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Inference after model selection has been an active research topic in the
past few years, with numerous works offering different approaches to ad-
dressing the perils of the reuse of data. In particular, major progress has
been made recently on large and useful classes of problems by harnessing
general theory of hypothesis testing in exponential families, but these meth-
ods have their limitations. Perhaps most immediate is the gap between the-
ory and practice: implementing the exact theoretical prescription in realistic
situations—for example, when new data arrives and inference needs to be ad-
justed accordingly—may be a prohibitive task. In this paper, we propose a
Bayesian framework for carrying out inference after variable selection. Our
framework is very flexible in the sense that it naturally accommodates dif-
ferent models for the data instead of requiring a case-by-case treatment. This
flexibility is achieved by considering the full selective likelihood function
where, crucially, we propose a novel and nontrivial approximation to the ex-
act but intractable expression. The advantages of our methods in practical
data analysis are demonstrated in an application to HIV drug-resistance data.

1. Introduction. Any meaningful statistical problem consists of a model and a set of
matching parameters for which decisions are required. In the classical, “textbook” paradigm,
the model and this set of parameters are assumed to be chosen independently of the data
subsequently used for inference (e.g., estimating the parameters). In practice, however, data
analysts often examine some aspect of the data before deciding on a model and the target
parameters. Of course, ignoring such form of adaptivity in choosing the model and/or the
target parameters, may result in flawed inferential conclusions. Still, most would agree that
instructing the analyst to avoid such exploration of the data altogether, is not only impractical,
but also not recommended. This realization on the one hand, and a serious concern about a
replication problem in science on the other hand, have elicited an effort in the statistical
community to develop tools for selective inference. In general, such tools allow to take into
account the fact that the same data used to select target parameters is used when providing
inference, thereby attempting to restore validity of inference following selection.

A common approach is to condition on selection, in other words, base inference on the like-
lihood of the observed data when truncated to all realizations that would result in the analyst
posing the same question. A conditional approach has been pursued in many existing works
under a sequence model, where each observation corresponds to a single parameter and the
parameters are not assumed to have any relationship with one another. For example, a stylized
problem is estimating θi from the conditional distribution of Yi ∼ N (θi,1) given that Yi > c,
where c is constant or data dependent. These works typically adopt a frequentist approach,
for example, Zöllner and Pritchard [21], Weinstein, Fithian and Benjamini [18], Reid, Taylor
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and Tibshirani [12]; an exception is Yekutieli [19], that uses a truncated likelihood within a
Bayesian framework. More recently, the practicability of the conditional approach has been
extended to the realm of linear models and GLMs ([4, 5, 14, 15], among others). At the core
of these new contributions is a so-called polyhedral lemma [5], asserting that inference for
the projection of the mean vector of Y (in a fixed-X homoscedastic, Gaussian linear model
with known σ ) onto a one-dimensional subspace can be reduced to the problem of inference
for a univariate truncated normal variable.

The polyhedral lemma of Lee et al. [5] was indeed a significant step forward, but it has its
limitations. First, the selection rule is assumed to rely on exactly the same set of observations
used for subsequent inference, failing to accommodate realistic situations where new sam-
ples are available for inference at a later stage. Second, for the polyhedral lemma to yield a
uniformly most powerful unbiased (UMPU) test, we need to assume a fixed-X setting and a
specific model for the data entailing that the expectation of the response is an arbitrary vector
in R

n. Lastly, the target of inference in Lee et al. [5] is restricted to a real-valued linear func-
tion of the model parameters. If these assumptions are violated, the polyhedral lemma may
not be applicable or it may lead to suboptimal procedures.

1.1. Our contributions. In the current paper, we address the problem of selective infer-
ence in regression when one moves away from the aforementioned assumptions. To circum-
vent the limitations related to the polyhedral lemma, instead of working with univariate pro-
jections we propose to work directly with a full selective likelihood function. We make this
operational by developing a tractable approximation to the exact truncated likelihood func-
tion, the latter admitting no closed form and presenting serious computational objections.
This approximation is the crux of our proposed methodology, and much of our effort will
be focused on developing the approximation and proving that it enjoys desirable statistical
properties.

Our approach allows considerably more flexibility as compared to that of Lee et al. [5].
In our setup, we divide the data into two parts, where selection operates only on the first
part but inference can use both parts. This is often encountered naturally when fresh data
arrives after the model selection stage. While valid inference can be provided using only the
held-out data and without any adjustment, Fithian, Sun and Taylor [4] show that data carv-
ing—incorporating also the “leftover” information from the first part—generally improves
statistical accuracy. By casting our problem in the randomized response framework of Tian
and Taylor [14], our methods easily handle data carving.

Another difference between our work and, for example, Lee et al. [5], is that we allow the
researcher to refine the choice of the model after seeing the output of the automatic algorithm.
Indeed, this kind of flexibility is essential in several practical scenarios. Suppose that we
run Lasso to select among p main effects, but after observing the output, we want to add
interactions between some of the selected variables; including the interactions may account
for some unexplained variance [20]. In other cases, domain-specific information might be
available a priori for the predictors. For instance, in statistical genomics, it is common to use
existing biological annotations to inform models. Such information may suggest to include a
group of genes known to interact with each other, even if some of them were not selected by
the automatic protocol.

Finally, while the flavor is frequentist as far as using a truncated likelihood, we follow the
ideas of Yekutieli [19] and incorporate a prior on the parameters of the adaptively chosen
model. This allows us to give inference for general functions of the parameter vector by
integrating out nuisance parameters. By adopting formally a Bayesian approach, we are able
to exploit the usual advantages of the Bayesian machinery. For instance, credible intervals can
be estimated easily by finding appropriate quantiles in the posterior sample of the parameter.
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2. Preliminaries. This section is divided into three subsections: the first sets up the
mathematical framework, the second summarizes the main results in the paper and the third
gives an outline of the remainder of the paper.

2.1. Formal framework. We introduce a general framework for inference after model
selection that, as usual, includes two steps. The first step entails selecting variables with
a procedure acting on the first split of the data. In the second stage, we assume a linear
model relating the response to the selected variables, incorporate a prior on the corresponding
coefficient vector and work toward a selection-adjusted posterior. For any matrix D ∈ R

k×l ,
any subset N ⊆ {1, . . . , k} and any subset M ⊆ {1, . . . , l}, we denote by DN the |N | × l

matrix obtained from D by keeping only the rows with indices in N , and we denote by DM

the k × |M| matrix obtained from D by keeping only the columns with indices in M . Also,
Nk(·;η,�) is the density of an k-dimensional multivariate normal vector with mean η and
covariance �.

Let

(Xi1, . . . ,Xip, Yi) ∼ P, i = 1, . . . , n,

be (p + 1)-dimensional i.i.d. vectors with Yi ∈ R. Denote y = (Y1, . . . , Yn)
T , and denote by

X the n×p matrix with (Xi1, . . . ,Xip) in its ith row. For a subset S ⊂ {1, . . . , n} determined
independently of the data, let (XS,yS) be a subsample of size |S| = n1. We will refer to
(XS,yS) as the original data henceforth. In the selection step, the statistician has access only
to the original data, and she starts with applying some predetermined variable selection rule,
a mapping (

XS,yS
) �−→ Ê ⊆ {1, . . . , p}.

The statistician is allowed at this point to refine the selection by dropping variables from (or
adding variables to) the output Ê. Specifically, let Ê′ ⊆ {1, . . . , p} be a subset obtained by
applying an arbitrary but deterministic function to Ê. We denote by E and E′ the realizations
of the variables Ê and Ê′, respectively.

In the second stage, inference is provided for P assuming that

(1) y|X ∼ Nn

(
y;XE′βE′

, σ 2I
)
.

