X ,y∈Y
∣∣F(x, y) − FT (x, y)

∣∣)
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≤
T∑

t=1

E
[

ess sup
x∈X ,y∈Y

{
Ft(x, y) − Ft−1(x, y)

}]

+ ∑
j∈J \{j0},k∈K\{k0}

ajk

∣∣pjk(x, y) − pjk

(
�T (x, y)

)∣∣.
Now τ(�t(x, y),�t−1(x, y)) ≤ 3δt for all x ∈ X , y ∈ Y and t ∈ N. Hence, by (33) and a
standard sub-Gaussian maximal inequality (e.g., Boucheron, Lugosi and Massart ((2013),
Theorem 2.5)),

E
(

ess sup
x∈X ,y∈Y

F(x, y)
) ≤ 6

T∑
t=1

δtH
1/2(δt ,X ×Y) + mδT

≤ 12
∫ δ/2

0
H 1/2(u,X ×Y) du + mδT .

Since this bound holds for every T ∈ N, we conclude that

E
(

ess sup
x∈X ,y∈Y

F(x, y)
) ≤ 12

∫ δ/2

0
H 1/2(u,X ×Y) du

≤ 96π

(
dX

sX ∧ 1
+ dY

sY ∧ 1

)1/2
r

∫ d
1/2
m

2πr

0
log1/2(1 + 1/v) dv

≤ 24d1/2
m

(
dX

sX ∧ 1
+ dY

sY ∧ 1

)1/2{√
π + 2

√
log 2 + 2

√
log

(
4πr

d
1/2
m

)}
.

Now with ζ = (sX, sY , dX, dY , γ ) we have d
1/2
m �ζ (rd/n2s)1/(4s+d), so that r/d

1/2
m �ζ

(nr2)2s/(4s+d), and hence there exists c1 = c1(ζ ) ∈ (0,∞) such that if (rd/n2s)1/(4s+d) ≤
c1/ log1/2(nr2), then E ess supx∈X ,y∈Y F(x, y) ≤ 1/2.

Now by, for example, Boucheron, Lugosi and Massart ((2013), Theorem 12.1), the random
variable supx∈X ,y∈Y F(x, y) is sub-Gaussian with variance proxy∑

j∈J \{j0},k∈K\{k0}
a2
jk‖pjk‖2∞ ≤ 2dm.

By reducing c1 = c1(ζ ) > 0 if necessary, and since nr2 ≥ 2, we may assume that

dm < − 1

16
log

(
1 −

√
1 + (1 − γ )2

1 + 4(1 − γ )2

)
.

Hence, by a standard sub-Gaussian tail bound (e.g., Boucheron, Lugosi and Massart ((2013),
page 25))

P(p /∈ F) ≤ P
(

ess sup
x∈X ,y∈Y

F(x, y) −E ess sup
x∈X ,y∈Y

F(x, y) > 1/2
)

≤ e−1/(16dm) < 1 −
√

1 + (1 − γ )2

1 + 4(1 − γ )2 ,

as required. �
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