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In this paper, we study distance covariance, Hilbert–Schmidt covari-
ance (aka Hilbert–Schmidt independence criterion [In Advances in Neu-
ral Information Processing Systems (2008) 585–592]) and related indepen-
dence tests under the high dimensional scenario. We show that the sample
distance/Hilbert–Schmidt covariance between two random vectors can be ap-
proximated by the sum of squared componentwise sample cross-covariances
up to an asymptotically constant factor, which indicates that the standard
distance/Hilbert–Schmidt covariance based test can only capture linear de-
pendence in high dimension. Under the assumption that the components
within each high dimensional vector are weakly dependent, the distance cor-
relation based t test developed by Székely and Rizzo (J. Multivariate Anal.
117 (2013) 193–213) for independence is shown to have trivial limiting power
when the two random vectors are nonlinearly dependent but component-
wisely uncorrelated. This new and surprising phenomenon, which seems
to be discovered and carefully studied for the first time, is further con-
firmed in our simulation study. As a remedy, we propose tests based on an
aggregation of marginal sample distance/Hilbert–Schmidt covariances and
show their superior power behavior against their joint counterparts in sim-
ulations. We further extend the distance correlation based t test to those
based on Hilbert–Schmidt covariance and marginal distance/Hilbert–Schmidt
covariance. A novel unified approach is developed to analyze the studen-
tized sample distance/Hilbert–Schmidt covariance as well as the studentized
sample marginal distance covariance under both null and alternative hy-
pothesis. Our theoretical and simulation results shed light on the limitation
of distance/Hilbert–Schmidt covariance when used jointly in the high di-
mensional setting and suggest the aggregation of marginal distance/Hilbert–
Schmidt covariance as a useful alternative.

1. Introduction. Testing for independence between two random vectors X ∈ R
p and

Y ∈ R
q is a fundamental problem in statistics. There is a huge literature in the low dimen-

sional context. Here, we mention rank correlation coefficients based tests and nonparametric
Cramér–von Mises-type statistics in Hoeffding (1948), Blum, Kiefer and Rosenblatt (1961),
de Wet (1980); tests based on signs or empirical characteristic functions, see Sinha and Wie-
and (1977), Deheuvels (1981), Csörgő (1985), Hettmansperger and Oja (1994), Gieser and
Randles (1997), Taskinen, Kankainen and Oja (2003) among others; tests based on recently
developed nonlinear dependence metrics that target at nonlinear and nonmonotone depen-
dence include distance covariance [Székely, Rizzo and Bakirov (2007)], Hilbert–Schmidt in-
dependence criterion (HSIC) [Gretton et al. (2008)] (aka Hilbert–Schmidt covariance in this
work) and sign covariance [Bergsma and Dassios (2014)]. Also see Berrett and Samworth
(2019) for some recent work on independence testing via mutual information.
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In the high dimensional setting, the literature is scarce. Székely and Rizzo (2013) extended
the distance correlation proposed in Székely, Rizzo and Bakirov (2007) to the problem of
testing independence of two random vectors under the setting that the dimensions p and q

grow while sample size n is fixed. This setting is known as high dimension, low sample size
(HDLSS) in the literature and has been adopted in Hall, Marron and Neeman (2005), Ahn
et al. (2007), Jung and Marron (2009) and Wei et al. (2016), etc. A closely related asymptotic
framework is the high dimension medium sample size (HDMSS) [Aoshima et al. (2018)],
where n ∧ p ∧ q → ∞ with p, q growing more rapidly. Among the recent work that is
related to independence testing in the high dimensional setting, Pan, Gao and Yang (2014)
proposed tests of independence among a large number of high dimensional random vectors
using insights from random matrix theory; Yang and Pan (2015) proposed a new statistic
based on the sum of regularized sample canonical correlation coefficients of X and Y , which
is limited to testing for uncorrelatedness due to the use of canonical correlation. Leung and
Drton (2018) proposed to test for mutual independence of high dimensional vectors using sum
of pairwise rank correlations and sign covariances; Yao, Zhang and Shao (2018) addressed
the mutual independence testing problem in the high dimensional context by using sum of
pairwise squared sample distance covariances; Zhang, Yao and Shao (2018) proposed a L2

type test for conditional mean/quantile dependence of a univariate response variable given
a high dimensional covariate vector based on martingale difference divergence [Shao and
Zhang (2014)], which is an extension of distance covariance to quantify (conditional) mean
dependence.

Distance covariance/correlation was first introduced in Székely, Rizzo and Bakirov (2007)
and has received much attention since then. Owing to its notable ability to quantify any types
of dependence including nonmonotone, nonlinear dependence and also the flexibility to be
applicable to two random vectors in arbitrary, not necessarily equal dimensions, a lot of re-
search work has been done to extend and apply distance covariance into many modern statis-
tical problems; see, for example, Kong et al. (2012), Li, Zhong and Zhu (2012), Zhou (2012),
Lyons (2013), Székely and Rizzo (2014), Dueck et al. (2014), Shao and Zhang (2014), Park,
Shao and Yao (2015), Matteson and Tsay (2017), Zhang, Yao and Shao (2018), Edelmann,
Richards and Vogel (2017), Yao, Zhang and Shao (2018) among others. In this paper, we shall
revisit the test proposed by Székely and Rizzo (2013), which seems to be the only test in the
high dimensional setting that captures nonlinear and nonmonotonic dependence. Unlike the
positive finding reported in Székely and Rizzo (2013), we obtained some negative results that
show the limitation of distance covariance/correlation in the high dimensional context.

Specifically, we show that for two random vectors X = (x1, . . . , xp)T ∈ R
p and Y =

(y1, . . . , yq)
T ∈ R

q with finite componentwise second moments, as p,q → ∞ and n can
either be fixed or grows to infinity at a slower rate,

dCov2
n(X,Y) ≈ 1

τ

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ),(1)

where Xk
d= X and Yk

d= Y are independent samples, Xi and Yj are the component-
wise samples, X = (X1,X2, . . . ,Xn)

T = (X1,X2, . . . ,Xp) and Y = (Y1, Y2, . . . , Yn)
T =

(Y1,Y2, . . . ,Yq) denote the sample matrices, dCov2
n(X,Y) is the unbiased sample distance

covariance, τ is a constant quantity depending on the marginal distributions of X and Y as
well as p and q , cov2

n(Xi ,Yj ) is an unbiased sample estimate of cov2(xi, yj ) to be defined
later. To the best of our knowledge, this is the first work in the literature uncovering the
connection between sample distance covariance and sample covariance, the latter of which
can only measure the linear dependence between two random variables. This approximation
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suggests that the distance covariance can only measure linear dependence in the high dimen-
sional setting although it is well known to be capable of capturing nonlinear dependence in
the fixed dimensional case.

Gretton et al. (2008) proposed Hilbert–Schmidt independence criterion (aka Hilbert–
Schmidt covariance in this paper), which can be seen as a generalization of distance co-
variance by kernelizing the L2 distance as shown by Sejdinovic et al. (2013). Despite the
kernelization process, we show that the Hilbert–Schmidt covariance (hCov) enjoys similar
approximation property under high dimension low/medium sample size setting, that is,

hCov2
n(X,Y) ≈ ApBq × 1

τ 2

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ),(2)

where hCov2
n(X,Y) is the unbiased sample Hilbert–Schmidt covariance, Ap and Bq both

converge in probability to constants that depend on the pre-chosen kernels. This approxima-
tion also suggests that when the dimension is high, the standard Hilbert–Schmidt covariance
(hCov) applied to the whole components of the vectors also exhibits the loss of power when
X and Y are nonlinearly dependent, but componentwisely uncorrelated or weakly correlated.

As a natural remedy, we propose a distance covariance based marginal test statistic, that
is,

mdCov2
n(X,Y) =

√(
n

2

) p∑
i=1

q∑
j=1

dCov2
n(Xi ,Yj ).

This test statistic is an aggregate of the componentwise sample distance covariances and cap-
tures the component by component nonlinear dependence. Similarly, the marginal Hilbert–
Schmidt covariance (mhCov) is defined as

mhCov2
n(X,Y) =

√(
n

2

) p∑
i=1

q∑
j=1

hCov2
n(Xi ,Yj ).

The distance covariance, Hilbert–Schmidt covariance, marginal distance covariance and
marginal Hilbert–Schmidt covariance based tests can be carried out by standard permutation
procedures. The superiority of mdCov and mhCov based tests over its joint counterparts in
power is demonstrated in the simulation studies. On the other hand, Székely and Rizzo (2013)
discussed the distance correlation (dCor) based t-test under HDLSS and derived the limiting
null distribution of the test statistic under suitable assumptions. We consider the same t-test
statistic and further extend to Hilbert–Schmidt covariance (hCov), marginal distance covari-
ance (mdCov) and marginal Hilbert–Schmidt covariance (mhCov). To derive the asymptotic
distribution of studentized version of dCov, hCov, mdCov and mhCov under both the null of
independence (for HDLSS and HDMSS setting) and some specific alternative classes (for
HDLSS setting), we develop a novel unified approach. In particular, we define a unified
quantity (uCov) based on the bivariate kernel k and show that under HDLSS setting, prop-
erly scaled dCov2

n, hCov2
n and mdCov2

n are all asymptotically equal to uCov2
n up to different

choices of kernels, that is,

dCov2
n(X,Y) ≈ a × uCov2

n(X,Y)

hCov2
n(X,Y) ≈ ApBq × uCov2

n(X,Y)

}
when k(x, y) = |x − y|2,

mdCov2
n(X,Y) = b × uCov2

n(X,Y)
}

when k(x, y) = |x − y|,
(3)
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where a, b are constants and Ap , Bp both converge in probability to constants. Next, we
show that ⎧⎪⎨⎪⎩uCov2

n(X,Y)
d→ 2

n(n − 3)
cT Md, under HDLSS,

Cn,p,quCov2
n(X,Y)

d→ N(0,1), under HDMSS,

where c, d are jointly Gaussian, M is a projection matrix and Cn,p,q is a normalizing con-
stant. Thus, we can easily apply the above results to dCov, hCov and mdCov-based t-test
statistics using (3). The unified approach still works for mhCov-based t-test if we consider
the bandwidth parameters appeared in the kernel distance to be fixed constants. However, we
encounter technical difficulties if the bandwidth parameters along each dimension depends on
the whole componentwise samples, since this makes the pairwise sample distance correlated
with each other and complicates the asymptotic analysis.