If not indicated otherwise we treat σ 2 = σ 2
E′ as known, although in Sections 5 and 8 we ex-

plain how our methods easily accommodate the case of unknown σ 2. Naive inference would
now proceed under the model (1), ignoring the fact that E′ was chosen after seeing (part of)
the data. Instead, the fact that E′ is data-dependent will be accounted for by truncating the
likelihood in (1) to the event {Ê = E}. Formally, this means that, conditionally on X, (1)
should be replaced by

(2) y|X, Ê = E ∼ Nn(y;XE′βE′
, σ 2I)∫

1{Ê=E}(y) ·Nn(y;XE′βE′
, σ 2I) dy

1{Ê=E}(y),

remembering that Ê′ is determined by Ê, and Ê is in turn measurable with respect to
(XS,yS).

In principle, we could now base post-selection inference for βE′
on (2). Unfortunately, in

practice the denominator in (2) is intractable, and we will seek simplifications. Note that if
no selection were involved in specifying E′, standard inference for βE′

would rely on the
distribution of the least squares estimator,

β̂E′ = X†
E′y,
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where X†
E′ is the pseudo-inverse of XE′ ; if XE′ has full rank, this is (XT

E′XE′)−1XT
E′ . If it

were possible to express the selection event in terms of β̂E′
and nothing else, this would

give rise to a truncated distribution for β̂E′
. This is, however, not the case for the selection

rules considered in the current paper for two reasons. First of all, because we implement data
carving, the choice of E cannot be a deterministic function of β̂E′

since the latter is a function
of the full data (X,y) rather than (XS,yS). Second, even if we allowed selection to be based
on the full data (X,y), we cannot restrict it to be a function of β̂E′

alone. For example, Lasso
selection cannot be expressed in terms of only the least squares statistic even if selection
operates on the entire data set.

Suppose for the moment then that the event Ê = E could be written in a polyhedral form,

(3) AE

√
nTn + BE�n < bE,

with Tn = (β̂E′
,U)T and where U is a vector that may itself depend on E′. The variable �n

has the property that (i) it is independent of Tn and (ii) it follows a distribution that does
not depend on βE′

. Using the terminology of Tian and Taylor [14], �n is a randomization
term. As we will see later on, the selection rules that we will be concerned with can indeed
be approximately represented in the form (3) with appropriate choices of U, �n and AE ,
BE , bE . By “approximately represented,” we mean that we allow a term that goes to zero in
probability in (3) and also that �n satisfies the properties (i) and (ii) above asymptotically, as
in the sense formalized in Section 4.

Treating (3) first as if it holds exactly instead of asymptotically, we start by considering
the truncated distribution of (Tn,�n),

Ln(βE′ ; tn,ωn)

P(AE

√
nTn + BE�n < bE|βE′

)
1{AE

√
ntn+BEωn<bE}(tn,ωn),

where Ln(βE′ ; tn,ωn) denotes the marginal likelihood corresponding to (Tn,�n). The term

(4) P
(
AE

√
nTn + BE�n < bE|βE′)

,

appearing in the denominator of the previous expression, will occur frequently throughout
the manuscript and we call it the adjustment factor. We emphasize that, when the adjustment
factor (4) appears throughout the manuscript, it should be formally understood as equivalent
to the probability of the exact selection event. As the selection event will have a polyhedral
representation only approximately, this is a slight abuse of notation, but we chose to use it
anyway to emphasize the form of the selection regions under consideration. Also, to avoid
ambiguity, we emphasize P(·) denotes probability taken under fixed βE′

but marginalizing
over all of the other random variables, that is,

P(A) =
∫

1A(tn,ωn) · Ln(βE′ ; tn,ωn

)
dtn dωn

for any event A measurable with respect to (Tn,�n). As in (4), the dependence on βE′
is

sometimes stressed by writing P(·|βE′
) instead of P(·).

By integrating with respect to ωn, and using the fact that �n is a randomization term, we
obtain our selection-adjusted likelihood,

(5)

Ln
S

(
βE′ ; tn) := Ln(βE′ ; tn)

P(AE

√
nTn + BE�n < bE|βE′

)
P
(
AE

√
ntn + BE�n < bE|tn)

∝ Ln(βE′ ; tn)
P(AE

√
nTn + BE�n < bE|βE′

)
.
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Observe that the probability in the numerator of the second term above is taken over �n only,
hence this term does not depend on βE′

.
The point of view has thus far been frequentist. Inspired by the basic ideas in Yekutieli

[19], we now introduce a prior into our model,

(6) βE′ |Ê = E ∼ π.

The conditioning on Ê = E above is consistent with the same conditioning in the likelihood:
since we pose a generative model for the data conditionally on selection, the prior as well is
a conditional prior. Combining the selection-adjusted likelihood (5) and the prior (6) results
formally in the selection-adjusted posterior distribution,

(7) πS

(
βE′ |tn)∝ π

(
βE′)

Ln
S

(
βE′ ; tn).

We use again a subscript S in πS to indicate that in the selection-adjusted posterior, π is
updated with the selection-adjusted likelihood rather than a marginal likelihood. The idea is
to provide adjusted inference for βE′

, or functions thereof, based on (7).

2.2. Overview of our main results. Complementing Section 1.1, here we provide a more
detailed and slightly more technical account of the main results. The central component of our
Bayesian methods is the selection-adjusted likelihood (5), which also presents the primary
technical challenge: in order to sample from (7) we need to be able to evaluate the adjustment
factor (4), which as a function of βE′

, is generally intractable. Hence, most of our effort
will be devoted to finding an amenable approximation as a substitute for (4). In Section 3
we demonstrate our methods in a very special, univariate case where the exact term can
actually be computed and, therefore, serve as a reference. Afterwards, we extend the theory
to the general case that covers, for example, Lasso selection in a regression problem. Before
delving into the details, we present the scope of our theoretical results below while drawing
the analogy between the univariate case of Section 3 and the general case of Sections 4
onward:

1. Representation of the selection region: we find an explicit polyhedral representation of the
selection rule in the form (3) under data carving and a flexible choice for the model as
specified by (1). For the univariate case, this (simple) representation is given by equation
(10). For selection with Lasso, the (considerably more involved) counterpart is given in
Propositions 4.1 and 4.2, and for the two additional examples of the supplement [9] the
counterparts are included within.

2. Consistency of the approximation to the adjustment factor: as already pointed out, the
exact probability (4) is generally too complicated to be handled directly. In Theorem 3.1,
we develop an approximation for this probability in the special univariate case and prove
that it converges asymptotically to the exact term. This is extended to arbitrary polyhedral
selection rules in Theorem 5.1. Notably, our moderate deviations-type approximation in
the general case still has the correct limit.

3. Consistency of the resulting approximate posterior: we establish frequentist credibility for
our Bayesian methods by proving that the resulting (approximate) posterior, obtained by
substituting the approximation to the adjustment factor, concentrates around the model
parameters as data accumulates (n → ∞). This is formalized for the univariate example
in Theorem 6.2, which we extend later to Theorem 6.5 for the general case. To this end,

(a) Strong concavity of our approximate selection-adjusted log-likelihood is estab-
lished in Proposition 6.1 for the univariate case and in Proposition 6.2 for the general
case.
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(b) Consistency of our selection-adjusted MLE is asserted in Theorem 6.1 for the uni-
variate case and in Theorem 6.4 for the general case.

4. Convexity of the MAP program: emphasizing the practicability of the proposed approxima-
tion, we represent the MAP estimator as the solution of an amenable convex optimization
problem for any log-concave prior. We offer Theorem 6.3 for the univariate example and
Theorem 6.6 for the general case.

