
The Annals of Statistics
2020, Vol. 48, No. 3, 1742–1769
https://doi.org/10.1214/19-AOS1866
© Institute of Mathematical Statistics, 2020

STATISTICAL INFERENCE IN TWO-SAMPLE SUMMARY-DATA
MENDELIAN RANDOMIZATION USING ROBUST ADJUSTED

PROFILE SCORE

BY QINGYUAN ZHAO1, JINGSHU WANG2, GIBRAN HEMANI3, JACK BOWDEN4 AND

DYLAN S. SMALL5

1Statistical Laboratory, University of Cambridge, qyzhao@statslab.cam.ac.uk
2Department of Statistics, University of Chicago, jingshuw@galton.uchicago.edu

3MRC Integrative Epidemiology Unit, University of Bristol, g.hemani@bristol.ac.uk
4University of Exeter Medical School, j.bowden2@exeter.ac.uk

5Department of Statistics, The Wharton School, University of Pennsylvania, dsmall@wharton.upenn.edu

Mendelian randomization (MR) is a method of exploiting genetic vari-
ation to unbiasedly estimate a causal effect in presence of unmeasured con-
founding. MR is being widely used in epidemiology and other related areas
of population science. In this paper, we study statistical inference in the in-
creasingly popular two-sample summary-data MR design. We show a linear
model for the observed associations approximately holds in a wide variety
of settings when all the genetic variants satisfy the exclusion restriction as-
sumption, or in genetic terms, when there is no pleiotropy. In this scenario,
we derive a maximum profile likelihood estimator with provable consistency
and asymptotic normality. However, through analyzing real datasets, we find
strong evidence of both systematic and idiosyncratic pleiotropy in MR, echo-
ing the omnigenic model of complex traits that is recently proposed in genet-
ics. We model the systematic pleiotropy by a random effects model, where
no genetic variant satisfies the exclusion restriction condition exactly. In this
case, we propose a consistent and asymptotically normal estimator by adjust-
ing the profile score. We then tackle the idiosyncratic pleiotropy by robustify-
ing the adjusted profile score. We demonstrate the robustness and efficiency
of the proposed methods using several simulated and real datasets.

1. Introduction. A common goal in epidemiology is to understand the causal mecha-
nisms of disease. If it was known that a risk factor causally influenced an adverse health
outcome, effort could be focused to develop an intervention (e.g., a drug or public health
intervention) to reduce the risk factor and improve the population’s health. In settings where
evidence from a randomized controlled trial is lacking, inferences about causality are made
using observational data. The most common design of observational study is to control for
confounding variables between the exposure and the outcome. However, this strategy can eas-
ily lead to biased estimates and false conclusions when one or several important confounding
variables are overlooked.

Mendelian randomization (MR) is an alternative study design that leverages genetic vari-
ation to produce an unbiased estimate of the causal effect even when there is unmeasured
confounding. MR is both old and new. It is a special case of the instrumental variable (IV)
methods [21], which date back to the 1920s [54] and have a long and rich history in econo-
metrics and statistics. The first MR design was proposed by Katan [33] over 3 decades ago
and later popularized in genetic epidemiology by Davey Smith and Ebrahim [18]. As a pub-
lic health study design, MR is rapidly gaining popularity from just 5 publications in 2003 to
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over 380 publications in the year 2016 [16]. However, due to the inherent complexity of ge-
netics (the understanding of which is rapidly evolving) and the make-up of large international
disease databases being utilized in the analysis, MR has many unique challenges compared
to classical IV analyses in econometrics and health studies. Therefore, MR does not merely
involve plugging genetic instruments in existing IV methods. In fact, the unique problem
structure has sparked many recent methodological advancements [7, 8, 23, 32, 34, 50–52].

Much of the latest developments in Mendelian randomization has been propelled by the
increasing availability and scale of genome-wide association studies (GWAS) and other high-
throughput genomic data. A particularly attractive proposal is to automate the causal infer-
ence by using published GWAS data [14], and a large database and software platform is cur-
rently being developed [28]. Many existing IV and MR methods (e.g., [23, 40, 50]), though
theoretically sound and robust to different kinds of biases, require having individual-level
data. Unfortunately, due to privacy concerns, the access to individual-level genetic data is
almost always restricted and usually only the GWAS summary statistics are publicly avail-
able. This data structure has sparked a number of new statistical methods anchored within the
framework of meta-analysis (e.g., [7, 8, 26]). They are intuitively simple and can be conve-
niently used with GWAS summary data, thus are quickly gaining popularity in practice. How-
ever, the existing summary-data MR methods often make unrealistic simplifying assumptions
and generally lack theoretical support such as statistical consistency and asymptotic sampling
distribution results.

This paper aims to resolve this shortcoming by developing statistical methods that can be
used with summary data, have good theoretical properties, and are robust to deviations of the
usual IV assumptions. In the rest of the Introduction, we will introduce a statistical model for
GWAS summary data and demonstrate the MR problem using a real data example. This ex-
ample will be repeatedly used in subsequent sections to motivate and illustrate the statistical
methods. We will conclude the Introduction by discussing the methodological challenges in
MR and outlining our solution.

1.1. Two-sample MR with summary data. We are interested in estimating the causal ef-
fect of an exposure variable X on an outcome variable Y . The causal effect is confounded
by unobserved variables, but we have p genetic variants (single nucleotide polymorphisms,
SNPs), Z1,Z2, . . . ,Zp , that are approximately valid instrumental variables (validity of an IV
is defined in Section 2.1). These IVs can help us to obtain unbiased estimate of the causal ef-
fect even when there is unmeasured confounding. The precise problem considered in this pa-
per is two-sample Mendelian randomization with summary data, where we observe, for SNP
j = 1, . . . , p, two associational effects: the SNP-exposure effect γ̂j and the SNP-outcome
effect �̂j . These estimated effects are usually computed from two different samples using
a simple linear regression or logistic regression and are or are becoming available in public
domain.

