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Since their inception in the 1980s, regression trees have been one of the
more widely used nonparametric prediction methods. Tree-structured meth-
ods yield a histogram reconstruction of the regression surface, where the bins
correspond to terminal nodes of recursive partitioning. Trees are powerful,
yet susceptible to overfitting. Strategies against overfitting have traditionally
relied on pruning greedily grown trees. The Bayesian framework offers an
alternative remedy against overfitting through priors. Roughly speaking, a
good prior charges smaller trees where overfitting does not occur. While the
consistency of random histograms, trees and their ensembles has been stud-
ied quite extensively, the theoretical understanding of the Bayesian counter-
parts has been missing. In this paper, we take a step toward understanding
why/when do Bayesian trees and forests not overfit. To address this ques-
tion, we study the speed at which the posterior concentrates around the true
smooth regression function. We propose a spike-and-tree variant of the pop-
ular Bayesian CART prior and establish new theoretical results showing that
regression trees (and forests) (a) are capable of recovering smooth regression
surfaces (with smoothness not exceeding one), achieving optimal rates up to
a log factor, (b) can adapt to the unknown level of smoothness and (c) can
perform effective dimension reduction when p > n. These results provide
a piece of missing theoretical evidence explaining why Bayesian trees (and
additive variants thereof') have worked so well in practice.

1. Nonparametric regression setup. The remarkable empirical success of Bayesian
tree-based regression [14, 15, 18] has raised considerable interest in understanding why and
when these methods produce good results. Despite their extensive use in practice, theoretical
justifications have, thus far, been unavailable. To narrow this yawning gap, we consider the
fundamental problem of making inference about an unknown regression function.

Our setup consists of the nonparametric regression model
(1.1) Yi=foler) +ei e N, 1),
where output variables Y ) — (Y1,...,Y,) are related in a stochastic fashion to a set
of p potential covariates x; = (x,-l,...,xip)/ , 1 <1i < n. We assume that the covariates
x;i = (xi1,..., xip)’ are fixed and have been rescaled so that x; € [0, 1]”. The true unknown
regression surface fo(x) will be assumed to be smooth, possibly involving only a small frac-
tion gg of the p potential covariates.

In the absence of a parametric model, a natural strategy to estimate the unknown regres-
sion function is by partitioning the covariate space into cells and then estimating the function
locally within each cell from available observations. Such strategies yield histogram recon-
structions of the regression surface and have been analyzed theoretically by multiple authors
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[19, 34, 41]. Regression trees [9] are among the most popular data-dependent histogram
methods, where the partitioning scheme is obtained through nested parallel axis splitting.
Trees are an integral constituent of ensemble methods that aggregate single tree learners into
forests to boost prediction [8]. Tree-based regression, either single or ensemble, is arguably
one of the most popular machine learning tools today. In particular, Bayesian variants of these
methods (Bayesian CART and BART) [15, 18] have earned a prominent role as one of the
top machine learners. While consistency results for classical trees and random forests have
been available [4, 5, 9, 21, 25, 26, 38, 46], theory on the also very widely used Bayesian
counterparts is nonexistent. Our goal in this paper is to provide the first frequentist optimality
results for Bayesian trees, and their ensembles.

Most of the work on Bayesian nonparametric regression has revolved around Gaussian
processes [3, 44, 47]. While there are multiple results on recursive partitioning (or histogram)
priors for Bayesian density estimation [10, 11, 33, 39] (or nonlinear autoregression [23]), the
literature on Bayesian regression histograms is far more deserted. One fundamental contribu-
tion is due to Coram and Lalley [16], who showed consistency of Bayesian binary regression
with uniform mixture priors on step functions and with one predictor. More recently, van der
Pas and Rockova [35] considered a similar setup for estimating step mean functions in Gaus-
sian regression, again with a single predictor. This paper goes far beyond that framework,
addressing (a) the full-fledged high-dimensional setup with a diverging number of potential
covariates and (b) tree ensembles for additive regression.

The purpose of this paper is to study the rate of convergence of posterior distributions
induced by step function priors on the regression surface when p > n. The speed of conver-
gence is measured by the size of the smallest shrinking ball around fy that contains most
of the posterior probability. In pioneering works, Ghosal, Ghosh and Van der Vaart [23] and
Shen and Wasserman [40] obtained rates of convergence for infinite-dimensional parametric
models with i.i.d. observations in terms of the size of the model (measured by the metric
entropy) and concentration rate of the prior around fy. These results were later extended to
infinite-dimensional models that are not i.i.d. by Ghosal and Van der Vaart [24]. Their general
conceptual framework serves as an umbrella for our development.

1.1. Our contributions. We initially assume that fp is Holder continuous (with smooth-
ness not exceeding one) and may depend only on a small fraction of gg predictors. The
optimal rate of estimation of a gg-variable function, which is known to be «-smooth,
is n=¢/(2¢+40) [42]. Our first result shows that, with suitable regularization priors, single
Bayesian regression trees achieve this minimax rate (up to a log factor). In other words, the
posterior behaves nearly as well as if we knew « and the number of active covariates gg, con-
centrating at a rate that only depends on the number of active predictors. This is the first op-
timality result for Bayesian regression trees, demonstrating their adaptability and reluctance
to overfit in high-dimensional scenarios with p > n. The regularization is achieved through
our proposed spike-and-tree prior, a new variant of the Bayesian CART prior for dimension
reduction and model-free variable selection. Going further, we show that Bayesian additive
regression trees also achieve (near) minimax-rate optimal performance when approximating
a single smooth function. Finally, the tree ensembles are also shown to be certifiably optimal
when the true function is an actual sum of smooth functions, again concentrating at a near
minimax rate.

1.2. Notation. The notation < will be used to denote inequality up to a constant, a < b
denotes @ S b and b < a and a v b denotes max{a, b}. The e-covering number of a set 2 for
a semimetric d, denoted by N (¢, €2, d), is the minimal number of d-balls of radius ¢ needed
to cover set 2. We denote by ¢ (:; o2) the normal density with zero mean and variance o2



2110 V. ROCKOVA AND S. VAN DER PAS

and by P} = @ Py, the n-fold product measure of the n independent observations under

(1.1) with a regression function f. By P} = % | 8x;, we denote the empirical distribution
of the observed covariates and let || - ||, denote the empirical norm on Ly (P%). With || - |2,
we denote the standard Euclidean norm. For x € R?, we denote with xs the subvector of x
indexed by S € {1, ..., p}. With C" we denote r-times continuously differentiable functions

on [0, 1].

1.3. Outline. We outline our goals and strategy in Section 2. We then review several
useful concepts for analyzing recursive partitioning schemes in Section 3. In Section 4, we
state our first main result on the posterior concentration for Bayesian CART. In Section 5,
we develop tools for analyzing Bayesian additive regression trees and show their optimal
posterior concentration in nonadditive regression. Section 6 presents the final development
of our theory concerning the recovery of an additive regression function with additive trees.
We conclude with a discussion in Section 7. The proofs of our main theorems are presented
in Sections 8 and in the Supplementary Material [36].