We obtain the same limiting null distribution as Székely and Rizzo (2013) and further
show that this test statistic has a trivial power against the alternative where X and Y are non-
linearly dependent, but component-wisely uncorrelated. This clearly demonstrates that the
distance covariance/correlation based joint independence test (i.e., treating all components of
a vector as a whole jointly) fails to capture the nonlinear dependence in high dimension. This
phenomenon is new and was not reported in Székely and Rizzo (2013). It shows that there
might be some intrinsic difficulties for standard distance covariance to capture the nonlinear
dependence when the dimension is high and provide a cautionary note on the use of distance
covariance/correlation directly to the whole components of high dimensional data. Besides,
we have the following additional contributions relative to Székely and Rizzo (2013): (i) we
relax the componentwise i.i.d. assumption used for asymptotic analysis; (ii) the limiting dis-
tributions are derived under both the null and certain classes of alternative hypothesis for the
HDLSS framework; (iii) our unified approach holds for any bivariate kernel that has contin-
uous second-order derivative in a neighborhood containing 1; (iv) our approach is built on
some new technical arguments which reveal some insights on U -centering; (v) the limiting
null distribution is also derived under the HDMSS setting.

As pointed out by a referee, there is an awareness of the importance of choosing the right
kernel in the machine learning community and it may be clear to many researchers in this area
that the standard distance covariance (or Hilbert–Schmidt covariance) is not the right choice
when the dimension is moderate or high. It is worth noting that the phenomenon of decreas-
ing power with higher dimension for Hilbert–Schmidt covariance (with Gaussian/Laplacian
kernels) based independence test has been observed in Ramdas et al. (2015), but they did not
provide a complete theoretical explanation. In this sense, our theory to a large extent settles
their conjecture and offers a deeper understanding about the dimension’s impact on the behav-
ior of Hilbert–Schmidt covariance. In addition, the marginally aggregated distance/Hilbert–
Schmidt covariance can be viewed as a kind of distance/Hilbert–Schmidt covariance with the
Euclidean norm/kernel replaced by a new norm/kernel; see Remark 2.2. Therefore, our theory
demonstrates the limitation of using Euclidean norm in distance/Hilbert–Schmidt covariance
in the high dimensional setting and motivates the question of what is the optimal norm or
kernel for independence testing in the high dimension, which is left for future research.

Standard Distance and Hilbert–Schmidt (with Gaussian kernel or Laplacian kernel) covari-
ance have been frequently applied to testing dependence between high dimensional vectors in
biological science; see Kroupi et al. (2012, 2014), Hua and Ghosh (2015), Yang (2017), etc.
In particular, Kroupi et al. (2014) used Hilbert–Schmidt (with Gaussian or Laplacian kernel)
covariance to test the dependence between EEG signals for the perception of pleasant and un-
pleasant odors across subjects, where the data are collected for 5 subjects, each with 18 trials
and dimension 250. Hua and Ghosh (2015) used Hilbert–Schmidt covariance with Gaussian
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kernel to examine the association between phenotype variable and genotype variable. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data is used in their simulation stud-
ies, where phenotype variable has dimension 119 and genotype variable has dimension 141.
Finally, Hilbert–Schmidt covariance with Gaussian kernel is used by Yang (2017) to conduct
independence test between neural responses and visual features, where the dimensions are
of several hundreds. In the machine learning community, the application of Hilbert–Schmidt
(with linear, Gaussian or Laplacian kernel) covariance for high dimensional data involves
multilabel dimension reduction [Zhang and Zhou (2010), Xu et al. (2016), Mikalsen et al.
(2019), etc] and unsupervised feature selection [Bedo (2008)], among others. In all the above
mentioned applications, the dimensions of the vectors involved are at hundreds or thousands.

1.1. Notation. In this paper, random data samples are denoted as, for each i =
1,2, . . . , n, Xi

d= X = (x1, . . . , xp)T ∈ R
p , Yi

d= Y = (y1, . . . , yq)
T ∈ R

q . Next, let X =
(X1,X2, . . . ,Xn)

T and Y = (Y1, Y2, . . . , Yn)
T denote the random sample matrices. In addi-

tion, the random componentwise samples are denoted as X1, . . . ,Xp and Y1, . . . ,Yq , which
are illustrated in the following table:

Furthermore, matrices are denoted by upper case boldface letters (e.g., A, B). For any matrix
A = (ast ) ∈ R

n×n, we use Ã = (ãst ) ∈ R
n×n to denote the U -centered version of A, that is,

ãst =

⎧⎪⎪⎨⎪⎪⎩
ast − 1

n − 2

n∑
v=1

asv − 1

n − 2

n∑
u=1

aut + 1

(n − 1)(n − 2)

n∑
u,v=1

auv, s �= t,

0, s = t.

Following Székely and Rizzo (2014), the inner product between two U -centered matrices
Ã = (ãst ) ∈ R

n×n and B̃ = (b̃st ) ∈ R
n×n is defined as

(Ã · B̃) := 1

n(n − 3)

∑
s �=t

ãst b̃st .

Next, we use 1n to denote the n dimensional column vector whose entries are all equal to 1.
Similarly, we use 0n to denote the n dimensional column vector whose entries are all equal
to 0. Finally, we use | · | to denote the L2 norm of a vector, (X′, Y ′) and (X′′, Y ′′) to be
independent copies of (X,Y ) and X ⊥ Y to indicate that X and Y are independent.

We utilize the order in probability notations such as stochastic boundedness Op (big O in
probability), convergence in probability op (small o in probability) and equivalent order 
p ,
which is defined as follows: for a sequence of random variables {Zs}s∈Z and a sequence of
numbers {as}s∈Z, Zs 
p as if and only if Zs/as = Op(1) and as/Zs = Op(1) as s → ∞. For
more details about this notation, please see DasGupta (2008).

2. High dimension low sample size. The analyses in this section are conducted under
the HDLSS setting, that is, the sample size n is fixed and the dimensions p ∧ q → ∞.
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2.1. Distance covariance and variants. In this section, we introduce the following
test statistics based on distance covariance (dCov), marginal distance covariance (mdCov),
Hilbert–Schmidt covariance (hCov) and marginal Hilbert–Schmidt covariance (mhCov). In
addition, their asymptotic behaviors under the HDLSS setting are derived. The following
moment conditions will be used throughout the paper.

ASSUMPTION D1. For any p, q , the variance and the second moment of any coordinate
of X = (x1, x2, . . . , xp)T and Y = (y1, y2, . . . , yq)

T is uniformly bounded below and above,
that is,

0 < a ≤ inf
i

var(xi) ≤ sup
i

E
(
x2
i

)≤ b < ∞,

0 < a′ ≤ inf
j

var(yj ) ≤ sup
j

E
(
y2
j

)≤ b′ < ∞,

for some constants a, b, a′, b′.

Next, denote τ 2
X = E|X −X′|2, τ 2

Y = E|Y −Y ′|2 and τ 2 := τ 2
Xτ 2

Y = E|X −X′|2E|Y −Y ′|2.
Notice that under Assumption D1, it can be easily seen that

τX 
 √
p, τY 
 √

q and τ 
 √
pq.

The statistics we study in this work use the pairwise L2 distance between data points. The
following proposition presents an expansion formula on the normalized L2 distance when the
dimension is high, which plays a key role in our theoretical analysis.

PROPOSITION 2.1. Under Assumption D1, we have

|X − X′|
τX

= 1 + 1

2
LX

(
X,X′)+ RX

(
X,X′),

where

LX

(
X,X′) := |X − X′|2 − τ 2

X

τ 2
X

,

and RX(X,X′) is the remainder term. If we further assume that as p∧q → ∞, LX(X,X′) =
op(1), then RX(X,X′) = Op(LX(X,X′)2). A similar result holds for Y .

In order for the approximations in equations (1) and (2) to work well, it is required that
LX(Xs,Xt) and LY (Ys, Yt ) should decay relatively fast as p ∧ q → ∞. The following as-
sumption specifies the order of LX(Xs,Xt) and LY (Ys, Yt ).

ASSUMPTION D2. LX(X,X′) = Op(ap) and LY (Y,Y ′) = Op(bq), where ap , bq are se-
quences of numbers such that

ap = o(1), bq = o(1),

τ 2
Xa3

p = o(1), τ 2
Y b3

q = o(1), τa2
pbq = o(1), τapb2

q = o(1).

REMARK 2.1. A sufficient condition for LX(X,X′) = op(1) is that E[LX(X,X′)2] =
o(1). Let �X = cov(X). By a straightforward calculation, we obtain |X−X′|2 =∑p

j=1(xj −
x′
j )

2, E|X − X′|2 = 2
∑p

j=1 var(xj ) = 2 tr(�X), and

E
[
LX

(
X,X′)2]=

∑p

j,j ′=1[cov(x2
j , x2

j ′) + 2 cov2(xj , xj ′)]
2tr2(�X)

.
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Therefore, E[LX(X,X′)2] = o(1) holds if the componentwise dependence within X is not
too strong. To illustrate this point, we consider the general multivariate model,

Xp×1 = Ap×s1Us1×1 + μp×1,

where A is a constant matrix with s1 ≥ p, μ is the mean vector for X, and U = (u1, . . . , us1)
T

has i.i.d. components with mean zero and variance one. Suppose

tr(AAT AAT )

tr2(AAT )
= tr(�2

X)

tr2(�X)
= O

(
p−1)

and sups E[u4
s ] < ∞. Then the multivariate model satisfies Assumption D2 with ap = 1/

√
p,

see Section C.2 of the Supplemetary Material (Zhu et al. (2020)) for more details.