2.3. Organization of the paper. The rest of the paper is organized as follows. In the next
two sections, we instantiate the general framework by considering two particular cases: Sec-
tion 3 begins with a simple univariate example to develop some intuition. In Section 4, we
proceed to the main case study, Lasso selection in the linear model, that features all of the
complexity of the general problem; further examples appear in the supplement. Section 5
develops an approximation to the selection-adjusted likelihood in the general problem, with
the focus on a computationally amenable proxy. We address point estimation based on the
approximate posterior in Section 6, with a separate analysis for the univariate case and the
general case. In Section 7, we report findings from numerical experiments, analyzing simu-
lated data as well as real data consisting of records for HIV drug resistance. Computational
details for implementing our methods are provided in Section 8.

3. A special univariate case. We begin with studying an elementary example where
there are no covariates and the selection rule is very simple. Besides priming the sequel,
the example below is a case where an exact analysis can be carried out and serve as a true
benchmark.

Throughout this section, then suppose that the observations are

(8) Yi ∼ N (β,1), i = 1, . . . , n.

For the theoretical analysis that follows, β = βn depends in general on n, and we use the
parameterization

√
nβn ≡ nδβ∗ with β∗ a constant and δ ∈ (0,1/2]. Let S ⊆ {1, . . . , n} be a

random subset of size n1 = ρn, and denote

ȲS := 1

n1

∑
i∈S

Yi, Ȳn := 1

n

n∑
i=1

Yi.

We provide inference for βn conditionally on

(9)
√

n1Ȳ
S > 0,

that is, the selection event entails the (scaled) least squares estimate for βn from the original
data exceeds a fixed threshold (zero). We first note that, on defining Wn := ȲS − Ȳn, we have

√
nWn ∼ N

(
0,

1 − ρ

ρ

)
,

√
nWn |=

√
nȲn.

Therefore, letting

(10)
√

nβ̂n = √
nȲn, �n = √

nWn,

we see that the selection event (9) can be written exactly in the form (3) with Tn = β̂n, and
with AE = −1, BE = −1, bE = 0.

In this simple example, unlike in the general problem, we have an explicit form for the
exact probability of the selection event,

(11) P
(
AE

√
nTn + BE�n < bE|βn

)= P
(√

n1Ȳ
S > 0|βn

)= 
̄(−√
ρ · √nβn).

The following result suggests an approximation for the selection probability (11) in the simple
univariate example, which we will generalize in the next section.
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THEOREM 3.1. Let β = βn = nδβ∗/
√

n, where β∗ is a constant. Let K = (0,∞). Then

(12) logP
(√

n(Ȳn + Wn)/nδ ∈ K|βn

)≤ −n2δ · inf
(z,w):z+w∈K

(z − β∗)2

2
+ ρw2

2(1 − ρ)

for any n ∈ N as long as 0 < δ ≤ 1/2. Furthermore, the corresponding sequence of the loga-
rithms of the selection probabilities satisfies

lim
n→∞

1

n2δ
logP

(√
n(Ȳn + Wn)/nδ ∈ K|βn

)= − inf
(z,w):(z+w)∈K

(z − β∗)2

2
+ ρw2

2(1 − ρ)
.

We call the exponent of the right-hand side of (12) the Chernoff approximation to the
selection probability (11). Note that in the Chernoff approximation the infimum is taken over
a constrained set in R

2. To obtain a more computationally amenable expression, we propose
to replace the right-hand side of (12) with the unconstrained optimization problem

(13) −n2δ · inf
(z,w)∈R2

{
(z − β∗)2

2
+ ρw2

2(1 − ρ)
+ 1

n2δ
ψn−δ (z + w)

}
,

where ψn−δ is a function satisfying that in the limit as n → ∞,

1

n2δ
ψn−δ (x) −→ I (x) =

{
0 if x ∈ (0,∞),

∞ otherwise.

Specifically, using

(14) ψn−δ (x) = log
(
1 + n−δ/x

)
whenever x ∈ (0,∞) and ∞ otherwise in (13), we obtain our barrier approximation to the
selection probability (11), so-called because (14) serves as a “soft” barrier alternative to the
indicator function I (x). Figure 1(a) compares the approximations in (12) and (13) to the
exact expression (11). The plots for both approximations follow the exact curve fairly closely.
Notice, the curve depicting the Chernoff approximation lies above that for the true probability,
as predicted by Theorem 3.1.

REMARK 3.2. In practice, we will not have access to δ but, by substituting
√

nz′ = nδz,√
nw′ = nδw, (13) is equivalent to

−n · inf
(z′,w′)∈R2

{(
z′ − βn

)2
/2 + ρw′2/2(1 − ρ) + ψn−1/2

(
z′ + w′)/n

}
,

and we can simply work with βn without knowing the underlying parameterization.

Next, we show that when substituting the barrier approximation for the exact selection
probability, the resulting adjusted posterior converges to the actual (exact) selection-adjusted
posterior. First, note that the logarithm of the selection-adjusted posterior is

logπS

(
βn|ȳn

)= logπ(βn) − n(ȳn − βn)
2/2 − logP

(√
n(Ȳn + Wn)/nδ ∈K|βn

)
.

On the other hand, corresponding to any barrier function ψn−δ is the approximate adjusted
posterior

log π̃S

(
βn|ȳn

)= logπ(βn) − n(ȳn − βn)
2/2

+ n2δ · inf
(z,w)∈R2

{
(z − β∗)2

2
+ ρw2

2(1 − ρ)
+ 1

n2δ
ψn−δ (z + w)

}
.

(15)

Then a consequence of Theorem 3.1 is the followin corollary.
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FIG. 1. (a) Approximations to log-adjustment factor in the univariate case of Section 3. In the legend, “Cher-
noff” refers to the approximation from (12), and “Barrier” to the approximation from (13); “True” corresponds to
the exact expression (11). (b) Maximum-likelihood estimation for the univariate Gaussian setting. Broken line cor-
responds to the approximate MLE, incorporating the proposed approximation to the selection probability. Solid
black curve is the exact (true) MLE, and solid red line is the identity line, representing the unadjusted estimate.

COROLLARY 3.3. Let β = βn be a sequence such that
√

nβn ≡ nδβ∗, δ ∈ (0,1/2]. Fur-
thermore, suppose that in (15) the function ψn−δ satisfies that for each x,

n−2δψn−δ (x) −→ IK(x) =
{

0 if x ∈K,

∞ otherwise

as n → ∞. Then

lim
n→∞

1

n2δ

{
logπS

(
βn|ȳn

)− log π̃S

(
βn|ȳn

)}= 0.

4. Selection with the lasso. We now turn to the case of primary interest, specializing the
general framework of Section 2 to selection with the Lasso in the linear model. It is important
to remark again that our methodology applies to many other selection protocols. For example,
in the supplement we show how marginal-screening and logistic Lasso for a binary response,
can be formulated to fit our framework.