2. Background. In this section, we lay down rudiments of our modus operandi. Our
setup comprises a sequence of statistical experiments with observations Y™ = (Y1, ...,Y,)’
and models Pj’} defined in (1.1). Each model P}’ is parametrized by a regression function
f :10,1]7 — R that lives in an infinite-dimensional space F endowed with a prior distri-
bution. With adequate priors, the posterior can exhibit nice frequentist properties, which get
passed onto its location/scale summary measures. One such property is the ability to pile up
in shrinking neighborhoods around the true regression function fy. The speed at which the
shrinking occurs is the posterior concentration rate and assesses the quality of the posterior
beyond just the mere fact that it is consistent. In our setup, we investigate such concentration
properties in terms of || - ||,, neighborhoods of fy, where

n
1 = Sl =2 Y[ r e — ol

i=1
The key to our approach will be drawing upon the foundational posterior concentration theory
for non-i.i.d. observations, laid down in the seminal paper by Ghosal and Van der Vaart [24].
Our results are obtained under a unifying hat of a general result which requires three
conditions to hold. Namely, suppose that for a sequence 8% — 0 such that ne,% is bounded

away from zero and sets F,, C F we have

&
@1 suplogN (2. [ £ € FaIf = folls <el. 111 ) <ned,
2.2) M(f €F:If — folln < en) = e e,
2.3) (F\F,) = o(e~@+Pmey

for some d > 2. Then it follows from Theorem 4 in [24] that the posterior distribution con-
centrates at the rate 8,21, that is,

(2.4) T(feF:lfo— fln> My, | Y7) =0

in P‘?O-probability, as n — oo, for any M,, — o0.

The conditions of Ghosal and Van der Vaart [24] provide a very general recipe for showing
posterior concentration in infinite-dimensional models. Our goal in this paper is to obtain
tailored statements for Bayesian regression trees and forests. The major challenge will be
(a) designing a sequence of approximating spaces (a sieve) F,, C F and (b) endowing F
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with a prior distribution such that the three conditions hold simultaneously for ¢, as small
as possible. To this end, we will build on, and develop, tools for an analysis of recursive
partitioning schemes.

Throughout this work, we assume that the true regression function f is Holder continuous
and the smoothness parameter does not exceed one, (or an additive composition thereof), in
the sense made precise below.

DEFINITION 2.1. With ”Hg we denote the space of uniformly a-Holder continuous func-
tions, that is,

Hy= {707 > Rl = sp TEZIINCool,
xyefo.11r X —yll3

where o € (0, 1] and where || f ||« is the Holder coefficient.

The assumption « < 1 is standard in the study of piecewise constant estimators and priors;
see, for example, [22, 24, 39]. The reason for this limitation is that step functions are relatively
rough; for example, the approximation error of histograms for functions that are smoother
than Lipschitz is at least of the order 1/K, where K is the number of bins. The number
of steps required to approximate a smooth function well is thus too large, creating a costly
bias-variance tradeoff.

In some applications, it is reasonable to expect that the regression function fy depends
only on a small fraction of input covariates. For a set of indices S C {1, ..., p}, we define

C(S)={f :10,1]” — R; f is constant in directions{1, ..., p)\S}.

We will consider two estimation regimes:

(R1) Regime 1: fy is a-Holder continuous and depends on an unknown subset Sy of
|Sol = qo covariates, that is, fo € Hj N C(Sp).

(R2) Regime 2: fy is an aggregate of Ty o’-Holder continuous functions fj, 1 <t <
Ty, each depending on an unknown subset S)) of |Sj| = ¢, covariates, that is, fo(x) =

Y0, fo(x), where f§ € HY NC(S).

t=1

For an estimation procedure to be successful in Regime 1, it needs to be doubly adaptive (with
respect to « and go). We will show that both single trees and tree ensembles adapt accord-
ingly, performing at a near-minimax rate. Regime 2 makes the performance discrepancies
more apparent, where the additive structure of fy is appreciated by tree ensembles, which
can achieve a faster convergence rate than single trees. A variant of Regime 2 was studied
by [47] who derived minimax rates for estimating additive smooth functions and showed
optimal concentration of additive Gaussian processes. Here, we approximate fy with step
functions and their aggregates. We limit considerations to step functions that are underpinned
by recursive partitioning schemes.

3. Onrecursive partitions. Tree-based regression consists of first finding an underlying
partitioning scheme that hierarchically subdivides a dataset into more homogeneous subsets,
and then learning a piecewise constant function on that partition. This section serves to review
several useful concepts for analyzing such nested partitioning rules that will be instrumental
in our analysis.
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3.1. General partitions. Given K € N, we define a K -partition of [0, 1]7 as a sequence
Q= {Qk}le of K contiguous rectangles 2 C [0, 1]7, where U,le Q. = [0, 1]7. Sufficient
conditions for consistency of regression histograms have traditionally revolved around two
requirements on the partitioning cells €2; (Section 6.3 in [20]). The first one pertains to cell
counts, where €2;’s should be large enough to capture a sufficient number of points to render
local estimation meaningful. The second one pertains to cell sizes, where €2;’s should be
small enough to detect local changes in the regression surface. We borrow some of these
concepts for our theoretical analysis.

For the first requirement, let us formalize the notion of the cell size in terms of the empirical
measure induced by observations X = {x, ..., x,}. For each cell 2, we define by

n

3.1) () = %Zﬂm € )

i=1
the proportion of observations falling inside €2. Throughout this work, we focus on partitions
whose boxes can adaptively stretch and shrink, allowing the splits to arrange themselves
in a data-dependent way [43]. The simplest data-adaptive partition is based on statistically
equivalent blocks [1, 20], where all cells have approximately the same number of points, that
is, u(2) =< 1/K. We deviate from such a strict rule by allowing for imbalance and define
the so called valid partitions.

DEFINITION 3.1 (Valid partitions). Denote by £ = {Qk}f:1 a partition of [0, 1]7. We
say that & is valid if

(3.2) w(Q) >C?/n forallk=1,...,K

for some constant C2 € N\{0}.

Valid partitions have nonempty cells, where the allocation does not need to be bal-
anced. In balanced partitions (introduced in van der Pas and Rockova [35]), the cells satisfy
% < u(Rp) < C;“;a" for some Cpin < 1 < Cpax. One prominent example of such balanced
partitions is the median tree (or a k—d tree) [2], which will be discussed in the next section
and will be used as a benchmark tree approximation toward establishing Condition 2.2.

For the second requirement, let us formalize the notion of the cell size in terms of the local

spread of the data. To this end, we introduce the partition diameter [27, 45].

DEFINITION 3.2 (Diameter). Denote by £ = {Qk}f=1 a partition of [0, 1]” and by X =
{x1,...,x,} acollection of data points in [0, 1]?. For an index set S C {1, ..., p}, we define
a diameter of Q; w.r.t. S as

diam(2;; S) = max xXs —
(5 S) x,yerﬂX” s—Ysl2

and with diam(R; S) = \/ Zf:l () diam?(Sy; S) we define a diameter of the entire par-
tition  w.r.t. S.

The diameter of €2; corresponds to the largest || - |2 distance between S-coordinate pro-
jections of two points that fall inside 2. This is one of the more flexible notions of a cell
diameter, which takes into account the data itself, not just the physical cell size. Traditionally,
bias and convergence rate analysis of tree-based estimators have been characterized in terms
of the cell diameters. The rate depends on how fast the diameters shrink as we move down the
tree: the more rapidly, the better. As will be seen later in Section 3.3, controlling the diameter
will be essential for obtaining tight bounds on the approximation error.
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3.2. Tree partitions. We are ultimately interested in partitions that can be obtained with
nested axis-parallel splits. Such partitions can be represented by a tree diagram, a hierarchical
arrangement of nodes. We will focus on binary tree partitions, where each split yields two
children nodes. Namely, starting from a parent node [0, 1]7, a binary tree partition is grown
by successively applying a splitting rule on a chosen internal node, say 25 C [0, 1]”. The
node €2} is split into two cells by a perpendicular bisection along one of the p coordinates,
say j, at a chosen observed value T € X = {x1, ..., x,}. The newborn cells {x € Q} : x; < 7}
and {x € Q7 : x; > 7} constitute two rectangular regions of [0, 1]7, which can be split further
(to become internal nodes) or end up being terminal nodes. The terminal cells after K — 1
splits then yield a box-shaped (tree) partition { Qk}f:1 .