2.1.1. Distance covariance. Distance covariance was first introduced by Székely, Rizzo
and Bakirov (2007) to measure the dependence between two random vectors of arbitrary
dimensions. For two random vectors X ∈ R

p and Y ∈ R
q , the (squared) distance covariance

is defined as

dCov2(X,Y ) =
∫
Rp+q

|φX,Y (t, s) − φX(t)φY (s)|2
cpcq |t |1+p|s|1+q

dt ds,

where cp = π(1+p)/2/�((1 + p)/2), | · | is the (complex) Euclidean norm defined as |x| =√
x̄T x for any vector x in the complex vector space (x̄ denotes the conjugate of x), φX and

φY are the characteristic functions of X and Y , respectively, φX,Y is the joint characteristic
function. According to Theorem 7 of Székely and Rizzo (2009), an alternative definition of
distance covariance is given by

dCov2(X,Y ) = E
∣∣X − X′∣∣∣∣Y − Y ′∣∣

+ E
∣∣X − X′∣∣E∣∣Y − Y ′∣∣− 2E

∣∣X − X′∣∣∣∣Y − Y ′′∣∣,(4)

where (X′, Y ′) and (X′′, Y ′′) are independent copies of (X,Y ). It has been shown that
dCov2(X,Y ) = 0 if and only if X and Y are independent. Therefore, it is able to measure
any type of dependence including nonlinear and nonmonotonic dependence between X and
Y , whereas the commonly used Pearson correlation can only measure the linear dependence
and the rank correlation coefficients (Kendall’s τ and Spearman’s ρ) can only capture the
monotonic dependence.

Notice that in the above setting, p, q are arbitrary positive integers. Therefore, distance co-
variance is applicable to the high dimensional setting, where we allow p,q → ∞. However,
it is unclear whether this metric can still retain the power to detect the nonlinear dependence
or not when the dimension is high. Distance correlation (dCor) is the normalized version of
distance covariance, which is defined as

dCor2(X,Y ) =

⎧⎪⎪⎨⎪⎪⎩
dCov2(X,Y )√

dCov2(X,X)dCov2(Y,Y )

, dCov2(X,X)dCov2(Y,Y ) > 0,

0, dCov2(X,X)dCov2(Y,Y ) = 0.

Following Székely and Rizzo (2014), we introduce the U -centering based unbiased sample
distance covariance (dCov2

n) as follows:

dCov2
n(X,Y) = (Ã · B̃),
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where Ã, B̃ are the U -centered versions of A = (ast )
n
s,t=1, B = (bst )

n
s,t=1, respectively, and

ast = |Xs − Xt |, bst = |Ys − Yt | for s, t = 1, . . . , n. Correspondingly, the sample distance
correlation (dCor2

n) is given as

dCor2
n(X,Y) =

⎧⎪⎪⎨⎪⎪⎩
dCov2

n(X,Y)√
dCov2

n(X,X)dCov2
n(Y,Y)

, dCov2
n(X,X)dCov2

n(Y,Y) > 0,

0, dCov2
n(X,X)dCov2

n(Y,Y) = 0.

Here, for s �= t , we can apply the approximation in Proposition 2.1, that is

ast

τX

= 1 + 1

2
LX(Xs,Xt) + RX(Xs,Xt),(5)

bst

τY

= 1 + 1

2
LY (Ys, Yt ) + RY (Ys, Yt ),(6)

where

LX(Xs,Xt) = |Xs − Xt |2 − τ 2
X

τ 2
X

, LY (Ys, Yt ) = |Ys − Yt |2 − τ 2
Y

τ 2
Y

,

and RX , RY are the remainder terms from the approximation. The approximation of the
pairwise L2 distance in equations (5) and (6) is our building block to decompose the unbiased
sample (squared) distance covariance (dCov2

n) into a leading term plus a negligible remainder
term under the HDLSS setting. The following main theorem summarizes the decomposition
properties of sample distance covariance (dCov2

n).

THEOREM 2.1. Under Assumption D1, we can show that

(i)

dCov2
n(X,Y) = 1

τ

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ) +Rn.(7)

Here,

cov2
n(Xi ,Yj ) = 1(n

4

) ∑
s<t<u<v

h(xsi, xti, xui, xvi;ysj , ytj , yuj , yvj ),

and the kernel h is defined as

h(xsi, xti, xui, xvi;ysj , ytj , yuj , yvj )

= 1

4!
(s,t,u,v)∑

∗
1

4
(xsi − xti)(ysj − ytj )(xui − xvi)(yuj − yvj ),

where the summation
∑(s,t,u,v)∗ is over all permutations of the 4-tuples of indices (s, t, u, v)

and Rn is the remainder term. cov2
n(Xi ,Yj ) is a fourth-order U-statistic and is an unbi-

ased estimator for the squared covariance between xi and yj , that is, E[cov2
n(Xi ,Yj )] =

cov2(xi, yj ).
(ii) Further, suppose Assumption D2 holds. Then

1

τ

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ) = Op(τapbq),

Rn = Op

(
τa2

pbq + τapb2
q

)= op(1),

thus the remainder term is of smaller order compared to the leading term and, therefore, is
asymptotically negligible.
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Equation (7) in Theorem 2.1 shows that the leading term for sample distance covariance is
the sum of all componentwise squared sample cross-covariances scaled by τ , which depends
on the marginal variances of X and Y . This theorem suggests that in the HDLSS setting, the
sample distance covariance can only measure the componentwise linear dependence between
the two random vectors.

As argued previously, sample distance covariance (dCov2
n) based tests suffer from power

loss when X and Y are componentwisely nonlinear dependent but uncorrelated. To remedy
this drawback, we can consider the following aggregation of marginal sample distance co-
variances:

mdCov2
n(X,Y) =

√(
n

2

) p∑
i=1

q∑
j=1

dCov2
n(Xi ,Yj ),

where dCov2
n(Xi ,Yj ) = (Ã(i) · B̃(j)), Ã(i) and B̃(j) are the U -centered versions of A(i) =

(ast (i))
n
s,t=1, B(j) = (bst (j))ns,t=1, respectively, and ast (i) = |xsi − xti |, bst (j) = |ysj − ytj |.

Note that mdCov2
n captures the pairwise low dimensional nonlinear dependence, which

can be viewed as the main effects of the dependence between two high dimensional random
vectors. It is natural in many fields of statistics to test for main effects first before proceed-
ing to high order interactions. See Chakraborty and Zhang (2019a) for some discussions on
main effects and high order effects in the context of joint dependence testing. In the testing
of mutual independence of a high dimensional vector, Yao, Zhang and Shao (2018) also ap-
proached the problem by testing the pairwise independence using distance covariance and
demonstrated that there may be intrinsic difficulty to capture the effects beyond main effects
(pairwise dependence in the mutual independence testing problem), as the tests that target
joint dependence do not perform well in the high dimensional setting.

2.1.2. Hilbert–Schmidt covariance. A generalization of the Distance Covariance (dCov)
is Hilbert–Schmidt Covariance (hCov), first proposed and aka Hilbert–Schmidt independence
criterion (HSIC) by Gretton et al. (2008). In particular, the (squared) Hilbert–Schmidt Covari-
ance (hCov) is obtained by kernelizing the Euclidean distance in equation (4), that is,

hCov2(X,Y ) = E
[
K
(
X,X′)L(Y,Y ′)]

+ E
[
K
(
X,X′)]E[L(Y,Y ′)]− 2E

[
K
(
X,X′)L(Y,Y ′′)],

where (X′, Y ′), (X′′, Y ′′) are independent copies of (X,Y ) and K , L are user specified ker-
nels. Following the literature, we consider the following widely used kernels:

Gaussian kernel: K(x,y) = exp
(
−|x − y|2

2γ 2

)
,

Laplacian kernel: K(x,y) = exp
(
−|x − y|

γ

)
,

where γ is a bandwidth parameter. For later convenience, we focus on the kernels that can
be represented compactly as K(x,y) = f (|x − y|/γ ) for some continuously differentiable
function f . For example, the Gaussian and Laplacian kernel can be defined by choosing
different function f ,

Gaussian kernel: K(x,y) = f

( |x − y|
γ

)
, f (a) = exp

(
−a2

2

)
,

Laplacian kernel: K(x,y) = f

( |x − y|
γ

)
, f (a) = exp(−a).
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In practice, the bandwidth parameter is usually set as the median of pair-wise sample L2

distance. Thus, a natural estimator for hCov2(X,Y ) is defined as

hCov2
n(X,Y) = (R̃ · H̃),

where R̃ and H̃ are the U -centered versions of R = (rst )
n
s,t=1, H = (hst )

n
s,t=1, respectively,

and rst = hst = 0 if s = t , otherwise⎧⎪⎪⎨⎪⎪⎩
rst = K(Xs,Xt ,X) = f

( |Xs − Xt |
γX

)
, γX = median

{|Xs − Xt |, s �= t
}
,

hst = L(Ys, Yt ,Y) = g

( |Ys − Yt |
γY

)
, γY = median

{|Ys − Yt |, s �= t
}
.

Similar to the definition of distance correlation, the Hilbert–Schmidt Correlation (hCor) is
defined as

hCor2(X,Y ) =

⎧⎪⎪⎨⎪⎪⎩
hCov2(X,Y )√

hCov2(X,X)hCov2(Y,Y )

, hCov2(X,X)hCov2(Y,Y ) > 0,

0, hCov2(X,X)hCov2(Y,Y ) = 0,

and the sample Hilbert–Schmidt Correlation (hCor2
n) is defined in the same way by replacing

hCov2 with the corresponding sample version.
Next, we can extend the decomposition results for sample distance covariance (dCov2

n) to
sample Hilbert–Schmidt covariance (hCov2

n) as shown in the following theorem. Throughout
the paper, we use f (1) and f (2) to denote the first and second derivative of the function f .

THEOREM 2.2. Under Assumption D1, we have

(i)

τ × hCov2
n(X,Y)

= f (1)

(
τX

γX

)
g(1)

(
τY

γY

)
τX

γX

τY

γY

1

τ

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ) +Rn,

(8)

where cov2
n is defined the same as in Theorem 2.1 and Rn is the remainder term.

(ii) Further, suppose Assumption D2 holds. Then

f (1)

(
τX

γX

)
g(1)

(
τY

γY

)
τX

γX

τY

γY

p 1,

1

τ

p∑
i=1

q∑
j=1

cov2
n(Xi ,Yj ) = Op(τapbq),

Rn = Op

(
τa2

pbq + τapb2
q

)= op(1).

Thus the remainder term is of smaller order compared to the leading term and is therefore
asymptotically negligible.