From now on, unless specified otherwise, we consider

(16) Ê = {
j : β̂λ

j �= 0
}
,

where β̂λ is the solution to

(17) minimize
β∈Rp

1

2
√

nρ

∥∥yS − XSβ
∥∥2

2 + λ‖β‖1,

and ρ = n1/n. We emphasize that β̂λ = β̂λ
S is obtained from only the original data (yS ,XS),

but we suppress the subscript throughout. We also denote by β̂λ
E the vector in R

|E| consisting
of only the nonzero coordinates of β̂λ. While the general prescription in Section 2 would now
entail conditioning on the event Ê = E, as in Lee et al. [5] we in fact condition on the more
specific event

(18)
(
Ê, ŜÊ)= (

E, sE),
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where ŜÊ = sgn(β̂λ
E) is the vector of signs of β̂λ

E . This refinement is important for obtaining a
convex truncation region, which is crucial for our methods to be applicable. As in the general
setting, the object of inference is βE′

, with E′ ⊆ {1, . . . , p} chosen upon observing (18).
To fit the general framework of Section 2, in the previous section we reexpressed the se-

lection event, originally involving β̂S = ȲS , as a sum involving β̂n = Ȳn and an independent
variable Wn. Furthermore, the distribution of Wn was fully specified, in particular it did not
depend on the unknown parameter β . We will now develop an analogous asymptotic repre-
sentation for the Lasso selection event (18). Thus, let

(19)
√

nTn :=
( √

nβ̂E′
√

nN−E′

)
:=
⎛⎜⎝

√
nβ̂E′

1√
n

XT
−E′

(
y − XE′ β̂E′)

⎞⎟⎠ ,

where X−E′ is the matrix obtained from X by deleting the columns with indices in E′. Define
also

(20) �n = √
nWn = ∂

∂β

{
− 1

2
√

nρ

∥∥yS − XSβ
∥∥2

2 + 1

2
√

n
‖y − Xβ‖2

2

}∣∣∣∣
β=β̂λ

.

As observed in [6], �n can be treated asymptotically as a randomization term. We verify this
in Proposition 4.1 and show that the event (18) can be asymptotically written as in (3) in
Proposition 4.2.

The next two propositions formulate the Lasso selection in terms of our framework.

THEOREM 4.1. Denote μ := (βE′
,0)T ∈ R

p where βE′ ∈R
|E′|. Assume EP (XT

E′XE′/n)

is invertible. Define also the matrices

Q := EP

(
XT

E′XE′/n
)
,

N := {
EP

(
XT

−E′X−E′/n
)−EP

(
XT

−E′XE′/n
)
Q−1

EP

(
XT

−E′XE′/n
)T }−1

and

� =
[
�P 0
0 �G

]
, �P = σ 2

[
Q−1 0

0 N−1

]
.

Then, under the modeling assumption (1),(√
n(Tn − μ)

�n

)
.∼ N2p(0,�),

where �G is a p × p matrix, and where the symbol “
.∼” means “asymptotically distributed

as.”

Before we prove Proposition 4.2, we let IE,E′ ∈ R
|E|×(p−|E′|) and J E,E′ ∈

R
(p−|E|)×(p−|E′|) be matrices with entries that are all zero except for the (j, j) entries, which

are defined as follows: if E = {k1, k2, . . . , k|E|} and Ec = {l1, l2, . . . , lp−|E|}, then

IE,E′
j,j =

{
1 if kj /∈ E′,
0 otherwise,

j = 1, . . . ,min
(|E|,p − ∣∣E′∣∣);

J E,E′
j,j =

{
1 if lj /∈ E′,
0 otherwise,

j = 1, . . . ,min
(
p − |E|,p − ∣∣E′∣∣).

Define the following moments: PE,E′ = EP (XT
EXE′/n), FE,E′ = EP (XT−EXE′/n), QE =

EP ((XT
EXE/n), CE = EP (XT−EXE/n).
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THEOREM 4.2. The event (Ê, ŜE) = (E, sE) is equivalent to

(21) AE

√
nTn + BE�n + op(1) < bE,

where

AE =
⎡⎢⎣ −diag

(
sE)(QE)−1PE,E′ −diag

(
sE)(QE)−1IE,E′

FE,E′ − CE(QE)−1PE,E′ J E,E′ − CE(QE)−1IE,E′

−FE,E′ + CE(QE)−1PE,E′ −J E,E′ + CE(QE)−1IE,E′

⎤⎥⎦ ,

BE =
⎡⎢⎣−diag

(
sE)(QE)−1 0

−CE(QE)−1 I
CE(QE)−1 −I

⎤⎥⎦ , bE = λ

⎛⎜⎝−diag
(
sE)(QE)−1

sE

1 − CE(QE)−1
sE

1 + CE(QE)−1
sE

⎞⎟⎠ .

5. Approximations to the selection-adjusted posterior. Extending the results of Sec-
tion 3, we will now present a computationally tractable approximation for the adjustment
factor (4) in the general problem. The central result of this section, Theorem 5.1 below, is a
moderate deviations-type of result implying a relatively simple approximation to the adjust-
ment factor that has the correct (exact) limit.

5.1. An approximation to the adjustment factor. To make explicit the dependence of the
parameter vector in (2) on n, we use the notation βE′

n instead of βE′
and represent μ (de-

fined in Proposition 4.1) by μn. Furthermore, without loss of generality we take the (known)
variance term to be σ 2 = 1; the case of unknown σ 2 is discussed after stating the theorem.

We first recall the representation from the proof of Proposition 4.1(√
nTn

�n

)
− √

n

(
μn

0

)
= √

nZ̄n + En,

where En = op(1) and μn = (βE′
n ,0)T ∈ R

p , and Z̄n is the mean of n i.i.d. centered obser-
vations. Suppose that (1) holds for some vector βE′

n satisfying
√

nβE′
n = nδβ∗ ∈ R

|E′|, where
β∗ does not depend on n, and where δ ∈ (0,1/2). We will need the following assumptions.

ASSUMPTION 1. Defining Wn through �n := √
nWn, assume that

EP

[
exp(λ0

∥∥X(Y − XE′T βE′
n

)∥∥],EP

[
exp

(
η0
∥∥X(Y − XE

T
E
[
β̂λ

E

])∥∥)]< ∞
for some λ0, η0 > 0, where (X,Y ) = (X1, . . . ,Xp,Y ) ∼ P .

ASSUMPTION 2. Additionally, we assume that

lim
n→∞n−2δ · logP

[
n−δ‖En‖ > ε

]= −∞ for every ε > 0,

and that

lim
n→∞

1

n2δ

{
logP

(
AE

√
nTn + BE

√
nWn + op(1) < bE|βE′

n

)
− logP

(
AE

√
nTn + BE

√
nWn < 0|βE′

n

)}= 0.

Assumption 1 is a condition on the existence of an exponential moment. This is a necessary
condition for a mean statistic based on i.i.d. observations, in our case Z̄n, to satisfy a moder-
ate deviation principle; see [1, 3]. Assumption 2 is necessary to allow a moderate deviation
principle for the statistic (

√
n(Tn − μn),�n)

T , which is obtained by adding to the centered
mean statistic

√
nZ̄n a remainder term that is converging in probability to 0. The condition
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on our remainder term is typically needed to apply moderate deviations to statistics such
as M-estimators; see Arcones [1]. Moderate deviations approximations are used to compute
probabilities of the form

P
(√

n(Tn,Wn)
T /nδ ∈ K

)
.

If we take K = {(t,w) : [AE BE

]
(t,w)T < 0}, then the following condition in this assump-

tion allows us to approximate

n−2δ · logP
([

AE BE

]√
n(Tn,Wn)

T /nδ + n−δop(1) < n−δbE|βE′
n

)
by

n−2δ · logP
([

AE BE

]√
n(Tn,Wn)

T /nδ < 0|βE′
n

)
.

We are now ready to state

THEOREM 5.1. Denote Hn = {(b, η,w) : AE(b, η)T + BEw < n−δbE}. Under the as-
sumptions 1 and 2, we have

(22)

lim
n→∞

1

n2δ
logP

(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)
+ inf

(b,η,w)∈Hn

(b − β∗)T Q(b − β∗)
2

+ ηT Nη

2
+ wT �−1

G w

2
= 0,

where the optimization variables (b, η,w) ∈R
E′ ×R

p−|E′| ×R
p , and matrices Q, N and �G

are defined in Proposition 4.1.