Unlike dyadic trees, where the threshold 7 is preset at a midpoint of the rectangle €2
along the jth direction, we allow for splits at available observations &X'. Such data-dependent
splits are integral to Bayesian CART and BART implementations [14, 15, 18]. With more
opportunities for each split, many more tree topologies can be generated. However, since the
tree partitions are arranged in a nested fashion, their combinatorial complexity is not too large
(as shown in Lemma 3.1 below).

We will denote each tree-structured K -partition by 7% = {Qk}le. With Vf , we denote a
Sfamily of valid tree partitions of [0, 1]7, obtained by splitting K — 1 times at observed values
in X along each coordinate direction inside S C {1, ..., p} at least once. In particular, each
tree T € Vg is valid according to Definition 3.1 and uses up all covariates in S for splits,
where S can be regarded as an index set of active predictors. We will refer to the partitioning
number A(Vé< ) (in a similar vein as in [34]) as the overall number of distinct partitions of X’
that can be induced by members of the partitioning family Vg.

LEMMA 3.1. Denote by S C{1,..., p} an index set of active covariates. Let Vf denote
the set of valid tree partitions obtained with K — 1 splits. Then
|SIK=1n!
AVE = ——— .
Vs) (n—K +1)!

PROOF. This follows from the recursive formula A(Vé< ) = A(Vg _1)(n — K +2)|S],

where we use the fact that there are A(Vg _1) possible trees with K — 1 cells which have
altogether n — K + 2 potential next splits along one of the |S| coordinates. [

Lemma 3.1 will be fundamental for understanding the combinatorial richness of trees and
for obtaining bounds on the covering numbers toward establishing Condition (2.1).

REMARK 3.1 (The k—d tree partition). We now pause to revisit one of the most popular
space partitioning structures, the k—d tree partition [2]. Such a partition T is constructed by
cycling over coordinate directions in S, where all nodes at the same level are split along the
same axis. For a given direction j € S, each internal node, say 27, will be split at a me-
dian of the point set (along the jth axis). This split will pass [« (2;)n/2] and [ (2;)n/2]
observations onto its two children, thereby roughly halving the number of points. After s
rounds of splits on each variable, all K terminal nodes have at least |n/K | observations,
where K = 2°1°!. The k—d tree partitions are thus balanced in light of Definition 2.4 of van
der Pas and Rockova [35]. While k—d trees are not adaptive to intrinsic dimensionality of
data (in comparison with more flexible partitions such as random projections trees [45]), the
diameters of k—d tree partitions can shrink fast, as long as the number of directions is not
too large. In particular, diam(7; S) < JIS] JKV/CISD for K = 25151 for some s > 1 accord-
ing to Proposition 6 of [45]. The k—d tree construction will be instrumental in establishing
Condition (2.2).
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3.3. On tree-structured step functions. The second critical ingredient in building a tree
regressor is learning the piecewise function on a given partition. In this section, we describe
some facts about the approximating properties of such tree-structured step functions (further
referred to as trees). The understanding of how well we can approximate a smooth regression
surface will be vital for establishing Condition (2.2).

For a family of valid tree partitions Vf , we denote by

FOEY =!fr5:10,1” - R;
(3.3)

K
frp@ =" Blax); T eV, BeRF
k=1

the set of all step functions supported by members of the tree partitioning family Vg . Each
function is underpinned by a valid tree partition T = {Qk}f:1 € Vg and a vector of step

heights B = (B1, ..., Bx) € RX.

The cell diameters oversee how closely one can approximate f € H7 NC(S) with fr g €
F (V§ ) and it is desirable that they decay fast with K. Ideally, the approximation error should
be no slower than g” /K /4 for some y > 0, where ¢ = |S|. To get an intuitive insight into
this requirement, consider the following perfectly regular partition: a g-dimensional “chess-
board” that splits [0, 1]¢ into K = s9 cubes of length 1/s = 1/K /4. The maximal interpoint
distance inside each cube will be at most /g /K 174 This partition is, however, not adaptive
and thereby less practical. It turns out that, under a mild requirement on the spread of the data
points X, the fast diameter decay is also guaranteed by the data-adaptive k—d trees mentioned
in Remark 3.1. The “mild requirement” is formalized in our definition below.

DEFINITION 3.3. Denote by T = {ﬁk}f=1 € Vg the k—d tree where S C {1, ..., p} and
K = 25151, We say that a dataset X' is (M, S)-regular if

K
3.4 diam(Qy: S) < M Q) diam(Qy: S
3.4) lrsr;flSXK iam(2; S) < kZ::lM( i) diam(S2; S)

for some large enough constant M > 0 and all s € N\{0}.

The definition states that in a regular dataset, the maximal diameter in the k—d tree par-
tition should not be much larger than a “typical” diameter. This condition ensures that, as
more and more data points are collected, the data conform to a structure that does not permit
outliers in active directions S. For example, a fixed design on a regular grid (including direc-
tions S) will satisfy (3.4). Our notion of regularity goes farther by allowing (a) the predictors
to be correlated, (b) the points to scatter unevenly and/or close to a lower-dimensional man-
ifold. The manifold, however, should be varying in active directions S and do so sufficiently
smoothly (or be monotone) so that the cells in the k—d tree do not contain isolated clouds of
points. For example, data points arising from distributions with atomic marginals (in active
directions) would violate regularity.

As will be seen in the following lemma, for regular datasets, k—d trees have a faster di-
ameter decay (roughly halving the cell diameters after one round of g = |S]| splits), thereby
attaining better approximation error. The following lemma is an important element of our
proof skeleton, showing that there exists a tree (a k—d tree) that approximates well.

LEMMA 3.2. Assume f € H, NC(S), where |S| =q and a < 1, and that X is (M, S)-
regular. Then there exists a tree-structured step function f7 3 € Vg for some K = 2% with
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s € N\{0} such that
(3.5) If = f78ln <l flleCM*q/ K4

for some C > 0.
PROOF. See the Supplementary Material ([36], Section 3). [J

Controlling the approximation error is only one of the critical aspects in our theoretical
study. The second will be monitoring the complexity of our approximating function classes.
Finding the right balance between the two will be instrumental for obtaining optimal perfor-
mance.

Now that we have developed the necessary tools, we can dive into the main results of the

paper.

4. Adaptive dimension reduction with trees. In Regime 1, we assume that the tar-
get regression surface fo € Hj N C(Sp), although initially conceived as a function of
X = (xl,...,xp)’ , in fact depends only on a small fraction of gy features xs,, where
So C {1,..., p}. If an oracle were able to isolate Sp, the L, minimax rate would im-
prove from n~%/(Ga+pP) to p=*/C2+90) and it would be the fastest rate possible. When
no such oracle information is available, [47] characterized the minimax rate as follows:
8,% = Az(ﬁk)_4“/ (Gatqo) 4 % log(qﬂo) where A is the isotropic Holder norm. The first term
is the classical minimax risk for estimating a go-dimensional smooth function. The second
term is the penalty incurred by variable selection uncertainty. While the number of features p
is not forbidden from growing to infinity much faster than n, we keep in mind that consistent
estimation will only be possible in sparse contexts where g is small relative to p and n (in
which case the complexity penalty will be dominated by the first term in the minimax rate).

4.1. Spike-and-tree priors. Bayesian regression tree implementations that do not induce
sparsity (when in fact present) are unfit for inference in high-dimensional setups. In partic-
ular, the traditional Bayesian CART prior [14] grows trees by splitting each node, indexed
by the depth level d, with a probability g(d) = y/(1 + d)%, where « > 1, y € (0, 1) are
tuning parameters. The splitting variable is picked from {xi, ..., x,} uniformly (i.e., with a
fixed probability 6; = 1/p). Recently, [29] proposed an adaptive variant of this prior by plac-
ing a sparsity-inducing Dirichlet prior on the splitting proportions 6;. This prior uses fewer
variables in the tree construction and thereby is more reluctant to overfit. In another popular
Bayesian CART implementation, [18] suggest directly placing a prior on K and a condition-
ally uniform prior on tree topologies with K bottom leaves. Again, in its original form, this
prior will likely suffer from the curse of dimensionality, failing to harvest the intrinsic lower-
dimensional structure. Here, we propose a fix to this problem. To make the Bayesian CART
prior of [18] appropriate for high-dimensional setups, we propose a spike-and-tree variant by
injecting one more layer: a complexity prior over the active set of predictors.