Notice that different from the decomposition of dCov2
n(X,Y) as in Theorem 2.1, here we

decompose hCov2
n multiplied by τ = τXτY . This is expected, since in hCov2

n, each pairwise
distance is normalized by γX or γY, which has asymptotically the same magnitude as τX , τY ,
respectively. In the high dimensional case, the expansion (8) suggests that hCov-based tests
also suffer from power loss when X and Y are componentwisely uncorrelated but nonlinearly
dependent.
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To analyze the asymptotic property of sample Hilbert–Schmidt covariance, most literature
would assume the bandwidth parameters to be fixed constants; see, for example, Gretton et al.
(2008). In contrast, our approach can handle the case where these bandwidth parameters are
selected to be the median of pairwise sample distance, which is random and whose magnitude
increases with dimension.

Similar to the marginal distance covariance introduced in Section 2.1.1, we can also ag-
gregate the marginal Hilbert–Schmidt Covariance (mhCov), which is defined as

mhCov2
n(X,Y) =

√(
n

2

) p∑
i=1

q∑
j=1

hCov2
n(Xi ,Yj ),

where hCov2
n(Xi ,Yj ) = (R̃(i) · H̃(j)), R̃(i) and H̃(j) are U -centered version of R(i) =

(rst (i))
n
s,t=1, H(j) = (hst (j))ns,t=1, respectively, and rst (i) = hst (j) = 0 if s = t , otherwise⎧⎪⎪⎪⎨⎪⎪⎪⎩
rst (i) = K(xsi, xti,Xi) = f

( |xsi − xti |
γXi

)
, γXi

= median
{|xsi − xti |, s �= t

}
,

hst (j) = L(ysj , ytj ,Yj ) = g

( |ysj − ytj |
γYj

)
, γYj

= median
{|ysj − ytj |, s �= t

}
.

REMARK 2.2. By the multilinearity of the operator (̃·,̃ ·), it can be easily seen that
mdCov2

n(X,Y) is equal to (up to a constant) dCov2
n(X,Y) equipped with L1-distance and

mhCov2
n(X,Y) is equal to (up to a constant) hCov2

n(X,Y) equipped with kernels

K ′(Xs,Xt ,X) =
p∑

i=1

K(xsi, xti,Xi) and L′(Ys, Yt ,Y) =
q∑

j=1

L(ysj , ytj ,Yj ).

2.2. Studentized test statistics. In this section, we provide studentized version of the
statistics introduced in Section 2.1. It is worth mentioning that we provide a unified ap-
proach to the asymptotic analysis of studentized dCov, mdCov and further extend them to
the analysis of studentized hCov.

2.2.1. Unified approach. First, we will present results that will be useful for deriv-
ing the studentized version of the interested statistics, that is, distance covariance (dCov),
marginal distance covariance (mdCov), Hilbert–Schmidt Covariance (hCov), marginal
Hilbert–Schmidt Covariance (mhCov). It can be shown later that many previously mentioned
statistics are asymptotically equal to the unified quantity uCov2

n(X,Y) multiplied by some
normalizing factor. Here, uCov2

n(X,Y) is defined as

uCov2
n(X,Y) = 1√

pq

p∑
i=1

q∑
j=1

(
K̃(i) · L̃(j)

)
,

where K̃(i) and L̃(j) are the U -centered versions of K(i) = (kst (i))
n
s,t=1, L(j) =

(lst (j))ns,t=1, respectively, and kst (i) = lst (j) = 0 if s = t , otherwise kst (i), lst (j) are the
double centered kernel distances, that is, for bivariate kernels k and l,

kst (i) = k(xsi, xti) − E
[
k(xsi, xti)|xsi

]− E
[
k(xsi, xti)|xti

]+ E
[
k(xsi, xti)

]
,

lst (i) = l(ysi, yti) − E
[
l(ysi, yti)|ysi

]− E
[
l(ysi, yti)|yti

]+ E
[
l(ysi, yti)

]
.

The advantage of using the double centering kernel distance is that we can have 0 covariance
between kst (i) and kuv(j) (lst (i) and luv(j)) for {s, t} �= {u, v} as shown in the following
proposition.
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PROPOSITION 2.2. For all 1 ≤ i, i ′ ≤ p, 1 ≤ j, j ′ ≤ q , if {s, t} �= {u, v}, then

E
[
kst (i)kuv

(
i ′
)]= E

[
lst (j)luv

(
j ′)]= E

[
kst (i)luv(j)

]= 0.

To derive the limiting distribution of the unified quantity, we need the following assump-
tions.

ASSUMPTION D3. For fixed n, as p ∧ q → ∞,⎛⎜⎜⎜⎜⎜⎝
p−1/2

p∑
i=1

kst (i)

q−1/2
q∑

j=1

luv(j)

⎞⎟⎟⎟⎟⎟⎠
s<t,u<v

d→
(

cst

duv

)
s<t,u<v

,

where {cst , duv}s<t,u<v are jointly Gaussian. Naturally, we further assume the existence of
the following constants that show up in the covariance matrix of {cst , duv}:

var[cst ] := σ 2
x = lim

p

1

p

p∑
i,j=1

cov
[
kst (i), kst (j)

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim
p

∑p
i,j=1 dCov2(xi, xj )

p
, if k(x, y) = l(x, y) = |x − y|,

lim
p

∑p
i,j=1 4 cov2(xi, xj )

p
, if k(x, y) = l(x, y) = |x − y|2,

var[dst ] := σ 2
y = lim

q

1

q

q∑
i,j=1

cov
[
lst (i), lst (j)

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim
q

∑q
i,j=1 dCov2(yi, yj )

q
, if k(x, y) = l(x, y) = |x − y|,

lim
q

∑q
i,j=1 4 cov2(yi, yj )

q
, if k(x, y) = l(x, y) = |x − y|2,

cov[cst , dst ] := σ 2
xy = lim

p,q

1√
pq

p∑
i=1

q∑
j=1

cov
[
kst (i), lst (j)

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim
p,q

∑p
i=1

∑q
j=1 dCov2(xi, yj )√

pq
, if k(x, y) = l(x, y) = |x − y|,

lim
p,q

∑p
i=1

∑q
j=1 4 cov2(xi, yj )√

pq
, if k(x, y) = l(x, y) = |x − y|2.

REMARK 2.3. Notice that when {s, t} �= {u, v}, we do not assume the form of
cov[cst , cuv], cov[dst , duv], cov[cst , duv] in Assumption D3, since it follows easily from
Proposition 2.2 that cov[cst , cuv] = 0, cov[dst , duv] = 0 and cov[cst , duv] = 0 if {s, t} �=
{u, v}.

REMARK 2.4. The above Central Limit Theorem (CLT) result can be derived under
suitable moment and weak dependence assumptions for the components of X and Y and the
weak dependence assumptions can be satisfied by a broad range of time series models such as
ARMA models. We refer the reader to Doukhan and Neumann (2008) for a relatively recent
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survey of weak dependence notions and the CLT results under such weak dependence. It is
worth noting that the commonly used weak dependence assumptions in time series analysis,
such as α-mixing, β-mixing and variants [Bradley (2007)], near epoch dependence [Gallant
and White (1988), Davidson (1994)] and physical dependence measure [Wu (2005)], all re-
quire the components have a natural time ordering. In our setting, the components do not
necessarily have a natural ordering but our results still hold as long as there exists a permu-
tation of components that satisfy the weak dependence assumption. Furthermore, we remark
that the weak dependence assumption typically rules out long range dependence and local
strong dependence, under which we might have non-Gaussian limit and different norming
rate. We shall examine the validity of our tests in these two scenarios via simulations.

The following theorem is our main result, which shows that the unified quantity converges
in distribution to a quadratic form of random variables.

THEOREM 2.3. Fixing n and letting p ∧ q → ∞, under Assumptions D1 and D3,

uCov2
n(X,Y)

d→ 1

v
cT Md,

uCov2
n(X,X)

d→ 1

v
cT Mc d= σ 2

x

v
χ2

v ,

uCov2
n(Y,Y)

d→ 1

v
dT Md d= σ 2

y

v
χ2

v ,

where v := n(n − 3)/2, M is a projection matrix of rank v and(
c
d

)
d= N

(
0,

(
σ 2

x In(n−1)/2 σ 2
xyIn(n−1)/2

σ 2
xyIn(n−1)/2 σ 2

y In(n−1)/2

))
.

For the exact form of M, see the proof of Theorem 2.3 in the Supplemetary Material (Zhu
et al. (2020)). Next, we define the quantity Tu as

Tu = √
v − 1

uCor2
n(X,Y)√

1 − (uCor2
n(X,Y))2

,

where

uCor2
n(X,Y) = uCov2

n(X,Y)√
uCov2

n(X,X)uCov2
n(Y,Y)

.

We then define the constants v and φ that appear in the limiting distribution of Tu. Set v =
n(n − 3)/2 and φ = σ 2

xy/
√

σ 2
x σ 2

y such that

φ = φ1I{k(x,y)=l(x,y)=|x−y|} + φ2I{k(x,y)=l(x,y)=|x−y|2},

where

φ1 := lim
p,q

∑p
i=1

∑q
j=1 dCov2(xi, yj )√∑p

i,j=1 dCov2(xi, xj )
∑q

i,j=1 dCov2(yi, yj )
,

φ2 := lim
p,q

∑p
i=1

∑q
j=1 cov2(xi, yj )√∑p

i,j=1 cov2(xi, xj )
∑q

i,j=1 cov2(yi, yj )
.
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The limiting distribution of Tu is derived under both null (H0) and alternative (HA) hypoth-
esis, that is,

null hypothesis : H0 = {
(X,Y )|X ⊥ Y

}
,

alternative hypothesis : HA = {
(X,Y )|X �⊥ Y

}
.

In addition, we also consider the local alternative hypothesis HAl
⊂ HA, that is,

HAl
=
{
(X,Y )|X �⊥ Y,φ = φ0√

v

}
,

where v = n(n − 3)/2, φ0 = φ0,1I{k(x,y)=l(x,y)=|x−y|} + φ0,2I{k(x,y)=l(x,y)=|x−y|2} and 0 <

φ0,1, φ0,2 < ∞ are constants with respect to n. It is also interesting to compare the asymptotic
power under the following class of alternatives HAs ⊂ HA, that is,

HAs = {
(X,Y )|xi �⊥ yj , cov(xi, yj ) = 0 for all 1 ≤ i ≤ p,1 ≤ j ≤ q

}
.