REMARK 5.2. The polyhedron in Theorem 5.1 can in fact be more generally replaced
with any open and convex subset K ⊂ R

2p .

REMARK 5.3. If σ 2 is unknown, we can put

K = {
(t,w) : AE

√
nt + BE

√
nw ≤ bE/σ

}
and compute the probability with respect to the law of (

√
nTn/σ,

√
nWn/σ)T where μn :=

(βE′
n /σ,0)T . In this case, we note that (22) becomes

(23)

lim
n→∞

1

n2δ
logP

(
AE(

√
nTn/σ) + BE(

√
nWn/σ) < bE/σ |βE′

n , σ
)

+ (
σ 2)−1 · inf

(b,η,w)∈Hn

(b − β∗)T Q(b − β∗)
2

+ ηT Nη

2
+ wT �−1

G w

2
= 0,

where Hn is defined in Theorem 5.1. Hence our approximation readily accommodates the
case of unknown σ 2. In Section 8, we use this to outline a scheme for posterior sampling
when imposing a joint prior on (βE′

, σ )T .

Theorem 5.1 suggests using the negative of the second term in (22), scaled by n2δ , as an
approximation in computing the log of the probability in (4), whenever

√
n(Tn,Wn) satisfies

a central limit property and has exponential moments. From now on, we write the selection
event as {AE

√
nTn + BE

√
nWn < bE}, ignoring the op(1) with a slight abuse of notation.
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5.2. A refinement of the approximation. The optimization variables in the approximation
implied by Theorem 5.1 are constrained to the set Hn. In the spirit of the development in
Section 3, we propose to relax the computational burden by solving an unconstrained version
of the optimization problem in (22). The resulting expression, which we refer to as a barrier
version of our approximation, will be used in place of the log of the probability in (4) when
implementing our methods. To proceed with our construct, we first introduce a change of
variable for the optimization arguments to simplify the constraints in the left-hand side of
(22).

THEOREM 5.1. For 0 < δ < 1/2 and for a sequence βE′
n such that

√
nβE′

n = nδβ∗, define
a change of variable ω �→ o through

nδw = nδPE

(
b

η

)
+ nδQEo + rE,

where

PE = −
[

PE,E′ IE,E′

FE,E′ J E,E′

]
, QE =

[
QE 0
CE I

]
, rE =

(
λsE

0

)
.

Then, minimizing n2δ · inf(b,η,w)∈Hn{(b − β∗)T Q(b − β∗)/2 + ηT Nη/2 + wT �−1
G w/2} is

equivalent to minimizing

n2δ · inf
{(b,η,o)∈R2p :o∈On}

{(
b − β∗)T Q

(
b − β∗)/2 + ηT Nη/2

+ (
PE

(
b

η

)
+ QEo + rE/nδ)T �−1

G
(
PE

(
b

η

)
+ QEo + rE/nδ)/2

}
,

where the constraints in the two objectives are given, respectively, by

Hn =
{
(b, η,w) ∈ R

2p : AE

(
b

η

)
+ BEw ≤ n−δbE

}
;

On = {
o ∈ R

p : sgn
(
nδoE

)= sE,
∥∥nδo−E

∥∥∞ ≤ λ
}
.

Note that in the new form of the optimization problem, the variables b and η are un-
constrained, while o has the simple constraint given above. For the parametrization of βE′

n

considered, we obtain a more flexible form of the optimization problem as

(24)

log P̃
(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)
= −n2δ · inf

(b,η,o)∈R2p

{(
b − β∗)T Q

(
b − β∗)/2 + ηT Nη/2

+ (
PE

(
b η

)T + QEo + rE/nδ)T �−1
G
(
PE

(
b η

)T + QEo + rE/nδ)/2

+ n−2δψn−δ (oE, o−E)
}
.

In the above formulation, ψs(o) = ψs(oE, o−E) is some penalty function corresponding to
the set On, with a scaling factor s. This specializes to the optimization presented in Proposi-
tion 5.1 by taking ψs(oE, o−E) to be the characteristic function

IO(oE, o−E) =
{

0 if o ∈O,

∞ otherwise.

In the next and crucial step, instead of the characteristic function that restricts the opti-
mizing variables to the set On, we use a smoother nonnegative penalty function: we replace
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IOn(oE, o−E) with a suitable “barrier” penalty function ψs that reflects preference for values
of o farther away from the boundary and inside the constraint region On, by taking on smaller
values for such o. Specifically, we use ψn−δ defined by

(25)

ψn−δ (o) ≡ ψn−δ (oE, o−E)

=
(

E∑
i=1

log
(

1 + 1

si,Enδoi,E

)
+

p−|E|∑
i=1

log
(

1 + 1

λi,−E − nδoi,−E

)

+ log
(

1 + 1

λi,−E + nδoi,−E

))
.

In line with Remark 3.2 for the univariate thresholding example, we remark that δ in the
parameterization of βE′

n is only a theoretical construct. This ultimately leads to an approxi-
mation to the log of the selection-adjusted posterior (7), as

(26)
log π̃S

(
βE′

n |β̂E′)= logπ
(
βE′

n

)− n
(
β̂E′ − βE′

n

)T Q
(
β̂E′ − βE′

n

)
/2

− log P̃
(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)
,

where we use (25) in (24).

6. Point estimation and consistency of the approximate selection-adjusted posterior.
In our Bayesian framework a natural point estimate for βE′

n is the selection-adjusted maxi-
mum a-posteriori (MAP) statistic, the maximizer in βE′

n of (7); the selection-adjusted MLE
obtains as a special case when we use a constant prior. We cannot implement the exact MAP
because it again involves the adjustment factor, but we may consider an approximate MAP by
replacing the adjustment factor in the selection-adjusted likelihood with our approximation.
Specifically, the previous section prompts using (26) with the choice of penalty (25) in (24).
In what follows, we focus on the approximate selection-adjusted MLE and show that it is
consistent in a formal, post-selection sense. A closely related phenomenon, concentration of
the approximate posterior around the underlying model parameters, in fact follows as a con-
sequence. Finally, on the computational aspect we show that for an extensive class of priors,
the MAP problem associated with our approximation is convex and, therefore, amenable for
implementation.

Before proceeding we remark that point estimates can be obtained with the methods of
Lee et al. [5], that rely on a particular conditional (but exact) distribution of a univariate
projection. However, such estimates might be suboptimal because, stated informally, they do
not utilize all of the information about the parameters in the sample. By contrast, the methods
suggested below are based on the full (adjusted) likelihood, defined for a fairly flexible class
of models.

6.1. The special univariate case. We study first the approximate MAP in the univariate
gaussian example of Section 3. Again, in that case we can implement the exact MAP. As be-
fore, we assume (8) with β = βn such that

√
nβn = nδβ∗, 0 < δ ≤ 1/2. Notice, the selection

event {√n1Ȳ
S > 0} ≡ {√n(Ȳn + Wn) > 0} is of the form

√
n(Ȳn + Wn)/nδ ∈K,

where K is an interval on the real line. The selection-adjusted likelihood is

(27) Ln
S(βn) = −n(ȳn − βn)

2/2 − logP
(√

n(Ȳn + Wn)/nδ ∈K|βn

)
,
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and our approximate version for the selection-adjusted (log-) likelihood is

(28) L̃n
S(βn) = −n(ȳn − βn)

2/2+n2δ · inf
(z,w)∈R2

{
(z − β∗)2

2
+ ρw2

2(1 − ρ)
+ 1

n2δ
ψn−δ (z+w)

}
.

First, we make a crucial observation about the strong concavity of our selection-adjusted
sequence of approximate (log-) likelihoods. As in Theorem 3.1, the statements in this section
hold also for δ = 1/2; compare Theorem 6.4.