Bayesian models for feature selection have traditionally involved a hierarchy of priors
over subset sizes ¢ = |S| and subsets S C {1, ..., p} [12, 13]. Instead of modeling the mean
outcome as a linear functional of active predictors x s, here we grow a tree from x 5. We begin
by treating go as unknown with an exponentially decaying prior [13]

(T1) 7(g) xc ip™, ¢=0,1,...,p,forsomea,c>0.

Next, given the dimensionality g, we assume that all (5) subsets S of g = |S| covariates are
a priori equally likely, that is,

(12) xsip=1/(").
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Given g and the feature set S, a tree is grown by splitting at least once on every coordinate
inside S, all the way down to K terminal nodes. If we knew « and g, the optimal choice
of K would be K = n9/2*+40) for which the actual minimax rate could be achieved. For
the more practical case when o and go are both unknown, we shall assume that K arrived
from a prior 7 (k | ¢). As noted by [16], the tail behavior of 7 (k | ¢) is critical for controlling
the vulnerability/resilience to overfitting. We consider the Poisson distribution (constrained to
N\{0}), as suggested by [18] in their Bayesian CART implementation. Namely, for k € N\ {0}
we have

)\‘K
(T3) n(K)=—, K=1,2,...,for some A € R.
(e* — DK!

For its practical implementation, one would truncate its support to the maximum number of
splits that can be made with n observations. When A is small, (T3) is concentrated on models
with smaller complexity where overfitting does not occur. Increasing A leads to smearing the
prior mass over partitions with more jumps. Similar complexity priors with an exponential
decay e~Ck1ogk have been deployed previously in nonparametric problems [16, 18, 28, 31,
35].

Given g, S and K, we assign a uniform prior over valid tree topologies 7 = {Qk}f: | €
Vg , that is,

(T4) (TS, K)= I(T e VE).

AVE)
Similar constraints on trees where each terminal node is assigned a minimal number of data
points have been implemented in stochastic search algorithms [18]. At the very least, we can
choose C =1 in (3.2), merely requiring that the cells be nonempty. Finally, given the partition
of size K, we assign an i.i.d. Gaussian prior on the step heights (similarly as in [14])

K
(TS) m(BIK)=[]¢®B:D.

k=1

REMARK 4.1. The name spike-and-tree prior deserves a bit of explanation. It follows
from the fact that (T1) and (T2) will be satisfied if each covariate has a prior probability
0 ~ B(1, p") of contributing to the mean regression surface for some u# > 1 [13]. Endowing
each covariate x; with a Bernoulli indicator y;, where I1(y; = 1| 6) = 6, and building a
tree on § = {j : y; = 1}, one obtains a mixture prior on f(x) that pertains to spike-and-slab
variable selection. Here, the slab is a free prior built on active covariates rather than an in-
dependent product prior on active regression coefficients. This hierarchical construction has
distinct advantages for variable selection. In linear regression, it is customary to select vari-
ables by thresholding marginal posterior inclusion probabilities TTI(y; =1 | Y ™). These will
be available also under our spike-and-tree construction. Inspecting the posterior probabilities
[I(y; =1] Y(”)) obtained with our hierarchical tree prior will be a new avenue for conduct-
ing variable selection in Bayesian CART and BART, an alternative to [7]. Thus, our prior has
important practical implications for performing principled model-free variable selection.

4.2. Posterior concentration for Bayesian CART. The difficulty in properly analyzing
Bayesian CART stems from the combinatorial richness of the prior that makes it less tractable
analytically. By building on our developments from previous sections, we are now fully
equipped to present the first theoretical result concerning this method.

The following theorem solidifies the optimality properties of Bayesian CART by show-
ing that under the hierarchical prior (T1)-(T5), the posterior adapts to both smoothness and



POSTERIOR CONCENTRATION FOR REGRESSION TREES 2117

sparsity, concentrating at the (near) minimax rate that depends only on the number of strong
covariates regardless of how many noise variables are present. The near-minimaxity refers to
an additional log factor. The result holds for sparse (high-dimensional) regimes, where p can
be potentially much larger than n and where g < log!/ 2 n. We will denote by

o e.¢]
K
Fr=UU U F0s)
g=0K=185:S|=¢
the collection of all tree-structured step functions (with various tree sizes and split subsets)
that can be obtained by partitioning X'.

THEOREM 4.1.  Assume fo € H} N C(So) with 0 <o < 1 and 0 < qo = |So| such that

qoll follxe S log"?n and || follos < log'/? n. Moreover, we assume that log p < n0/Cetao)
and that X is (M, Sp)-regular. We endow Fi with priors (T1)~(T5). Then with ¢, =

n=/Qetq0) 10g!/2 y we have
N(f € Frllfo— flin > Maea | ¥™) -0,

for any M, — oo in Py -probability, as n, p — oo.
PROOF. See Section 8. [

REMARK 4.2. It is useful to note that Theorem 4.1 holds also when p < n and when
qo is fixed as n — oco. When ¢y is fixed, however, the assumptions || follco < log!/?n and
qoll follpe < logl/ 21 can be omitted. The first assumption is needed here to make sure that
the step sizes of an approximating k—d tree are well behaved when gyo — oo. The result holds
for a bit slower rate €, = n~%/(2*+40) JogP n with 8 > 1/2 under slightly relaxed assumptions

goll follze Slogfn and | folloo < logP .

The assumption of a regular design is an inevitable consequence of treating x’s as fixed.
As noted by [6] in their study of random forests, pointwise consistency results have been
complicated by the difficulty in controlling local (cell) diameters. The regularity assumption
guarantees this control and is apt to be satisfied for most realizations of x from reasonable
distributions on [0, 1]7. The following corollary certifies that Bayesian CART, under a suit-
able complexity prior on the number of terminal nodes, is reluctant to overfit. This is seen
from the behavior of the posterior, which concentrates on values K that are only a constant
multiple larger than the optimal oracle value n40/(2¢+40)

COROLLARY 4.1 (Bayesian regression trees do not overfit). Under the assumptions of
Theorem 4.1 with 0 < a <1, we have

H(K > CknCIO/(Za—i-qo) | Y(n)) 0
in Py -probability for a suitable constant Cy > 0.

PROOF. This statement follows from Lemma 1 of [24] and holds upon the satisfaction of

the condition TT(K > Cynd0/24+90)) = o(e~(@+21e1) for some suitably large d > 2. This is
shown in Section 8.3. [J

Corollary 4.1 also reveals a fundamental limitation of trees (step functions) in recovering
smoother functions. To see this, consider fp(x) = x which possesses Holder smoothness 1
and, by Corollary 4.1, will thus be approximated by trees with at most n!/3 leaves (up to
multiplicative constants) with high posterior probability. However, fq is also in C* and the
approximation error by a regular histogram with n'/3 leaves will be at least of the order n~!/3
which is too large to achieve the minimax rate of n /2 over C.
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REMARK 4.3 (Bayesian CART a la Chipman, George and McCulloch [14]). A closer
look at the proof reveals that Theorem 4.1 also holds for priors 7 (k | ¢) such that e ~¢k10gk <
w(k | q) < e=k102M" for some 0 < n < 1. At the lower end are the complexity priors de-
ployed in similar contexts [35, 39]. The Bayesian CART prior of [14], which is deployed in
BART (and discussed in Section 4.1) with & = 0 is at the upper end. To see this, note that
o = 0 corresponds to a homogeneous Galton—Watson (GW) process, where the number of ter-
minal nodes K satisfies [1(K > k) < e~ *k=0-91ogl1=v)/¥] With y = ¢/n for some ¢ < n, we
have TI(K > k) ox e~k1°27 Going further, the tail bound for the heterogeneous GW process
(with « £ 0) satisfies TT(K > k) < e~ Ckklogk for some Cx > 0 under a suitable modifica-
tion of the split probability (i.e., 7 (d) o a? for some 1/n < a < 1/2), as shown formally in
Rockova and Saha [37]. They also show that the Bayesian CART posterior a la Chipman et
al. [14] concentrates at the optimal rate when Sg is known. Endowed with the spike-and-slab
wrapper, Theorem 4.1 can be thus extended to the actual Bayesian CART prior deployed in
BART.