In summary, the following table illustrates the value of φ under different cases we are con-
sidering:

φ H0 HA HAl
HAs

k(x, y) = l(x, y) = |x − y| 0 φ1
φ0,1√

v
φ1

k(x, y) = l(x, y) = |x − y|2 0 φ2
φ0,2√

v
0

Next, denote by ta the student t-distribution with degrees of freedom a. Let t
(α)
a be the

(1 − α)th percentile of ta and ta,b be the noncentral t-distribution with degrees of freedom
a and noncentral parameter b. The asymptotic distribution of Tu is stated in the following
proposition.

PROPOSITION 2.3. Fix n and let p ∧ q → ∞. If Assumptions D1 and D3 hold, then for
any fixed t ∈ R,

PH0(Tu ≤ t) → P(tv−1 ≤ t),

PHA
(Tu ≤ t) → E

[
P(tv−1,W ≤ t)

]
,

where W ∼
√

φ2

1−φ2 χ2
v and χ2

v is the chi-square distribution with degrees of freedom v.

REMARK 2.5. For the explicit form of E[P(tv−1,W ≤ t)], see Lemma 3 in the Supple-
mentary Material (Zhu et al. (2020)).

Below we derive the large sample approximation of the limiting distribution E[P(tv−1,W ≤
t)] under the local alternative hypothesis (HAl

).

PROPOSITION 2.4. Under HAl
, if we allow n to grow and t is bounded as n → ∞,

E[P(tv−1,W ≤ t)] can be approximated as

EHAl

[
P(tv−1,W ≤ t)

]= P(tv−1,φ0 ≤ t) + O

(
1

v

)
,

where φ0 = φ0,1I{k(x,y)=l(x,y)=|x−y|} +φ0,2I{k(x,y)=l(x,y)=|x−y|2}. In particular, the result still

holds if we replace t with t
(α)
v−1.
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2.2.2. Studentized tests. For testing the null, permutation test can be used to determine
the critical value of the distance covariance (dCov), Hilbert–Schmidt covariance (hCov),
marginal distance covariance (mdCov) and marginal Hilbert–Schmidt covariance (mhCov)
respectively. If dCov2

n, hCov2
n, mdCov2

n or mhCov2
n is larger than the corresponding crit-

ical value, which can be determined by the empirical permutation distribution function,
we reject the null. Alternatively, similar to the construction of Tu, we transform each of
dCov2

n, hCov2
n, mdCov2

n and mhCov2
n into a statistic that has asymptotic t-distribution un-

der the null. Thus, instead of using permutation test, which can be quite computationally
expensive, we can determine the critical value using this asymptotic t-distribution. For each
R ∈ {dCov,hCov,mdCov,mhCov}, the studentized test statistic TR is defined as

TR = √
v − 1

R∗(X,Y)√
1 − (R∗(X,Y))2

,

where

R∗(X,Y) = R2
n(X,Y)√

R2
n(X,X)R2

n(Y,Y)
.

The way to derive the asymptotic distribution of TR is to show that for each R ∈
{dCov,hCov,mdCov}, R2

n(X,Y) and uCov2
n(X,Y) are asymptotically equal up to an asymp-

totically constant factor, as shown below.

PROPOSITION 2.5. Under Assumption D1:

(i) When k(x, y) = l(x, y) = |x − y|2,

dCov2
n(X,Y) = 1

4

√
pq

τ
uCov2

n(X,Y) +R′
n,

τ × hCov2
n(X,Y) =

√
pq

4γXγY
f (1)

(
τX

γX

)
g(1)

(
τY

γY

)
uCov2

n(X,Y) +R′′
n,

where R′
n, R′′

n are the remainder terms. Further, suppose Assumption D2 holds. Then

uCov2
n(X,Y) = Op(τapbq),

R′
n = Op

(
τa2

pbq + τapb2
q

)= op(1),

R′′
n = Op

(
τa2

pbq + τapb2
q

)= op(1).

Thus the remainder term is of smaller order compared to the leading term and, therefore, is
asymptotically negligible.

(ii) When k(x, y) = l(x, y) = |x − y|,

mdCov2
n(X,Y) = √

pq

√(
n

2

)
uCov2

n(X,Y).

As shown in Proposition 2.5, k(x, y) = l(x, y) = |x − y| would correspond to the mdCov-
based t-test and k(x, y) = l(x, y) = |x − y|2 would correspond to the {dCov,hCov}-based
t-tests. Then, for each R ∈ {dCov,hCov,mdCov} the asymptotic distribution of TR is given
in the following corollary.
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COROLLARY 2.1. If Assumptions D1, D2 and D3 hold, for any fixed t and each R ∈
{dCov,hCov,mdCov}, we have

PH0(TR ≤ t) → P(tv−1 ≤ t),

PHA
(TR ≤ t) → E

[
P(tv−1,W ≤ t)

]
, where W ∼

√
φ2

1 − φ2 χ2
v .

After knowing the asymptotic distribution of TR under the null, that is, t-distribution with
degrees of freedom v − 1, we can set critical value as t

(α)
v−1. Then, from Proposition 2.3, under

the alternative, the asymptotic power of testing the null can be written as a function of φ, that
is,

Powern(φ) := E
[
P
(
tv−1,W > tαv−1

)]
,

and under HAl
, if we allow n to grow

Power∞(φ0) := lim
n→∞ Powern

(
φ0√
v

)
= lim

n→∞P
(
tv−1,φ0 > t

(α)
v−1

)
.

Next, we can actually bound the ratio of φ1 and φ2 for standard normal random variables.

PROPOSITION 2.6. Suppose that(
X

Y

)
d= N

(
0,

(
Ip �XY

�T
XY Iq

))
,

where �XY = cov(X,Y ). We have

0.892φ2 ≤ φ1 ≤ φ2.

It will be shown later that φ1 corresponds to the mdCov-based test, whereas φ2 corresponds
to the dCov and hCov-based tests. Thus considering models described in Proposition 2.6, we
expect a power loss for the mdCov-based test comparing to the dCov and hCov-based tests.
On the other hand, since φ1 is bounded below by 0.892φ2, the power loss is expected to be
moderate.

Using Corollary 2.1, we can theoretically compare the power of these t-tests under differ-
ent cases and the results are summarized in the following table:

Power TmdCov TdCov, ThCov

under HA Powern(φ1) Powern(φ2)

under HAl
, allow n growing to infinity Power∞(φ0,1) Power∞(φ0,2)

under HAs Powern(φ1) α

For the studentized version of mhCov, if we consider the bandwidth parameters to be fixed
constants, then we can use the unified approach to get the limiting t-distribution of the trans-
formed mhCov2

n. On the other hand, if γXi
and γYj

are treated to be median of sample distance
along each dimension and are thus random, we encounter technical difficulties to derive the
limiting distribution, as in this case the kernelized pairwise distance along each dimension are
correlated with each other. This is due to the choice of the bandwidth parameter and the high
dimensional approximation used for hCov2

n can not be directly applied, since γXi
and γYj

are calculated componentwisely. Nevertheless, we shall examine the testing efficiency using
t-distribution approximation when the bandwidth parameters are chosen to be the median of
sample distance in simulation.
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REMARK 2.6. An anonymous referee inquired about the applicability of our tests to the
setting when the p-dimensional data vector X = (x1, . . . , xp)T is a growth curve, and thus
can be viewed as a stochastic process or random function evaluated at time points {ti}pi=1,
say 0 ≤ t1 < t2 < · · · < tp ≤ 1. Under suitable conditions, one can show that the Euclidean
norm of X after proper scaling converges to the L2 norm of the random function when the
number of sampling points goes to infinity. It is known that the Hilbert space L2([0,1]) is
of strong negative type (Lyons (2013)), and thus the HSIC or the distance covariance based
on the L2 norm completely characterizes dependence. Therefore, the Euclidean norm is a
proper norm to use if X is considered to be an element in L2([0,1]) and we want to use
the L2 norm to construct our distance metrics. However, the setting we are considering in
this paper assumed the components of X and Y have weak dependence and the above growth
curve example falls into the very strong dependent case, and thus our theoretical phenomenon
does not apply. In practice, both strongly componentwise correlated high dimensional data
and weakly componentwise dependent high dimensional data can be collected depending on
the nature of data generating process. We shall illustrate the usefulness of our theory and
proposed tests using an earthquake dataset in Section 3.

Our theory demonstrates the limitation of dCov and hCov in the high dimensional envi-
ronment, which is intimately related to the use of Euclidean norm in their definitions. Similar
phenomenon has been discovered for energy distance [Szekely and Rizzo (2004)] and max-
imum mean discrepancy [Gretton et al. (2012)] in the two sample testing problem recently;
see Zhu and Shao (2019) and Chakraborty and Zhang (2019b). It is natural to ask what norm
would be desirable to use in the high dimensional setting and in what sense? We shall leave
these questions for future study.

3. Numerical results. Here, we consider some numerical examples to compare the
“joint” tests, where the distance/Hilbert–Schmidt covariance is applied to whole components
of data jointly, with the “marginal” tests, where distance/Hilbert–Schmidt covariance is ap-
plied to one-dimensional components and then being aggregated. To this end, we consider
the following statistics:

“Joint”

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dCov : distance covariance (permutation)

TdCov : studentized distance covariance

hCov : Hilbert–Schmidt covariance (permutation)

ThCov : studentized Hilbert–Schmidt covariance

“Marginal”

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mdCov : marginal distance covariance (permutation)

TmdCov : studentized marginal distance covariance,

mhCov : marginal Hilbert–Schmidt covariance (permutation)

TmhCov : studentized marginal Hilbert–Schmidt covariance

In the above display, dCov2
n and hCov2

n are the two “joint” test statistics to measure the
overall dependence between X and Y , mdCov2

n and mhCov2
n are the “marginal” test statistics,

and these four test statistics are implemented as permutation tests; TdCov from Székely and
Rizzo (2013) is the studentized version of dCov, our proposed t-tests ThCov, TmdCov, TmhCov
are the studentized versions of hCov, mdCov, mhCov, respectively. All of these four tests
are implemented using the t-distribution based critical value. We examine both the Gaussian
kernel and Laplacian kernel for the Hilbert–Schmidt covariance based tests.