THEOREM 6.1 (Strong concavity of log-likelihood). Let
√

nβn = nδβ∗, 0 < δ ≤ 1/2.
The approximate selection-adjusted log-likelihood in (28) equals

L̃n
S(βn) = nȳnβn − n2δ · C̃n

(
β∗)− nȳ2

n/2,

where

(29) C̃n

(
β∗)= (1 − ρ) · β∗2

/2 + H̄ ∗
n

(
ρβ∗),

and with H̄ ∗
n (·) denoting the convex conjugate of H̄n(z̄) = ρ · z̄2/2+n−2δ ·ψn−δ (z̄). Moreover,

C̃n(·) is strongly convex with index of convexity lower bounded by (1 − ρ).

The following result establishes consistency for our approximate selective MLE.

THEOREM 6.1. Denote by β̂S the maximizer of (28). If 0 < δ ≤ 1/2, then as n → ∞,

P
(
n1/2−δ|β̂S − βn| > ε|√n(Ȳn + Wn)/nδ ∈ K

)−→ 0

Figure 1(b) shows the approximate MLE against the exact MLE. To (literally) complete
the picture, we prove in Theorem 4.1 (Supplement 4) that if selection uses the entire data,
then the maximizer of the approximate truncated likelihood is not consistent. This further
highlights the importance of holding out some samples at the selection stage and reserve
them for inference.

As a consequence of Theorem 6.1, we now show a form of consistency of the selection-
adjusted posterior law with respect to a fixed (not depending on n) prior, meaning that the
approximate selection-adjusted posterior concentrates around the true parameter βn asymp-
totically.

THEOREM 6.2. Consider a ball of radius δ around βn,

B(βn, δ) := {
bn : |bn − βn| ≤ δ

}
,

and suppose that π is a prior which assigns nonzero probability to B(βn, δ) for any δ > 0.
Under the conditions in Theorem 6.1, for any ε > 0 we have

P
(
�S

(
Bc(βn, δ)|Ȳn

)
> ε|√n(Ȳn + Wn)/nδ ∈K

)→ 0

as n → ∞, where

�S

(
Bc(βn, δ)|ȳn

) := (∫
π(bn) · exp

(
L̃n

S(bn)
)
dbn

)−1∫
Bc(βn,δ)

π(bn) · exp
(
L̃n

S(bn)
)
dbn

is the posterior probability under the approximate truncated likelihood.

The next result has implications for the computation of the approximate selective MAP.

THEOREM 6.3 (Convexity of approximate MAP). Consider a log-concave prior π(·).
Then minimizing the negative of the approximate log-posterior

− logπ(βn) − L̃n
S(βn)

is a convex optimization problem in βn for any n ∈ N.
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6.2. The general case. Having established posterior consistency for the univariate ex-
ample, we now move on to the general case. Thus, consider the MAP estimator, given as
the maximizer of (26). For a flat prior, this reduces to the approximate maximum-likelihood
estimate,

(30)

β̂E′
S = argmin

βE′
n

{
n
(
β̂E′ − βE′

n

)′Q(β̂E′ − βE′
n

)
/2

+ log P̃
(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)}
,

where in (24) we use (25). Recall the quantitites PE , QE , rE defined in Proposition 5.1. Let
P E′

E denote the matrix that consists of the columns in PE corresponding to the coordinates

in E′. Similarly, P −E′
E denotes the matrix consisting of the remaining p − |E′| columns.

We begin by showing that our selection-adjusted sequence of approximate (log-) likelihoods
is strongly concave, which follows by proving strong convexity of the corresponding log-
partition functions. Notably, this claim holds in finite samples and is therefore true for any
n ∈N.

THEOREM 6.2 (Strong concavity of log-likelihood). Under the parameterization√
nβE′

n = nδβ∗ with δ ∈ (0,1/2) and when XE′ is of full column rank, the approximate log-
partition function n2δC̃n(Qβ∗), corresponding to the approximate negative log-likelihood,

n
(
β̂E′ − βE′

n

)T Q
(
β̂E′ − βE′

n

)
/2 + log P̃

(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)
,

is strongly convex. Furthermore, the index of strong convexity for C̃n(Qβ∗) is bounded below
by λmin, the smallest eigenvalue of(

Q + P E′
E

T
�−1

G P E′
E

)−1
.

Using Proposition 6.2, we are now able to prove consistency for the approximate selective
MLE. We observe here again that randomization is crucial for the theorem below to hold, as
we saw already for the univariate example.

THEOREM 6.4. Consider the conditions in Theorem 5.1. Assume

Var
(√

nβ̂E′ |AE

√
nTn + BE

√
nWn < bE

)= O(1).

When
√

nβE′
n = nδβ∗ for δ ∈ (0,1/2), the approximate selective MLE given in (30) is n1/2−δ-

consistent for βE′
n under the selection-adjusted law (5):

P
(
n1/2−δ

∥∥β̂E′
S − βE′

n

∥∥> ε|AE

√
nTn + BE

√
nWn < bE

)−→ 0

as n → ∞.

As a consequence, the posterior distribution with respect to a fixed (not depending on n)
prior concentrates around the true parameters.

THEOREM 6.5. Assume the conditions in Theorem 6.4. Consider a ball of radius δ

around βE′
n ,

B
(
βE′

n , δ
)≡ {

bn : ∥∥bn − βE′
n

∥∥≤ δ
}
,

and suppose that π is a prior that assigns nonzero probability to B(βE′
n , δ) for any δ > 0.

Then

P
(
�S

(
Bc(βE′

n , δ
)|β̂E′)

> ε|AE

√
nTn + BE

√
nWn < bE

)→ 0
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as n → ∞ for any ε > 0, where �S(·) denotes the posterior probability under the approxi-
mate truncated likelihood,

�S

(
Bc(βE′

n , δ
)|β̂E′) := (∫

π(bn) · exp
(
L̃n

S(bn)
)
dbn

)−1∫
Bc(βE′

n ,δ)
π(bn) · exp

(
L̃n

S(bn)
)
dbn,

for L̃n
S(bn) = √

nβ̂E′
Q

√
nbn − n2δC̃n(n

1/2−δQbn) − nβ̂E′
Qβ̂E′

/2.

Finally, concerning implementation of the approximate MAP we offer the next result.

THEOREM 6.6 (Convexity of approximate MAP). Let π(·) be a log-concave prior. For
any barrier function ψs(·), minimizing the negative of the approximate log-posterior based
on the approximation in (24),

logπ
(
βE′

n

)+ n
(
β̂E′ − βE′

n

)T Q
(
β̂E′ − βE′

n

)
/2 + log P̃

(
AE

√
nTn + BE

√
nWn < bE|βE′

n

)
,

in βE′
n , is a convex optimization problem for any n ∈ N.

7. Empirical analysis. In this section, we compare our methods to existing alternatives
in simulation and real-data examples.

7.1. Simulation study. We next present some simulation results that demonstrate the ef-
fectiveness of the proposed methods. In each of 50 rounds, we draw a n × p matrix X with
n = 500, p = 100 such that the rows (Xi1, . . . ,Xip)T ∼ Np(0,�), i = 1,2, . . . ,500, and
where the (j, k)th entry of � equals 0.20|j−k|. The components of β ∈ R

100 are drawn i.i.d.
from a normal mixture,

(31) 0.9 ·N1(βj ;0,0.1) + 0.1 ·N1(βj ;0,V ),

and we take V ∈ {5,3.5,2}, roughly corresponding to three different signal regimes. Finally,
we draw y|X, β ∼ Nn(Xβ, I).