5. Tree ensembles. Combining multiple trees through additive aggregation has proved
to be remarkably effective for enhancing prediction [8, 15]. This section offers new theoretical
insights into the mechanics behind the Bayesian variants of such tree ensemble methods. Our
approach rests on a detailed analysis of the collective behavior of partitioning cells generated
by individual trees. We will see that the overall performance is affected not only by the quality
of single trees but also how well they can collaborate [9].

5.1. Bayesian additive regression trees. Additive regression trees grow an ensemble pre-

dictor by binding together T tree-shaped regressors. For subsets S = {S!, ..., ST} and tree
sizes K = (K L ..., KTY, we define a sum-of-trees model (forest) as
T T K'
(.1 fesX) =) frog@) =) > Bil(x ),
=1 t=1k=1

where fri g € F (Vg,t) is a tree learner associated with step sizes ' € RX ' Each learner is
allowed to use different splitting variables S’ and different number of bottom nodes K’. With
& =_{T1, e TT}, we denote an ensemble of tree partitions and with B = (,Bl/, e, BT/)/ €
RTX the terminal node parameters, where K = % Zthl K.

Sum-of-trees models offer an improved representation flexibility by chopping up the pre-
dictor space into more refined segmentations. These segmentations are obtained by superim-

posing multiple tree partitions, yielding what we define below as a global partition.

DEFINITION 5.1. For a partition ensemble &, we define a global partition
= 5 K(E
7€) =&y

as the partition obtained by merging all cuts in 7', ..., 77 . We refer to Qs as global cells
in the ensemble.

The concept of the global partition can be better understood from Figure 1, where splits
from T = 2 trees (each having 3 leaves) are merged to obtain a global partition with K (£) =7
global cells. Generally, the global partition £ itself is not necessarily a tree and can have as
many as K (£) < ]_[,T: | K" cells. This upper bound can be attained if each trees splits K' — 1
times on a single variable, where each tree uses a different one. Without loss of generality,
the global partition will be assumed to have nonempty cells. This requirement can be met by
merging vacuous cells with their nonempty neighbors.
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FI1G. 1. Ensemble of tree partitions and their global partition.

Bayesian additive regression trees were conceived as a collection of weak learners that
capture different aspects of the predictor space [15]. To characterize the amount of diver-
sity/correlation between trees in the ensemble, we introduce the so-called stretching matrix.

DEFINITION 5.2. For a partition ensemble £ = (T4 ..., 7T}, we define the stretching
matrix A(E) = (a;j);,; as follows: foreach 1 <i < K(£) and 1 < j < TK we have
(5.2) ai; =1 N Q! # o),

where | <¢ < T and 1 <m < K"’ are such that j = Y"'_| K/ +m and where !, is the mth
(local) cell in the ¢th tree 7.

Each row of the stretching matrix A (&) corresponds to one global cell and each column to
one local cell. The row entries sum to 7', indicating which local cells overlap with that global
cell (as shown in Figure 2 for partitions from Figure 1). To further characterize the pattern of
overlap between trees, we introduce the (TK) x (T K) Gram matrix
5.3) AE)=AE)AE) = (a)i,;-

The off-diagonal elements measure the “similarity” between local cells, say Q’] and QY, in
terms of the number of global cells that they share. More formally, let r[7~' &), V]= |{§k :
SNZk NV #£ J}| be the restricted cell count [34], measuring the number of global cells that
intersect with a compact set V. For i = Zg;ll K+ jand!l = Z?;ll K* + k, we can write
dj] = r[%(é’ ), Q; N} 1. Small off-diagonal entries indicate less overlap, where the individual
trees capture more diverse aspects of the predictor space. The diagonal elements, on the other
hand, quantify the “persistence” of each local cell, say 2%, counting the number of global
cells it stretches over. More formally, for i = Z?;ll K*® + k we have a;; = r[7~'(5 ), Q{]. The
amount of diversity (or tree dissimilarity) in the ensemble can be quantified with eigenvalues
of ;1(6 ). We denote by Amin(E) (resp., Amax(E)) the minimal (resp., maximal) singular values
of A(E) (i.e., square roots of extremal nonzero eigenvalues of A(E)). If some trees in the
ensemble are redundant, the conditioning number k (€) = Amax(E)/Amin(E) Will be large.
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FIG. 2. Stretching matrix A(E) and the “Gram matrix” A(E) A(E) from Figure 1.
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The idea of diversifying trees was originally introduced by Breiman [8] via subsampling.
One could, in principle, impose a restriction on Amin(€) in the prior to encourage the trees
to collaborate and diversify. However, this is not required for our theoretical study. We will
focus on the so-called valid ensembles which consist of valid trees.

DEFINITION 5.3. An ensemble £ = {7, ..., 7T} is valid if each T is valid accord-
ing to Definition 3.1. For tree sizes K = (KL, ..., KT)’ and subsets S = {81, e ST}, we
denote the set of all valid ensembles by VE g

The representation flexibility of additive trees also pertains to jump sizes. The global step
size coefficients under additive trees are intertwined due to the tree overlap. This can be seen
from the following, more compact, representation of (5.1):

K(€) T K!

fes@) =" Blxe) with B=>">" BI(Q N # 2),
k=1

t=11=1

where 8 = (81, ..., BK(g))’ € le ©) are aggregated step sizes. A closer look reveals the fol-
lowing key connection between 8 and B
(5.4) B=A©B,

where A(E) is the stretching matrix defined in (5.2). This link unfolds the theoretical analysis
of tree ensembles using tools that we have already developed for single trees. Note that the
condition number « (£) determines how much the relative change in B influences the relative
change in B.

The mapping (5.4) can be in principle many-to-one in the sense that many tree-structured
step functions can sum toward the same target (5.1). Such over-parametrization occurs, for
instance, when K (§) < TK or, more generally, when A(E) has zero eigenvalues. This re-
dundancy is not entirely unwanted and, in fact, it endows sum-of-trees models with a lot of
modeling freedom.

We now formally define the space of approximating additive trees. For variable sets S =
{Sl, cee, ST} and a vector of tree sizes K = (K, ..., KT)/, we denote by

fﬂ@@:{ﬁﬁqauw»R:
(5.5) .
feB(X) = frip(x);E€VES . B eRK’}

t=1
the set of all additive tree step functions supported on valid ensembles VE g . The union of
these over the number of trees 7', all possible sets S of sizes g = (¢, ..., ¢”)" and tree sizes
K gives rise to

(5.6) B=GU U UFW©VES).

T=1 94 S;‘Sq:qt K

our approximating space of additive regression tree functions.

5.2. Additive regression trees are adaptive. This section provides an interesting initial
perspective on the behavior of Bayesian additive regression trees in Regime 1. We will con-
tinue with the more general Regime 2 in the next section. We will focus on a variant of the
popular Bayesian Additive Regression Trees (BART) model [15], modified in three ways.
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R

(b) 77 (@ 7"

FI1G. 3. Trees in the approximating ensemble E.