For the permutation-based tests, we randomly shuffle the samples {X1, . . . , Xn} and get
(Xπ(1), . . . ,Xπ(n)), where π is the permutation map from {1, . . . , n} to {1, . . . , n}. Then we
calculate the test statistic based on the permuted sample {(Xπ(1), . . . ,Xπ(n)), (Y1, . . . , Yn)}.
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The p-value for permutation-based test is defined as the proportion of times that the test
statistic based on the permuted samples is greater than the one based on the original sample.
All the numerical results from permutation-based tests are based on 200 permutations and
the empirical rejection rate of the tests are based on 5000 Monte Carlo repetitions.

We first examine the size of the aforementioned tests.

EXAMPLE 3.1. Generate i.i.d. samples from the following models for i = 1, . . . , n:

(i) Xi = (xi1, . . . , xip)T ∼ N(0, Ip), Yi = (yi1, . . . , yip)T ∼ N(0, Ip).
(ii) Let AR(1) denotes the Gaussian autoregressive model of order 1 with parameter φ,

Xi ∼ AR(1), φ = 0.5, Yi ∼ AR(1), φ = −0.5.
(iii) Let � = (σij ) ∈ R

p×p and σij = 0.7|i−j |, Xi = (xi1, . . . , xip)T ∼ N(0,�), Yi =
(yi1, . . . , yip)T ∼ N(0,�).

From Table 1, we can see that all the tests have quite accurate size. Although the t-tests
are derived under the high dimensional scenario, they still have pretty accurate size even for
relatively low dimension (e.g., p = 5).

As demonstrated in Theorem 2.1 and 2.2, the leading term in (7) and (8) can only mea-
sure the linear dependence as p ∧ q → ∞, therefore, we expect the “joint” test based on
dCov2

n(X,Y) or hCov2
n(X,Y) may fail to capture the nonlinear dependence in high dimen-

sion. On the other hand, we consider the “marginal” test where we take the sum of pairwise
sample distance/Hilbert–Schmidt covariances to measure the low dimensional dependence
for all the pairs as the test proposed in Sections 2.1.1 and 2.1.2. The “marginal” test statistic
measures the dependence marginally in a low-dimensional fashion so that it can preserve the
ability to capture component-wise nonlinear dependence. In the following two examples, we
demonstrate the superiority of “marginal” tests.

EXAMPLE 3.2. Generate i.i.d. samples from the following models for i = 1, . . . , n:

(i) Xi = (xi1, . . . , xip)T ∼ N(0, Ip), Yi = (yi1, . . . , yip)T , where yij = x2
ij for j =

1, . . . , p.
(ii) Let � = (σij ) ∈ R

p×p and σij = 0.7|i−j |, Xi = (xi1, . . . , xip)T ∼ N(0,�), Yi =
(yi1, . . . , yip)T , where yij = x2

ij for j = 1, . . . , p.

(iii) Xi = (xi1, . . . , xip)T ∼ N(0, Ip), Yi = (yi1, . . . , yip)T , where yij = log |xij | for j =
1, . . . , p.

EXAMPLE 3.3. Generate i.i.d. samples from the following models for i = 1, . . . , n:

(i) Let ◦ denotes the Hadamard product, Xi = (xi1, . . . , xip)T
i.i.d.∼ U(−1,1), Yi = Xi ◦

Xi .

(ii) Xi = (xi1, . . . , xip)T
i.i.d.∼ U(0,1), Yi = 4Xi ◦ Xi ◦ Xi − 3.6Xi + 0.8.

(iii) Zi = (zi1, . . . , zip)T
i.i.d.∼ U(0,2π), Xi = sin(Zi), Yi = cos(Zi).

Notice that in the above two examples, cov2(xi, yj ) = 0 but dCov2(xi, yj ) �= 0 for all
(i, j)s, that is, (X,Y ) ∈ HAs . From Table 2, we can observe that for Example 3.2, the “joint”
tests suffer substantial power loss as dimension increases for fixed sample size. The power
loss is less severe in case (ii) than the ones in cases (i) and (iii), due to the dependence be-
tween the components. On the other hand, the powers corresponding to the marginal test
statistics consistently outperform their joint counterparts with very little to none power re-
duction as the dimension increases. Similar phenomenon can be observed for Example 3.3;
see Table 3. In addition, for all the cases in both Example 3.2 and Example 3.3, the power
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TABLE 1
Size comparison from Example 3.1

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

(i) 10 5 0.010 0.017 0.014 0.020 0.014 0.016 0.015 0.020 0.014 0.014 0.014 0.017 0.013
10 5 0.050 0.055 0.055 0.062 0.061 0.055 0.060 0.062 0.061 0.055 0.050 0.064 0.050
10 5 0.100 0.105 0.107 0.110 0.110 0.103 0.106 0.109 0.109 0.102 0.099 0.105 0.101
10 30 0.010 0.015 0.015 0.013 0.011 0.015 0.016 0.012 0.012 0.014 0.014 0.011 0.011
10 30 0.050 0.054 0.053 0.050 0.053 0.053 0.054 0.050 0.052 0.052 0.059 0.050 0.054
10 30 0.100 0.102 0.104 0.099 0.102 0.102 0.105 0.100 0.103 0.102 0.107 0.101 0.105

30 5 0.010 0.014 0.016 0.019 0.018 0.016 0.016 0.020 0.017 0.016 0.015 0.019 0.015
30 5 0.050 0.052 0.053 0.062 0.059 0.052 0.057 0.061 0.059 0.054 0.055 0.061 0.058
30 5 0.100 0.105 0.104 0.105 0.107 0.103 0.107 0.106 0.106 0.105 0.104 0.109 0.104
30 30 0.010 0.014 0.014 0.011 0.012 0.014 0.017 0.010 0.013 0.014 0.017 0.011 0.013
30 30 0.050 0.051 0.053 0.052 0.051 0.051 0.056 0.052 0.053 0.051 0.058 0.051 0.052
30 30 0.100 0.097 0.105 0.096 0.103 0.097 0.105 0.095 0.101 0.099 0.104 0.100 0.102

60 5 0.010 0.013 0.015 0.018 0.016 0.014 0.013 0.019 0.016 0.014 0.015 0.017 0.015
60 5 0.050 0.052 0.055 0.061 0.057 0.054 0.061 0.060 0.064 0.053 0.057 0.058 0.058
60 5 0.100 0.103 0.104 0.109 0.104 0.107 0.108 0.110 0.110 0.102 0.101 0.103 0.102
60 30 0.010 0.019 0.017 0.016 0.012 0.019 0.015 0.015 0.013 0.020 0.016 0.015 0.014
60 30 0.050 0.060 0.063 0.057 0.058 0.060 0.058 0.057 0.058 0.061 0.058 0.058 0.055
60 30 0.100 0.113 0.112 0.110 0.107 0.113 0.109 0.111 0.105 0.110 0.111 0.107 0.107

(ii) 10 5 0.010 0.015 0.015 0.023 0.023 0.014 0.016 0.023 0.019 0.015 0.017 0.022 0.021
10 5 0.050 0.051 0.054 0.064 0.066 0.053 0.058 0.064 0.066 0.054 0.058 0.066 0.062
10 5 0.100 0.101 0.105 0.107 0.111 0.100 0.109 0.105 0.113 0.102 0.110 0.106 0.109
10 30 0.010 0.014 0.018 0.013 0.016 0.014 0.017 0.014 0.013 0.017 0.018 0.017 0.013
10 30 0.050 0.060 0.061 0.061 0.061 0.061 0.056 0.062 0.056 0.059 0.060 0.059 0.056
10 30 0.100 0.105 0.105 0.110 0.107 0.105 0.105 0.109 0.099 0.106 0.108 0.111 0.104

30 5 0.010 0.012 0.011 0.022 0.023 0.012 0.014 0.021 0.020 0.013 0.013 0.019 0.016
30 5 0.050 0.046 0.048 0.055 0.056 0.046 0.052 0.055 0.059 0.047 0.053 0.051 0.059
30 5 0.100 0.094 0.096 0.094 0.096 0.096 0.100 0.097 0.100 0.093 0.107 0.097 0.104
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TABLE 1
(Continued)

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

30 30 0.010 0.016 0.016 0.017 0.015 0.017 0.015 0.017 0.011 0.017 0.015 0.017 0.012
30 30 0.050 0.061 0.058 0.060 0.059 0.061 0.055 0.060 0.054 0.058 0.052 0.060 0.051
30 30 0.100 0.109 0.105 0.110 0.107 0.111 0.101 0.110 0.098 0.111 0.102 0.113 0.097

60 5 0.010 0.015 0.013 0.026 0.022 0.016 0.014 0.024 0.020 0.013 0.015 0.020 0.018
60 5 0.050 0.055 0.052 0.062 0.061 0.055 0.053 0.061 0.059 0.055 0.052 0.061 0.054
60 5 0.100 0.101 0.100 0.103 0.100 0.102 0.100 0.104 0.099 0.101 0.097 0.103 0.099
60 30 0.010 0.013 0.014 0.013 0.014 0.013 0.016 0.014 0.013 0.014 0.015 0.013 0.012
60 30 0.050 0.055 0.051 0.058 0.051 0.054 0.054 0.057 0.053 0.058 0.053 0.053 0.052
60 30 0.100 0.105 0.102 0.105 0.100 0.106 0.103 0.105 0.102 0.107 0.105 0.107 0.104

(iii) 10 5 0.010 0.012 0.013 0.025 0.024 0.012 0.014 0.024 0.022 0.016 0.013 0.025 0.019
10 5 0.050 0.051 0.051 0.068 0.069 0.053 0.051 0.068 0.062 0.053 0.049 0.067 0.056
10 5 0.100 0.100 0.099 0.107 0.103 0.100 0.098 0.105 0.102 0.100 0.098 0.104 0.101
10 30 0.010 0.014 0.015 0.016 0.014 0.014 0.015 0.016 0.013 0.015 0.015 0.017 0.013
10 30 0.050 0.055 0.057 0.061 0.058 0.053 0.056 0.061 0.056 0.057 0.057 0.064 0.059
10 30 0.100 0.104 0.105 0.105 0.107 0.103 0.105 0.104 0.107 0.106 0.110 0.106 0.112