We split the data to form (yS ,XS), where S ⊂ {1, . . . , n} is a random subset of size
|S| = n/2 = 250. We select with Lasso using a theoretical value for the tuning parameter.
Specifically, we use λ = E[‖XT �‖∞], � ∼ Nn(0, I), as proposed in Negahban et al. [7], and
denote by E ⊆ {1, . . . ,100} the set corresponding to the nonzero components of the Lasso
estimate,

(32) argmin
β

1

2ρ

∥∥yS − XSβ
∥∥2 + λ‖β‖1.

In the inference stage, we have access to the entire data (y,X). We give inference assuming
that

(33) y|X, βE ∼ N
(
XEβE,σ 2I

)
,

in other words, we take E′ = E in (2). Four different methods for inference are compared:
Unadjusted (Naive). Bayesian inference for βE using a noninformative prior π(βE) ∝ 1

and the unadjusted likelihood y|X ∼Nn(XEβE,σ 2I).
Split. Bayesian inference using only the confirmatory (held-out) data: a noninformative

prior π(βE) ∝ 1 is prepended to the unadjusted likelihood yS
c |XSc ∼ Nn(XSc

E βE,σ 2I).
Carving. Bayesian inference for βE using a noninformative prior π(βE) ∝ 1 and the ap-

proximate selection-adjusted likelihood,

(34) π̃S

(
βE|β̂E)∝ exp(−n(β̂E − βE)T Q(β̂E − βE)/2σ 2)

P̃(AE

√
nTn + BE

√
nWn < bE|βE)

,
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TABLE 1
Summary of simulation study. Four methods are compared in three signal regimes. For Lee et al., the numbers

displayed for length of CI are averages of constructed intervals that had finite length; for V = 5,3.5,2, Lee et al.
produced infinitely long intervals for 1.4%, 1.95% and 4.73% of the selected parameters, on average

V = 5 V = 3.5 V = 2

1 − FCR Length Rel. Risk 1 − FCR Length Rel. Risk 1 − FCR Length Rel. Risk

Carving 0.884 3.92 0.21 0.887 4.04 0.39 0.905 4.22 0.66
Naive 0.753 3.33 0.25 0.728 3.33 0.44 0.598 3.31 0.75
Split 0.9 4.80 0.25 0.915 4.79 0.44 0.902 4.77 0.70
Lee et al 0.913 8.38 0.29 0.939 9.58 0.46 0.863 10.73 0.83

where the denominator on the right-hand side is given by (24) with the penalty defined in
(25).

Lee et al. We use the “selectiveInference” package in R [16] that implements the exact
methods of Lee et al. [5]. Because there is no implementation for carving, the entire data is
used for selection, that is, E is obtained here by setting S = {1,2, . . . , n}.

The four methods above are compared on the following criteria: (i) we use each method
to construct (marginal) 90% interval estimates, and calculate the average (over simulation
rounds) proportion of covering intervals (this is reported as “1−FCR” in Table 1); (ii) lengths
of constructed CIs; and (iii) relative prediction risk,

(β̂ − β)T (XT X)(β̂ − β)

βT (XT X)β
,

where the “inactive” coordinates {j /∈ E} of β and β̂ are set to zero, and the estimate β̂ is the
posterior mean for the first three methods, and the plain Lasso estimate for the fourth (Lee et
al.).

We see that for all methods except the unadjusted, the coverage, as measured by one mi-
nus the false coverage rate (FCR), is roughly the nominal level 0.9. In particular, the CIs
constructed based on the proposed approximation to the selection-adjusted posterior have
good coverage. We emphasize that this is in spite of the fact the the assumed model (33) is
(with high probability) misspecified. Meanwhile, the length of the intervals for the proposed
method (“Carving” in Table 1), is much smaller than that for Lee et al. intervals, which are
sometimes infinitely long. More importantly, the carved intervals based on our method are
smaller in length than the intervals for sample splitting. This matches our expectations be-
cause, as opposed to carving, sample-splitting exploits only information in the held-out data.
Investigations with varying sample size in this example setting are included in Section 5 of
the supplement.

7.2. HIV drug-resistance data. In this section, we apply our methods to the HIV dataset
analyzed in [2, 13]. With an attempt to understand the genetic basis of drug resistance in HIV,
[13] used markers of inhibitor mutations to predict susceptibility to 16 antiretroviral drugs.
We follow [2] and focus on the protease inhibitor subset of the data, and on one particular
drug, Lamivudine (3TC), where the goal is to identify mutations associated with response to
3TC. There are n = 633 cases and p = 91 different mutations occurring more than 10 times
in the sample.

In the selection stage, we applied the Lasso to a 80% split of the data, with the regular-
ization parameter set to the theoretical value proposed in Negahban et al. [7]. This resulted
in 17 selected mutations, corresponding to the nonzero Lasso estimates. Figure 2 shows 90%
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FIG. 2. Interval and point estimates for selected features. To allow convenient visualization, the figure is not
showing mutation ‘P184V’, which has a different scale from the other variables.

interval estimates constructed for selected variables (excluding mutation “P184V”) accord-
ing to four different methods: “naive” is the usual, unadjusted intervals using the entire data;
“split” uses only the 20% left-out portion of the data to construct the intervals; “Lee” is the
adjusted confidence intervals of [5] and based on the original 80% portion used for selection;
finally, “carved” are the intervals relying on the methods we propose in the current paper. Of
course, we cannot assume knowledge of σ 2 in this analysis, and we offer two different im-
plementations to handle an unknown variance. The first is to estimate σ 2 from a least squares
fit against the 91 available predictors, and then simply plug this estimate in (as if it were
data independent). The second approach is to add a prior on σ 2 as described in Section 8.
Specifically, we model

(35) π
(
βE′ |σ 2)∝ σ−|E′| exp

(−∥∥βE′∥∥2
/
(
2c2σ 2)), π

(
σ 2)∝ Inv-Gamma(a;b),

where we denote Inv-Gamma(a;b) := (σ 2)−a−1 exp(−b/σ 2), and where c2 is a large con-
stant. In this example we used a = b = 0.1 for the other hyperparameters. The two imple-
mentations are referred to as “plug-in” and “full Bayes” in Figure 2.

All four methods are implemented assuming a linear model consisting of the selected
variables. If the model were correctly specified, “split” and “Lee” would both produce valid
interval estimates, although the first uses only the held-out data, and the second relies only
on the portion of the data used for selection. Our “carved” intervals are approximate, but they
utilize information from both splits of the data. The “naive” intervals are invalid. In terms of
length, it can be seen that the two implementations of carving (“plug-in” and “full Bayes”)
produce similar interval estimates, that are shorter than both “split” and “Lee.” As in the
simulation of the previous subsection, that “Lee” interval estimates are considerably longer
than “split” matches our expectations.
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The figure also shows point estimates: for “naive” these are just the Lasso (nonzero) esti-
mates, for “split” these are least-squares, and for “carved” these are (approximate) posterior
modes. Lacking knowledge of the “true” means, it is hard to compare the different estimates
and directions of shrinkage; “split” estimates are unbiased under the assumed model, while
“carved” arguably have smaller variance (because they use additional data). Figure 1 in the
Supplement depicts the effect-size estimates of all variables in the selected set, including
mutation “P184V.”