First, the tree prior will be according to [18] rather than [14]. The second modification is
that the trees are built on the same set of variables, endowed with a subset selection prior
construction. In the next section, we allow for the fully general case where each tree builds
on a potentially different set of variables. Third, rather than fixing the number of trees, we
endow 7" with a prior distribution.

We will see that having a good control of the regression function variation inside each
global cell together with a good choice of the prior on the total number of leaves >~ K’ will
be sufficient to ensure optimal behavior. The approximation ability of tree ensembles hinges
on the diameter of the global partition. Each tree partition does not need to have a small
diameter (i.e., can be a weak learner), as long as the global one does. An important building
block in our proof will be the construction of a single tree ensemble that can approximate
well. As will be shown in Lemma 2.1 in the Supplementary Material, we can construct such
an ensemble by first finding a single k—d tree from Lemma 3.2 (a strong learner) and then
redistributing the cuts among small trees (weak learners) in a way that the global partition
is exactly equal to the k—d tree. An example of this deconstruction is depicted in Figure 3,
where a full symmetric tree from Figure 4, say 7T, has been trimmed into many smaller
imbalanced trees which add up toward 7. More details on this decomposition are in the
proof of Lemma 2.1.

The following theorem is an ensemble variant of Theorem 4.1 which will serve as a useful
stepping stone toward the full-fledged result presented in the next section. Instead of approx-
imating fo € H, NC(Sp) with one large tree in Regime 1, we build a forest made up of many
smaller trees (weak learners). The first two layers of the prior (T1) and (T2) are the same.
Next, we assign a prior on the number of trees

(T3%) 7(T) e 7T for T e N\{0} with C7 > log?2,

which is sufficiently diffuse so as to promote ensembles with many trees. Next, conditionally
on T, we assign a prior on K = (K, ..., KT) as an independent product of Poisson distri-
butions (T3). An important distinction between the Poisson prior deployed for single trees in
Section 4 and the one deployed here for ensembles is that the hyperparameter depends on 7.
Namely, our prior on leaves satisfies

T K!
(A/T)
(T4*) JT(K | T) = tlzll W

for K' € N\{0}.

FI1G. 4. Approximating k—d tree partition T = '7—(5).
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As a prior on &, given (S, K), we use the uniform prior over valid ensembles

(T5%) 7S, K) I(€ e VEK),

AVEE
where A(VE g ) is the overall number of ensembles consisting of 7' valid trees that can be
obtained by splitting on data points X'. Recall that throughout this section, all trees are con-
strained to use split variables in the same set S. To mark this difference, we have denoted the
partition ensembles with V& g instead of V& g .

Finally, given (T, K), we assign an i.i.d. Gaussian prior on the step heights B € R K’
with a variance 1/ T (as suggested by [15])
T K'
(T6*) nBIT.K)=[]]]¢Bi:1/T).
t=1k=1
The following theorem shows that additive regression trees, in combination with a subset se-
lection prior, can nicely adapt to the ambient dimensionality and smoothness, also achieving
the optimal concentration rate in Regime 1.

THEOREM 5.1. Assume fy € ”H% N C(Sp) with 0 <a <1 and 0 < go = |So| such
that qoll follne < logn and | folleo < logn. Moreover, we assume log p < n90/e+4a0) gpd
that X is (M, Sp)-regular. We endow Fg¢ with priors (T1), (T2), (T3*)—(T6*). With &, =
n ¢/ (2a+qo) logn, we have

M(f € Fe:llfo— flla> Myen | YP) =0,

for any My, — oc in P} -probability, as n, p — oo.
PROOF. See the Supplementary Material ([36], Section 2). [J

Similarly as for single trees, we obtain the following corollary which states that the pos-
terior concentrates on ensembles whose overall number of leaves is not much larger than the
optimal value n90/2%+40) Jog n.

COROLLARY 5.1. Under the assumptions of Theorem 5.1 with 0 < o < 1, we have

T
H((T, K): ZKt - Cknqo/(2a+qo) logn | Y(n)) -0

=1
in Py -probability, as n, p — 00, for a suitable constant Cy > 0.

PROOF. This follows from Lemma 1 of [24] and Section 1.3. in the Supplementary Ma-
terial [36]. [

Corollary 5.1 shows that the posterior distribution rewards either many weak learners or a
few strong ones. The compromise between the two is regulated by the prior (T3*), where
stronger shrinkage (i.e., larger Cr) will result in fewer trees. This corollary provides an
important theoretical justification for why Bayesian additive regression trees have been so
resilient to overfitting in practice.

REMARK 5.1. The dependence on T in the Poisson prior (T4*) works nicely in tandem
with the exponential prior (T3*). Removing T from (T4*) would have to be balanced with a
bit stronger prior 7 (7). Theorem 5.1 also holds with T fixed (with slight modifications of the
proof ). The prior 7 (7T") will be instrumental in the additive case (next section). The depen-
dence on T in (T6*), though recommended in practice [15], is not needed in Theorem 5.1.
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6. Tree ensembles in additive regression. In Section 4.2, we have shown that the pos-
terior distribution under the Bayesian CART prior has optimal properties. However, it is now
well known that the practical deployments of Bayesian CART suffer from poor MCMC mix-
ing. Additive aggregations of single small trees [15] have proven to have far more superior
mixing properties. One may wonder whether the benefits of additive trees are purely compu-
tational or whether there are some aspects that make them more attractive also theoretically.
We will address this fundamental question.

For estimating a single smooth function, we were not able to tell apart single trees from
tree ensemble in terms of their convergence rate (besides perhaps a small difference in the log
factor). They are both optimal in Regime 1. Tree ensembles are inherently additive and, as
such, are well equipped for approximating additive fo (Regime 2). Throughout this section,
we assume

To
(6.1) fox) =Y foe),

=1
where f € ’H;t N C(Sf). Note that each component f depends only on a potentially very
small subset S, of covariates, where |Sjj| = ¢,. However, the additive structure allows fj to
depend on a larger number of variables, say gg, where max1<,<TO g0 < qo < ZIT %, g4 The
minimax rate r;; 2 for estimating f in Regime 2 satisfies C 18 < r < Czs [47], where
To

3 = 3 (/) T O 4 % log(z )]
t 0

t=1

To

éz=Z[k’2<ﬁxf>“‘“’/<2“’+q6>+"—510g( - )}

Pt n min; g,

and where A’ is the Holder norm of f. The sparsity constraint in Regime 2 is less strict
than in Regime 1, where go can be potentially larger than logn while still allowing for
consistent estimation. For the isotropic case (' = « and g, = go), single trees can achieve
the slower rate n—2¢/(2e+qo) where 4o < qo < Togo. As will be shown below, tree ensem-
bles can achieve a faster rate s Zt 1(8 )2 where 82 < 82 < 8 and where (g )2 =

2 b
M2ty el Qe tap) 4 o log(Jr).

We will approximate fp with tree ensembles fe 5 € Fg. The ensembles here differ from
the ones considered in Section 5.2. The crucial difference is that now we allow each of the
trees 7' to depend on a different set of variables S'. Now we have a vector of subset sizes

g=1(q",...,q") and a set of subsets S = {S!, ..., ST}, one for each tree. We consider the
following independent product variant of the complexity prior (T1):

T

(T1%) w7 Ty [[e?pd, ¢'=0,1,...,p,fora>2
=1

and a product prior variant of (T2), given (7, q),

T
(T2*) 2(SIT, )« [[1/ (;’,).
=1

The prior on the number of trees, the number of leaves, ensembles and step sizes is the
same as in (T3%), (T4*), (T5%).