30 5 0.010 0.015 0.014 0.028 0.029 0.015 0.014 0.025 0.024 0.014 0.014 0.024 0.019
30 5 0.050 0.052 0.054 0.060 0.062 0.051 0.052 0.062 0.062 0.048 0.052 0.058 0.059
30 5 0.100 0.103 0.103 0.098 0.099 0.101 0.101 0.101 0.098 0.099 0.099 0.097 0.098
30 30 0.010 0.017 0.015 0.019 0.017 0.016 0.015 0.019 0.015 0.013 0.016 0.018 0.012
30 30 0.050 0.054 0.055 0.058 0.058 0.055 0.055 0.059 0.057 0.056 0.057 0.063 0.056
30 30 0.100 0.102 0.105 0.105 0.103 0.101 0.099 0.103 0.102 0.104 0.107 0.105 0.105

60 5 0.010 0.012 0.012 0.029 0.027 0.014 0.012 0.028 0.024 0.016 0.011 0.023 0.021
60 5 0.050 0.052 0.052 0.063 0.064 0.050 0.048 0.063 0.059 0.050 0.052 0.059 0.061
60 5 0.100 0.100 0.101 0.098 0.095 0.098 0.099 0.097 0.099 0.099 0.098 0.100 0.094
60 30 0.010 0.017 0.015 0.020 0.019 0.016 0.017 0.020 0.017 0.016 0.015 0.019 0.014
60 30 0.050 0.052 0.053 0.058 0.060 0.055 0.057 0.061 0.059 0.057 0.056 0.062 0.059
60 30 0.100 0.103 0.106 0.107 0.103 0.102 0.106 0.107 0.105 0.103 0.102 0.106 0.101
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TABLE 2
Power comparison under HAs

from Example 3.2

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

(i) 10 5 0.010 0.113 0.285 0.144 0.321 0.110 0.493 0.138 0.516 0.172 0.801 0.226 0.813
10 5 0.050 0.231 0.495 0.254 0.519 0.236 0.724 0.256 0.736 0.356 0.927 0.398 0.938
10 5 0.100 0.325 0.618 0.332 0.628 0.325 0.828 0.336 0.834 0.495 0.968 0.506 0.969
10 30 0.010 0.032 0.286 0.028 0.267 0.032 0.543 0.030 0.513 0.044 0.848 0.041 0.838
10 30 0.050 0.101 0.526 0.098 0.523 0.098 0.769 0.099 0.763 0.124 0.945 0.128 0.947
10 30 0.100 0.158 0.669 0.162 0.666 0.160 0.858 0.160 0.858 0.203 0.978 0.205 0.977

30 5 0.010 0.440 0.997 0.499 0.999 0.518 1 0.583 1 0.924 1 0.956 1
30 5 0.050 0.651 1.000 0.679 1.000 0.741 1 0.768 1 0.987 1 0.988 1
30 5 0.100 0.766 1.000 0.773 1 0.836 1 0.845 1 0.994 1 0.995 1
30 30 0.010 0.084 1.000 0.082 1.000 0.085 1 0.082 1 0.194 1 0.192 1
30 30 0.050 0.190 1 0.187 1 0.192 1 0.192 1 0.365 1 0.365 1
30 30 0.100 0.275 1 0.272 1 0.280 1 0.276 1 0.476 1 0.478 1

60 5 0.010 0.948 1 0.976 1 0.983 1 0.992 1 1 1 1 1
60 5 0.050 0.994 1 0.996 1 0.998 1 0.999 1 1 1 1 1
60 5 0.100 0.999 1 0.999 1 1.000 1 1.000 1 1 1 1 1
60 30 0.010 0.185 1 0.173 1 0.194 1 0.183 1 0.587 1 0.587 1
60 30 0.050 0.346 1 0.346 1 0.361 1 0.360 1 0.779 1 0.782 1
60 30 0.100 0.462 1 0.459 1 0.475 1 0.473 1 0.861 1 0.864 1

(ii) 10 5 0.010 0.167 0.232 0.237 0.296 0.192 0.347 0.263 0.410 0.279 0.595 0.391 0.652
10 5 0.050 0.306 0.386 0.341 0.421 0.356 0.570 0.401 0.606 0.525 0.806 0.584 0.832
10 5 0.100 0.401 0.489 0.409 0.500 0.479 0.699 0.487 0.709 0.674 0.892 0.689 0.901
10 30 0.010 0.080 0.202 0.091 0.210 0.082 0.376 0.091 0.366 0.099 0.646 0.123 0.634
10 30 0.050 0.178 0.369 0.191 0.378 0.179 0.605 0.192 0.610 0.229 0.834 0.252 0.837
10 30 0.100 0.257 0.492 0.259 0.492 0.264 0.728 0.265 0.730 0.342 0.906 0.351 0.909

30 5 0.010 0.623 0.847 0.781 0.950 0.895 0.999 0.957 1 0.995 1 0.999 1
30 5 0.050 0.872 0.984 0.902 0.990 0.982 1 0.990 1 1.000 1 1 1
30 5 0.100 0.940 0.996 0.945 0.995 0.994 1 0.994 1 1 1 1 1
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TABLE 2
(Continued)

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

30 30 0.010 0.251 0.929 0.277 0.944 0.307 1 0.336 1 0.629 1 0.686 1
30 30 0.050 0.419 0.982 0.434 0.985 0.499 1 0.517 1 0.830 1 0.849 1
30 30 0.100 0.532 0.995 0.532 0.995 0.613 1 0.622 1 0.905 1 0.909 1

60 5 0.010 0.999 1 1 1 1 1 1 1 1 1 1 1
60 5 0.050 1 1 1 1 1 1 1 1 1 1 1 1
60 5 0.100 1 1 1 1 1 1 1 1 1 1 1 1
60 30 0.010 0.643 1 0.684 1 0.790 1 0.833 1 0.996 1 0.999 1
60 30 0.050 0.824 1 0.836 1 0.918 1 0.930 1 1.000 1 1.000 1
60 30 0.100 0.894 1 0.896 1 0.955 1 0.958 1 1 1 1 1

(iii) 10 5 0.010 0.043 0.233 0.060 0.257 0.042 0.434 0.053 0.447 0.076 0.768 0.098 0.785
10 5 0.050 0.121 0.466 0.141 0.490 0.119 0.680 0.137 0.698 0.191 0.924 0.214 0.927
10 5 0.100 0.201 0.616 0.212 0.624 0.203 0.808 0.210 0.810 0.291 0.963 0.298 0.964
10 30 0.010 0.017 0.260 0.013 0.242 0.017 0.482 0.012 0.445 0.021 0.830 0.017 0.811
10 30 0.050 0.062 0.488 0.062 0.487 0.063 0.729 0.062 0.727 0.071 0.941 0.070 0.940
10 30 0.100 0.120 0.632 0.116 0.630 0.118 0.837 0.115 0.836 0.131 0.972 0.130 0.975

30 5 0.010 0.146 0.999 0.191 1 0.153 1 0.187 1 0.464 1 0.529 1
30 5 0.050 0.346 1 0.375 1 0.347 1 0.380 1 0.723 1 0.747 1
30 5 0.100 0.484 1 0.497 1 0.496 1 0.501 1 0.835 1 0.840 1
30 30 0.010 0.024 1.000 0.022 1.000 0.026 1 0.022 1 0.038 1 0.037 1
30 30 0.050 0.088 1 0.085 1 0.086 1 0.085 1 0.117 1 0.115 1
30 30 0.100 0.149 1 0.147 1 0.148 1 0.144 1 0.195 1 0.193 1

60 5 0.010 0.547 1 0.630 1 0.566 1 0.642 1 0.978 1 0.988 1
60 5 0.050 0.802 1 0.835 1 0.808 1 0.836 1 0.997 1 0.998 1
60 5 0.100 0.907 1 0.911 1 0.905 1 0.913 1 0.999 1 0.999 1
60 30 0.010 0.038 1 0.030 1 0.038 1 0.029 1 0.089 1 0.080 1
60 30 0.050 0.122 1 0.117 1 0.119 1 0.119 1 0.217 1 0.214 1
60 30 0.100 0.198 1 0.196 1 0.199 1 0.197 1 0.326 1 0.325 1
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TABLE 3
Power comparison under HAs

from Example 3.3

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

(i) 10 5 0.010 0.044 0.196 0.055 0.218 0.042 0.348 0.052 0.367 0.074 0.672 0.098 0.685
10 5 0.050 0.120 0.390 0.136 0.416 0.114 0.582 0.129 0.604 0.183 0.859 0.209 0.870
10 5 0.100 0.201 0.542 0.209 0.546 0.191 0.722 0.197 0.731 0.292 0.927 0.304 0.931
10 30 0.010 0.018 0.212 0.014 0.194 0.017 0.387 0.014 0.362 0.022 0.722 0.017 0.706
10 30 0.050 0.066 0.434 0.064 0.428 0.066 0.627 0.064 0.625 0.075 0.892 0.077 0.891
10 30 0.100 0.123 0.571 0.121 0.568 0.123 0.749 0.119 0.750 0.135 0.944 0.132 0.946

30 5 0.010 0.158 0.988 0.197 0.996 0.136 1 0.163 1 0.486 1 0.555 1
30 5 0.050 0.341 1.000 0.369 1 0.303 1 0.328 1 0.725 1 0.756 1
30 5 0.100 0.483 1 0.488 1 0.433 1 0.444 1 0.838 1 0.846 1
30 30 0.010 0.026 0.996 0.023 0.996 0.027 1.000 0.022 1.000 0.043 1 0.038 1
30 30 0.050 0.089 1.000 0.084 0.999 0.088 1 0.083 1 0.123 1 0.125 1
30 30 0.100 0.153 1.000 0.152 1.000 0.151 1 0.152 1 0.209 1 0.204 1

60 5 0.010 0.559 1 0.637 1 0.461 1 0.539 1 0.989 1 0.996 1
60 5 0.050 0.816 1 0.847 1 0.738 1 0.774 1 1.000 1 1 1
60 5 0.100 0.916 1 0.925 1 0.861 1 0.870 1 1 1 1 1
60 30 0.010 0.037 1 0.032 1 0.036 1 0.031 1 0.091 1 0.085 1
60 30 0.050 0.125 1 0.119 1 0.122 1 0.115 1 0.231 1 0.228 1
60 30 0.100 0.208 1 0.207 1 0.204 1 0.202 1 0.350 1 0.346 1