8. Computation. We provide computational details for sampling from the approximate
posterior and solving for the approximate MAP (MLE) problem. Note that both of these
problems require computing the gradient of the approximate log-posterior, which amounts to
solving for the optimizing variables in a certain convex optimization problem. Throughout
this section, we assume that π is a log-concave prior and the columns of X are scaled by

√
n

(but suppress the subscript n).
Treating first the case where σ 2 is known, assume again without loss of generality that

σ 2 = 1. To sample from the log-concave (approximate) posterior incorporating (24), we use
a Langevin random walk to obtain a sample of size nS from the (approximate) selection-
adjusted posterior π̃S(·). As a function of the previous draw, the (K + 1)th draw for βE′

of
the Langevin sampler is computed as

(36) βE′
(K+1) = βE′

(K) + γ · ∇ log π̃S

(
βE′

(K)|β̂E′)+√
2γ · ε(K),

where ε(K) for K = 1,2, . . . , nS are independent draws from a centered Gaussian with unit
variance, and γ is a predetermined step size. The sampler takes a noisy step along the gradient
of the log-posterior, with no accept–reject step—compare to the usual Metropolis Hastings
(MH) algorithm. Hence, at each draw of the sampler, the main computational cost is calcu-
lating the gradient of the approximate (log-) selection-adjusted posterior.

Recalling the approximation based on (24), we note that the approximate log-posterior is

(37)
logπ

(
βE′

(K)

)− βE′
(K)

T
QβE′

(K)/2 + βE′
(K)

T
Qβ̂E′ − log P̃

(
Ê = E, ŜÊ = sE|βE′

(K)

)
, where

log P̃
(
Ê = E, ŜÊ = sE|βE′

(K)

)= − inf
b∈R|E′|

{(
b − βE′

(K)

)T Q
(
b − βE′

(K)

)
/2 + Hψ(b)

}
.

Above, Hψ is a function of b = (η, o) ∈ {(η, o) : η ∈R
p−|E′|, o ∈ R

p}, and given by

Hψ(b) = inf
(η,o)∈R2p−|E′|

{
ηT Nη/2

+ (
PE

(
b η

)T + QEo + rE
)T

�−1
G
(
PE

(
b η

)T + QEo + rE
)
/2

+
E∑

i=1

log(1 + 1/si,Eoi,E) +
p−|E|∑
i=1

log
(
1 + 1/(λi,−E − oi,−E)

)

+ log
(
1 + 1/(λi,−E + oi,−E)

)}
.

Denoting by H̄ ∗(·) the conjugate of H̄ (b) = bT Qb/2 + Hψ(b), we can write

log P̃
(
Ê = E, ŜÊ = sE|βE′

(K)

)= −βE′
(K)

T
QβE′

(K)/2 + sup
b∈RE

{
bT QβE′

(K) − (
bT Qb/2 + Hψ(b)

)}
= −βE′

(K)

T
QβE′

(K)/2 + H̄ ∗(QβE′
(K)

)
.
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Letting b̂(QβE′
(K)) be the maximizer of {bT QβE′

(K) − (bT Qb/2 + Hψ(b))}, we have

∇ log P̃
(
Ê = E, ŜÊ = sE|βE′

(K)

)= −QβE′
(K) + Q∇H̄−1(QβE′

(K)

)= −QβE′
(K) + Qb̂

(
QβE′

(K)

)
,

and, finally, the gradient of the log-posterior in (36) equals

(38) ∇ logπ
(
βE′

(K)

)+ Qβ̂E′ − Qb̂
(
QβE′

(K)

)
.

For the MAP problem, we note that the approximate MAP minimizes the convex objective

minimize
βE′∈R|E′|

− logπ
(
βE′)− βE′T

Qβ̂E′ + H̄ ∗(QβE′)
.

Employing a gradient descent algorithm to compute the approximate MAP, we note that the
K th update can be written as

(39) β̂E′
S;(K+1) = β̂E′

S;(K) − ηT · (Qb̂
(
Qβ̂E′

S;(K)

)− ∇ log π̃
(
β̂E′

S;(K)

)− Qβ̂E′)
,

involving again the optimizer b̂(QβE′
).

Next, suppose that σ 2 is unknown. In that case, we propose to replace (6) with a joint prior
on βE′

and σ 2. For example, we can take the conjugate prior (35), a large c2 entailing a diffuse
prior for βE′

conditionally on σ 2. Let L̃S(βE′
, σ 2) denote the approximate (log) selection-

adjusted likelihood where we plug in our approximation for the selection probability, given
by (23)

(40)
log P̃

(
Ê = E, ŜÊ = sE|βE′

(K), σ
2)

= −(σ 2)−1 · inf
b∈R|E′|

{(
b − βE′

(K)

)T Q
(
b − βE′

(K)

)
/2 + Hψ(b)

}
.

We employ a Gibbs scheme to draw a new sample (βE′
(K+1), σ

2
(K+1))

T from the resulting
posterior, whose logarithm equals

logπ
(
βE′

, σ 2)+ L̃S

(
βE′

, σ 2)
up to a constant, under the prior in (35). Using our previous notation, let us denote the pos-
terior distribution for βE′

conditional on σ 2 by π̃S(βE′ |β̂E′
, σ 2). Conditional on the K th

update for σ 2
(K), we make a fresh draw βE′

(K+1) through a noisy update along the gradient of
the log-posterior, as described previously in (36):

(βE′
)-Update: βE′

(K+1) ← βE′
(K) + γ · ∇ log π̃S(βE′

(K)|β̂E′
, σ 2

(K)) +
√

2γ · ε(K).

Observe that the gradient of the log-posterior which leads to our sample update equals

(41) −βE′
(K)/c

2σ 2
(K) + Qβ̂E′

/σ 2
(K) − Qb̂

(
QβE′

(K)

)
/σ 2

(K).

We alternate this step with updates for the variance parameter; see, for example, Tong,
Morzfeld and Marzouk [17]. Conditional on βE′

(K+1), we see that the choice of an inverse-
gamma prior for the variance parameter serves as a conjugate prior as it does usually in
Bayesian linear regression. Specifically, the posterior distribution of σ 2

(K+1) conditional on

βE′
(K+1) is an inverse-gamma random variable with density proportional to(

σ 2)−|E′|/2−p−a−1 exp
(−(b − L̃S

(
βE′

(K+1),1
)+ (

βE′
(K+1)

)T
βE′

(K+1)/2c2))/σ 2).

That is, we now sample

(σ 2)-Update: σ 2
(K+1) ← Inv-Gamma(|E′|/2 + p + a; b̃),

where the updated hyperparameter b̃(βE′
(K+1)) equals

b − L̃S

(
βE′

(K+1),1
)+ (

βE′
(K+1)

)T
βE′

(K+1)/2c2.
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9. Discussion. To address the problem of inference after variable selection, we propose
methods based on an approximation to the adjustment factor—the denominator in a selection-
adjusted likelihood. Our proposal applies to a large class of selection rules, including ones
that involve randomization. By working directly with the full truncated likelihood, we obviate
the need to differentiate between various models according to choices of the statistician. In
Panigrahi, Zhu and Sabatti [10], the approximation proposed in our paper is employed to
obtain tractable pivotal quantities, and more recently Panigrahi and Taylor [8] and Panigrahi
et al. [11] build on this approximate scheme to explore a maximum-likelihood approach and
propose scalable samplers for integrative models in a high dimensional radiogenomic context,
respectively.

There is certainly room for further research and extensions of the current work. On the
methodological side, it would be interesting to investigate if a variational Bayes approach can
be taken instead of implementing MCMC sampling schemes for posterior updates. From a
theoretical point of view, we have shown consistency properties of the posterior that appends
a “carved” likelihood to a prior, that is, we proved that such a posterior concentrates around
the true underlying parameter with probability converging to one as the sample size increases.
Empirical evidence showing that our credible intervals (under a diffuse prior) are similar
to the frequentist post-selection intervals, suggests that the frequentist guarantees that we
provided can be strengthened, for example, by presenting a Bernstein–von Mises-type of
result.
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