We are now ready to present our final result showing that the posterior concentration for
Bayesian additive regression trees is near-minimax rate optimal when fy has an additive
structure.
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THEOREM 6.1.  Assume that fy is as in (6.1) where f; € 7—[‘;‘,[ NC(SH) with 0 <o’ <1
and qfy = |S}| such that 0 < q6||f(§||Ha, < logl/zn and || f§lloo S logl/2
log p < minj<, <7, 19/ C¥"+90) and that X is (M, 8()-regular for 1 <t < Ty. We endow Fg¢

with priors (T1%)—(T6%*). With 8,21 = 221 20! /o' +q0) logn and Ty < n, we have

n. Moreover, assume

N(f € Fe:llfo— fla> Muen | Y?) >0,

for any M, — oo in P -probability, as n, p — oo.
PROOF. See the Supplementary Material ([36], Section 1). [

REMARK 6.1. Under the assumptions log p < n40/@2'+4) and aoll folla, < log!/?n,

~

t
the second term qn—olog(qﬁ,) in (82)2 (defined earlier) is dominated by the first term
0

n2e' /e +4p) logn. This is why the second term does not appear in the rate &2 in Theo-
rem 6.1.

Failing to recognize the additive structure in fj, single regression trees achieve the slower
rate n~%/(2@+40) 1og1/2 . according to Theorem 4.1. Theorem 6.1 thus provides an additional
theoretical justification for Bayesian additive tree models suggesting their performance supe-
riority over single trees when fy is additive.

6.1. Implementation considerations. Our priors differ from the widely used BART im-
plementations in three ways: (1) we focus on the uniform prior of Denison et al. [18], (2) we
assign a prior distribution on the number of trees and (c) we deploy the spike-and-slab wrap-
per. Implementations of our priors are feasible with some modifications of the existing soft-
ware. For the Bayesian CART prior that we analyze, Denison et al. [18] propose a reversible
jump MCMC implementation. While this algorithm is different from BART, the acceptance
ratios in the Metropolis—Hastings step differ only very slightly. Liu, Rockova and Wang [32]
extended their sampler to the spike-and-tree (spike-and-forest) versions in two ways. The first
one is a Metropolis—Hasting strategy that consists of joint sampling from variable subsets as
well as trees (forests). As a faster alternative, they proposed an approximate ABC sampling
strategy based on data splitting (called ABC Bayesian forests).

7. Discussion. In this work, we have laid down foundations for the theoretical study of
Bayesian regression trees and their additive variants. We have shown an optimal behavior of
Bayesian CART, the first theoretical result on this method. We have developed several useful
tools for analyzing additive regression trees (variants of the BART method), showing their
optimal performance in both additive and nonadditive regression. The smoothness order of
studied functions is restricted to values not exceeding one, a main limitation of our approach
due to the fact that our approximations are piecewise constants [22, 24, 39]. While in the one-
dimensional case, step functions are not appealing estimators of a regression function that is
thought to be smooth, methods like CART and BART are attractive and feasible solutions in
complex high-dimensional data. The limitation o < 1 could be overcome by extending our
approach to piecewise polynomials or kernels, an elaboration that we leave for future investi-
gation. One such extension was recently proposed in a related paper by Linero and Yang [30].
These authors obtained concentration results for a kernel method that can be regarded as a
smooth variant of BART. The results of [30] do not apply for single trees, only aggregates of
kernels. In contrast, we study actual posteriors of single trees, as well as forests, and analyze
sieves of step functions which are the essence of the actual BART method.
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While our priors do not exactly match the BART prior, BART could be adapted to achieve
the same optimality properties. The first modification is the splitting probability (as pointed
out in Remark 4.3). The second modification is the spike-and-slab wrapper (as pointed out
in Section 4.1) or a modification of the prior on the split variables (as in [30]). The prior
distribution on the number of trees will only be beneficial in the additive model and is not
needed when fj has one layer.

The assumption of a known og = Var(e;) = 1 can be relaxed. It has been noted in the
literature (e.g., [17, 44]) that the general result of Ghosal and van der Vaart [24] (which we
build upon) can be extended to the unknown oq case. Such an extension was formally proved
in Jonge and van Zanten [17], who assume that oy belongs to a compact interval [a, b] and the
prior 7 (o) concentrates on [a, b]. We could obtain our results under this restriction as well
by verifying suitably adapted conditions (2.1)—(2.3). In related work, Yoo and Ghosal [48]
show optimal posterior concentration (in both Ly and L sense) in nonparametric regression
with unknown variance and B-spline tensor product priors. Next, they show that under an
inverse-gamma prior, the posterior for o contracts at op at the same rate. Moreover, for any
prior on o with positive and continuous density, the posterior of o is consistent. These results
are obtained under the assumption that fj is uniformly bounded. We anticipate that similar
results will hold also for our priors when fj is uniformly bounded.

8. Proof of Theorem 4.1. Our approach consists of establishing conditions (2.1), (2.2)
and (2.3) for &, = n~%/(*+40) 1ogP n for some B > 1/2. Note that Theorem 4.1 is stated for
B =1/2. We give a proof for the general case 8 > 1/2 under the assumptions gol| follxe <
log? 1 and || folloo < log? n (Remark 4.2). The first step requires constructing the sieve FrC
F7. For a given n € N and suitably large integers g, < k, (chosen later), we define the sieve

7 as consisting of step functions over small trees that split only on a few variables, that is,

qn  kn
A=UU U 708

g=0K=18:S|=¢

where F (Vg ) was defined in (3.3). The optimal choice of k;,, and g, will follow from our
considerations below.

8.1. Condition (2.1). We start with a useful lemma that characterizes a useful upper
bound on the covering number of the smaller sets F (Vé< ).

LEMMA 8.1. Let }'(Vg) be the class of step functions (3.3). Then

K
8.1) N(;—6 (f € FOOKY 17 = folla <€) - ||n) < A(vg)(%ﬁ) ,

where A(Vé{) is the partitioning number of Vg.

PROOF. Let fr g, and fr g, € F (Vé< ) be two step functions supported on a single valid
tree partition 7 € Vg with steps B, € RX and B, € RX. Then, by the minimum leaf size
condition, we have

C K
— 81— Bol3 < 1 fr.p, — frplls =D () Bk — B2u)* < 181 — Ball3-

k=1

Denote by f7 3 the || - ||, projection of fy onto F(7) C F (Vg ), the set of all step functions
that live on a given partition 7. Then {B : || fr g — foll. <€} C{B: 1B —Bll2 <e/n/C} and
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B fr.p— fr.p,lln <€/36} D {B:|IB — B;ll2 < &/36)}. This relationship shows that the
/36 covering number of an || - ||, ball {8 : || fr g — foll» < &} can be bounded from above
by the £/36 covering number of an Euclidean ball of a radius e./n/C, which is bounded
by (%«/ﬁ)K . We can repeat this argument by projecting fo onto any valid tree topology

T e Vf . The number of such valid trees is no larger than A(Vé< ), which completes the
proof. [

The covering number for the entire sieve F77- is then seen to satisfy

N<38—6 (£ € Flf = folu <l )

k

XY X (A e FOR S foll <)

q=0 K=15:|S|=¢

From Lemma 8.1 and Lemma 3.1, we obtain the following upper bound:

5 () v ()

g=0K=1
(8.2) .
n 108 K 4n
K=0 C q=0 4

where we used the fact K! < KX Next, using the regularized incomplete beta function rep-
resentation of the Binomial cdf, we can write

% (Z) =2"(p —qn) (;) /()I/pr“f"‘l(l — x) dx

(8.3) 4=0

nt1 —
<2qn+l(p_qn)<p>1—1/2q <2qn+l<p)p C]n.
B qn qn+1 B qn qn+l

Using ( q’i ) < (ep/qn)?", the quantity in (8.2) can be bounded by

(26p)qn+1 kn (108 3/2 )K (2€p>4n+1 (ann3/2kn)k,,+l -1
fqnn k” < ,
n K=o\ € qn Cqnn3/%k, — 1

where C = (%). Finally, the entropy condition requires that the log-covering number, now
upper bounded by

(gn + 1) 1og(2ep/qn) + (kn + 1) log(Cgqnn®*ky),

is no larger than (a constant multiple of) ne,% = n40/22+40) [ogF ;. Under our assumption
log p < nd0/2a+40) | this will be satisfied with g, = [C, min{p, n9/2%+40) 10g%# n /log(p v
n)}] for some C; > 1 and k, = LCkne,zl/lognJ = pd0/(2a+q0) logzﬂ_l n. The constants C,
and Cy will be determined later.