(ii) 10 5 0.010 0.044 0.217 0.059 0.242 0.040 0.393 0.055 0.413 0.077 0.713 0.106 0.732
10 5 0.050 0.124 0.432 0.141 0.453 0.117 0.637 0.131 0.655 0.202 0.886 0.224 0.895
10 5 0.100 0.210 0.577 0.213 0.583 0.196 0.771 0.204 0.775 0.304 0.942 0.318 0.942
10 30 0.010 0.020 0.247 0.013 0.224 0.019 0.439 0.013 0.409 0.022 0.774 0.018 0.763
10 30 0.050 0.064 0.474 0.064 0.474 0.063 0.677 0.063 0.676 0.075 0.913 0.076 0.913
10 30 0.100 0.126 0.606 0.125 0.604 0.126 0.795 0.126 0.790 0.141 0.956 0.138 0.955

30 5 0.010 0.178 0.995 0.221 0.999 0.148 1 0.186 1 0.544 1 0.608 1
30 5 0.050 0.376 1 0.409 1 0.333 1 0.358 1 0.775 1 0.797 1
30 5 0.100 0.518 1 0.526 1 0.468 1 0.478 1 0.871 1 0.880 1
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TABLE 3
(Continued)

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

30 30 0.010 0.027 0.998 0.023 0.998 0.026 1.000 0.022 1 0.043 1 0.038 1
30 30 0.050 0.088 1.000 0.087 1.000 0.088 1 0.086 1 0.128 1 0.128 1
30 30 0.100 0.155 1.000 0.152 1.000 0.154 1 0.152 1 0.218 1 0.213 1

60 5 0.010 0.632 1 0.709 1 0.526 1 0.609 1 0.995 1 0.999 1
60 5 0.050 0.870 1 0.895 1 0.792 1 0.826 1 1 1 1 1
60 5 0.100 0.946 1 0.952 1 0.904 1 0.911 1 1 1 1 1
60 30 0.010 0.044 1 0.037 1 0.043 1 0.036 1 0.105 1 0.096 1
60 30 0.050 0.126 1 0.125 1 0.123 1 0.121 1 0.251 1 0.244 1
60 30 0.100 0.213 1 0.211 1 0.211 1 0.206 1 0.368 1 0.366 1

(iii) 10 5 0.010 0.019 0.024 0.023 0.028 0.017 0.033 0.022 0.040 0.023 0.090 0.029 0.095
10 5 0.050 0.058 0.079 0.068 0.089 0.057 0.111 0.067 0.115 0.068 0.232 0.081 0.242
10 5 0.100 0.113 0.148 0.117 0.151 0.114 0.194 0.118 0.196 0.124 0.351 0.129 0.355
10 30 0.010 0.016 0.026 0.012 0.020 0.016 0.037 0.012 0.030 0.017 0.089 0.013 0.076
10 30 0.050 0.059 0.086 0.057 0.083 0.060 0.112 0.058 0.105 0.061 0.233 0.060 0.225
10 30 0.100 0.111 0.156 0.108 0.153 0.112 0.199 0.108 0.193 0.112 0.357 0.109 0.346

30 5 0.010 0.019 0.051 0.021 0.068 0.017 0.141 0.021 0.170 0.026 0.673 0.032 0.724
30 5 0.050 0.061 0.166 0.070 0.188 0.058 0.339 0.066 0.360 0.083 0.889 0.091 0.903
30 5 0.100 0.117 0.283 0.117 0.288 0.117 0.488 0.116 0.497 0.153 0.953 0.153 0.955
30 30 0.010 0.017 0.074 0.012 0.065 0.017 0.182 0.012 0.165 0.017 0.754 0.012 0.742
30 30 0.050 0.061 0.202 0.058 0.198 0.061 0.378 0.059 0.373 0.063 0.913 0.061 0.913
30 30 0.100 0.112 0.309 0.110 0.307 0.113 0.518 0.110 0.517 0.117 0.960 0.114 0.959

60 5 0.010 0.019 0.174 0.024 0.219 0.017 0.580 0.022 0.666 0.034 1.000 0.041 1
60 5 0.050 0.066 0.421 0.073 0.458 0.061 0.853 0.069 0.883 0.108 1 0.119 1
60 5 0.100 0.123 0.600 0.128 0.612 0.119 0.941 0.122 0.949 0.179 1 0.183 1
60 30 0.010 0.013 0.251 0.009 0.233 0.013 0.680 0.010 0.665 0.014 1.000 0.010 1
60 30 0.050 0.053 0.485 0.051 0.484 0.052 0.869 0.050 0.871 0.056 1 0.055 1
60 30 0.100 0.105 0.620 0.101 0.619 0.106 0.930 0.101 0.929 0.107 1 0.106 1
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loss corresponding to Laplacian kernel is consistently less than that for Gaussian kernel. In
general, we observe that the tests based on distance covariance, Hilbert–Schmidt covariance
with Gaussian kernel and Hilbert–Schmidt covariance with Laplacian kernel, are all admis-
sible, as none of them dominate the others in all situations. In the following example, we
examine the aforementioned tests on a real data set.

EXAMPLE 3.4. We consider the Earthquake data set, which is originally from the North-
ern California Earthquake Data Center and has classes of positive and negative major earth-
quake events. There are 368 negative and 93 positive cases and each data point is of length
512. This data set can be downloaded from UCR Time Series Classification Archive [Dau
et al. (2018)]. Here, we only consider the negative cases. Let Zi = (zi,1, zi,2, . . . , zi,512)

T

denote the record of a negative event, then set Xi = (zi,150−p+1, . . . , zi,150)
T and Yi =

(zi,151, . . . , zi,150+p)T , i = 1, . . . ,368. We apply all tests to test the independence between Xi

and Yi , which are expected to be dependent due to the serial nature of Zi . For each p = 5,30
and n = 10,30,60, we randomly sample n rows from the full data set (Xi, Yi)

368
i=1 without

replacement and apply the aforementioned tests based on the subsample. Next, the above
procedure is repeated 5000 times to calculate the power.

The results are presented in Table 4. It can be seen that the powers of the marginal tests
increase as the dimension grows, whereas the powers of all joint tests experience a decay as
p grows and are nearly trivial when p = 30. This finding is consistent for all tests including
hCov-based ones with Gaussian and Laplacian kernels. In addition, we also note that the
marginal tests with Gaussian or Laplacian kernel have consistently higher power as compared
to the Euclidean distance based tests.

4. Conclusion. In this article, we investigate the behavior of the distance covariance and
Hilbert–Schmidt covariance in the high dimensional setting. We discover that the standard
distance covariance and Hilbert–Schmidt covariance, which are well known to capture non-
linear dependence in low/fixed dimensional context, can only capture linear componentwise
cross-dependence (to the first order) in the high dimensional environment. We believe that
this is a new finding that may have significant implications to the design of tests for indepen-
dence for high dimensional data. On one hand, we reveal the limitation of distance covariance
and variants in the high dimensional context, and suggest to use marginally aggregated (sam-
ple) distance covariance as a way out, where the latter targets the low dimensional nonlinear
dependence. On the other hand, we speculate whether it is possible to capture all kinds of
dependence between high dimensional vectors X and Y , in a limited sample size framework.
If the sample size is fixed, we would conjecture that an omnibus test does not exist; If the
sample size can grow faster than the dimension, it seems possible but unclear to us how to
develop an omnibus test in an asymptotic sense. We hope the results presented in this pa-
per shed some light on the challenges in the high dimensional dependence testing and will
motivate more work in this area.

Acknowledgments. We would like to thank three reviewers and Associate Editor for
helpful comments, which have improved the presentation of the paper. We are grateful to Dr.
Liping Zhu for sending us the R codes for Zhu et al. (2017).

SUPPLEMENTARY MATERIAL

Supplement to “Distance-based and RKHS-based dependence metrics in high dimen-
sion” (DOI: 10.1214/19-AOS1934SUPP; .pdf). This supplement contains (1) some theoret-
ical results derived under the high dimension and medium sample size setting, where the
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TABLE 4
Power comparison on earthquake data

Gaussian Kernel Laplacian Kernel

n p α dCov mdCov TdCov TmdCov hCov mhCov ThCov TmhCov hCov mhCov ThCov TmhCov

10 5 0.010 0.021 0.054 0.041 0.079 0.021 0.851 0.038 0.883 0.035 0.937 0.060 0.952
10 5 0.050 0.070 0.144 0.085 0.160 0.065 0.927 0.080 0.937 0.091 0.975 0.112 0.979
10 5 0.100 0.120 0.235 0.126 0.230 0.114 0.956 0.117 0.959 0.155 0.985 0.160 0.985
10 30 0.010 0.012 0.218 0.013 0.226 0.012 1.000 0.012 1.000 0.013 1 0.016 1
10 30 0.050 0.046 0.412 0.047 0.421 0.046 1.000 0.046 1.000 0.050 1 0.054 1
10 30 0.100 0.095 0.537 0.093 0.541 0.096 1 0.095 1 0.094 1 0.091 1

30 5 0.010 0.034 0.155 0.055 0.196 0.026 1 0.042 1 0.078 1 0.124 1
30 5 0.050 0.106 0.333 0.128 0.356 0.082 1 0.096 1 0.188 1 0.210 1
30 5 0.100 0.177 0.460 0.183 0.461 0.139 1 0.146 1 0.278 1 0.273 1
30 30 0.010 0.009 0.936 0.009 0.941 0.009 1 0.009 1 0.011 1 0.012 1
30 30 0.050 0.040 0.977 0.041 0.976 0.043 1 0.043 1 0.040 1 0.041 1
30 30 0.100 0.081 0.988 0.080 0.988 0.086 1 0.085 1 0.085 1 0.082 1

60 5 0.010 0.060 0.473 0.086 0.549 0.034 1 0.050 1 0.171 1 0.245 1
60 5 0.050 0.147 0.722 0.171 0.749 0.096 1 0.107 1 0.341 1 0.370 1
60 5 0.100 0.240 0.835 0.244 0.838 0.162 1 0.167 1 0.457 1 0.458 1
60 30 0.010 0.006 1 0.006 1 0.006 1 0.006 1 0.008 1 0.008 1
60 30 0.050 0.030 1 0.031 1 0.032 1 0.031 1 0.033 1 0.034 1
60 30 0.100 0.066 1 0.065 1 0.068 1 0.070 1 0.067 1 0.066 1
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sample size is also allowed to grow as the dimension grows, albeit at a slower rate; (2) addi-
tional simulation examples, and comparisons with five nonparametric dependence tests that
are not covered by our kernel class; (3) proof details for all theory presented in the paper.
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