8.2. Condition (2.2). We wish to show that the prior assigns enough mass around the
truth in the sense that

(8.4) T(f € Frllf — folln < &n) > e
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for some large enough d > 0. We establish this condition by finding a lower bound on the
prior probability in (8.4), using all step functions supported on a single good partition. We de-
note by Sy the true index set of active covariates, where |Sp| = go. According to Lemma 3.2,
there exists a tree-structured step function fﬁ B € F (Vgo) for some K = 29° and s € N\{0}
such that

(8.5) 1fo = f75ln < 1l follzCrqo/ K4

for some C1 > 0. The proof Lemma 3.2 is in the Supplementary Material ([36], Section 3).

To continue with the proof of Theorem 4.1, We find the smallest K = 2590 such that the
function f5 5 € F (Vgo) in (8.5) safely approximates fp with an error that is no larger than
&, /2, a constant multiple of the target rate. Such a K will be denoted by a,, and is defined as
the smallest K such that g;,, > 2C0qu_“/q" for Co = || folle C1. Then we have

q0 40
2C o 2C o
8.6) ( o%) <ay < ( 0610) ey

&n &n

We denote by T = {Qk}Z”: | € 73:)” the k—d tree partition from Lemma 3.2 obtained with
the choice K = a,. The tree T is not only valid, but also balanced in the sense that
Céﬂn /a, < ,u(ﬁk) < C12r1ax /a, for someACmin < 1 < Cpmax. The associated step sizes of the
approximating tree will be denoted by 8 € R% . Now, we lower-bound the prior probability
of the neighborhood {f € Fr: || f — foll2 < &2} by the prior_probability of all regression

n —-n

trees supported on 7 inside this neighborhood (denoted by F(7)):

N(feFr:llf — fol2 <ed)
n(feFD:If - folly = &3

()20

I f7p — fr3l2 = w0 B — B> < 1B - BII3

k=1

8.7)

> 1 (qo)7 (an)

For any 8 € R, we have

and by the reverse triangle inequality

1B —Bl2= I £7.p — f7Blln = | 7.8 — folln = I 7.8 — follal-

Then the statement || — Bll> < &n/2 implies || fo — 78l <l fo— f7.8lln+te/2 <&, where
the last inequality follows from the definition of a,. Thus, we have

{B:1B—Bl2<e:/2) C{f €FTD:llfo= [lln <&}
Now we can lower-bound (8.7) with

(B eR™: || —Bll2 < en/2)

(&) 0%

In order to bound IT(B € R% : || — ﬁllz < &,/2), we follow the computations of [24], The-
orem 12, to obtain

(8.8) L(q0, an, S0, B &) = 1(q0) 7 (an)

2—ane—lIBI3—e2/8 <82 %

(8.9) M(BeR™: |B—Bll2<en/2) = (@) e
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From the triangle inequality (and because T is balanced), we have

||ﬂ||2§£ g/m;(uf — folla + 1 folleo) = gj—( +llfolke)

Thereby we can write || ﬂ ||2 < Cllfo ||goan for some constant C, > 0. Now we continue with
a lower bound to L(qo, an, So, B, €,) defined in (8.8). Using the following facts I'(x) < x*
(qo) < (ep/qo)?° and A(VS ) < (anqon)®r (Lemma 3.1) and using (8.9), we arrive at the
following lower bound:

o ) w n
(8.10) m{an)c p aqoe—sﬁ/S—an<c2||fo||%o+1ogz>(8—”) 2 (3)61 /2+1.
()40 (angon) 4 an

I f7.Blln <

Condition 2.2 will be satisfied if this quantity is at least as large as e~ for some large
d > 0. We denote c(p, qo, a,) = ¢~ p~?99(go/ep)9°. Then we can rewrite (8.10) as

7 (an)e(p o, an) (+/ 26N I0IHOE2 32, =0 2. (8_">“"e—e%/8,
q0

Taking minus the log of this quantity, Condition (2.2) will be met when

—loge(p, q0, an) —logm(ay)

(8.11)
+ a log(v2eC2 Pl H022,3/2,) | g 10g<@>
en

is smaller than a constant multiple of ns . Above, we omitted the small terms &2 /8 (since
&y, — 0) and log(a, /2). First, we note that

—logc(p, g0, an) < golog(cp®e/qo).

With go < log? n and log p < n%/2+40) we obtain — log c(p, qo, an) < ne2. Next, focusing
on the last term in (8.11), we obtain (from the left inequality in (8.6)) the following bound:
qo/en < ay!®/(2Co)

and hence qo/e, S ay, for @ <1 and go > 1. Moreover, from the right inequality in (8.6) we
obtain for &, = n~=%/(2*+40) Jogh n and 2Coqo < logf n

(8.12) an < 190/ 2at+4q0)

Under our assumption || folloo < logﬂ n, (8.12) immediately yields ay || f0||2 < n82 All of
these considerations, combined with the fact —logm(a,) < a,logay,, yield the followmg
leading term behind the last three summands in (8.11): a;, log(as/ 2n). Using (8.12), we obtain
an log(af,/zn) < aylogn <ne? for B > 1/2. Altogether, there exists d > 0 such that (8.4) is
satisfied.

8.3. Condition (2.3). In order to establish Condition 2.3, we begin by noting IT(F7\
F7) < (g > qu) + II(K > ky). Thus, the condition will be met when both (g > ¢,) =
o(e=@+2ne0y and TI(K > ky) = o(e~@+2e1) where d is the constant deployed in Sec-
tion 8.2. First, we find that

r —4n)

_ _ 1— (Cpa)—(p dn _
I < a\—k — a (gn+1) a qn.
(q > qn) Nk}q +1(CP )" = (cp?) e <P )

With our choice g, = [C, min{p, n0/Qe+40) 10928 1 /log(p v n)}], it turns out that

(8.13) Mg > qn)e(d+2)ng,% < e—qn[logc+alogP]+(d+2)nsn =0



POSTERIOR CONCENTRATION FOR REGRESSION TREES 2129

for a large enough constant C;, > 0. Indeed, for p > n we have g,log p < ne . For p <
ns,zl/logn, we have ¢, = p and [T(g > gn) = 0. Finally, for ns,%/logn < p < n, we have
gnlogn = n£2 and log p > logn + (28 — 1)loglogn. For ¢ > 1 and 8 > 1/2, we can
write g,[logc +alog p] < C q 5249090/ 2 +40) |og2B  and (8.13) holds for C, large enough.
Next, we apply the Chernoff bound for I1(K > k;). Namely, for any ¢ > O we can write

(K > ky) < e 't DRelK
(8.14) (e! A)

~ e—t(k +1) Z

With our choice &, = LCknsﬁ/log n|] = Cyn4o/(2a+4q0) logzﬁ_1 n (Section 8.1) and with t =
log k,, we obtain

—t(kn—l—l)(ee’)» _ 1).

MK > kn)e(d+2)neg < o= (kntD)loghy+ikn+(d+2ne; _ ()

for a large enough constant Cy.
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SUPPLEMENTARY MATERIAL

Supplement to “Posterior concentration for Bayesian regression trees and forests”
(DOI: 10.1214/19-A0S1879SUPP; .pdf). Sections 1 and 2 present the proof of Theorem 6.1
and Theorem 6.2. Section 3 presents the proof of Lemma 3.2 and Section 4 presents an
auxiliary Lemma 4.1.
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