Throughout the paper, we assume the following.

ASSUMPTION 1. For every j ∈ {1, . . . , p} := [p], γ̂j ∼ N(γj , σ
2
Xj ), �̂j ∼ N(�j , σ

2
Yj ),

and the variances (σ 2
Xj , σ

2
Yj )j∈[p] are known. Furthermore, the 2p random variables (γ̂j )j∈[p]

and (�̂j )j∈[p] are mutually independent.

The first assumption is quite reasonable as typically there are hundreds of thousands of
samples in modern GWAS, making the normal approximation very accurate. We assume the
variances of the GWAS marginal coefficients are computed very accurately using the indi-
vidual data (as they are typically based on tens of thousands of samples), but the methods
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developed in this paper do not utilize individual data for statistical inference. The indepen-
dence between (γ̂j )j∈[p] and (�̂j )j∈[p] is guaranteed because the effects are computed from
independent samples. The independence across SNPs is reasonable if we only use uncorre-
lated SNPs by using a tool called linkage disequilibrium (LD) clumping [28, 43, 44]. See
Section 2 for more justifications of the last assumption.

Our key modeling assumption for summary-data MR is the following.

MODEL FOR GWAS SUMMARY DATA. There exists a real number β0 such that

(1.1) �j ≈ β0γj for almost all j ∈ [p].
In Section 2 and Appendix A of the Online Supplement [57], we explain why this model

likely holds for a variety of situations and why the parameter β0 may be interpreted as the
causal effect of X on Y . However, by investigating a real data example, we will demonstrate
in Section 3.5 that it is very likely that the strict equality �j = β0γj is not true for some if not
most j . For now, we will proceed with the loose statement in (1.1), but it will be soon made
precise in several ways.

Assumption 1 and model (1.1) suggest two different strategies of estimating β0:

1. Use the Wald ratio β̂j = �̂j /γ̂j [53] as each SNP’s individual estimate of β0, then
aggregate the estimates using a robust meta-analysis method. Most existing methods for
summary-data MR follow this line [7, 8, 26]; however, the Wald estimator β̂j is heavily bi-
ased when γj is small, a phenomenon known as “weak instrument bias.” See Bound, Jaeger
and Baker [6] and Section 1.3 below.

2. Treat equation (1.1) as an errors-in-variables regression problem [15], where we are
regressing �̂j , whose expectation is �j , on γ̂j , which can be regarded as a noisy observation
of the actual regressor γj . Then we directly estimate β0 in a robust way. This is the novel
approach taken in this paper and will be described and tested in detail.

1.2. A motivating example. Next, we introduce a real data example that will be repeatedly
used in the development of this paper. In this example, we are interested in estimating the
causal effect of a person’s Body Mass Index (BMI) on Systolic Blood Pressure (SBP). We
obtained publicly available summary data from three GWAS with nonoverlapping samples:

BMI-FEM: BMI in females by the Genetic Investigation of ANthropometric Traits (GI-
ANT) consortium [35] (sample size: 171977, unit: kg/m2).
BMI-MAL: BMI in males in the same study by the GIANT consortium (sample size:

152893, unit: kg/m2).
SBP-UKBB: SBP using the United Kingdom BioBank (UKBB) data (sample size:

317754, unit: mmHg).

Using the BMI-FEM dataset and LD clumping, we selected 25 SNPs that are genome-
wide significant (p-value ≤ 5 × 10−8) and uncorrelated (10,000 kilo base pairs apart and
R2 ≤ 0.001). We then obtained the 25 SNP-exposure effects (γ̂j )

25
j=1 and the corresponding

standard errors from BMI-MAL and the SNP-outcome effects (�̂j )
25
j=1 and the corresponding

standard errors from SBP-UKBB. Later on in the paper we will consider an expanded set of
160 SNPs using the selection threshold p-value ≤ 10−4.

Figure 1 shows the scatter plot of the 25 pairs of genetic effects. Since they are measured
with error, we added error bars of one standard error to every point on both sides. The goal
of summary-data MR is to find a straight line through the origin that best fits these points.
The statistical method should also be robust to violations of model (1.1) since not all SNPs
satisfy the relation �j = β0γj exactly. We will come back to this example in Sections 3.5,
4.4 and 5.3 to illustrate our methods.
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FIG. 1. Scatter plot of �̂j versus γ̂j in the BMI-SBP example. Each point is augmented by the standard error

of �̂j and γ̂j on the vertical and horizontal sides. For presentation purposes only, we chose the allele codings so
that all γ̂j are positive. Solid lines are the regression slope fitted by two of our methods. Dashed lines are the 95%
confidence interval of the slopes. The simple method using unadjusted profile score (PS, described in Section 3)
has smaller standard error than the more robust method using robust adjusted profile score (RAPS, described in
Section 5), because the simple method does not consider genetic pleiotropy. See also Section 3.5.

1.3. Statistical challenges and organization of the paper. Compared to classical IV anal-
yses in econometrics and health studies, there are many unique challenges in two-sample MR
with summary data:

1. Measurement error: Both the SNP-exposure and SNP-outcome effects are clearly mea-
sured with error, but most of the existing methods applicable to summary data assume that
the sampling error of γ̂j is negligible so a weighted linear regression can be directly used
[13].

2. Invalid instruments due to pleiotropy (the phenomenon that one SNP can affect seem-
ingly unrelated traits): A SNP Zj may causally affect the outcome Y through other pathways
not involving the exposure X. In this case, the approximate linear model �j ≈ β0γj might be
entirely wrong for some SNPs.

3. Weak instruments: Including a SNP j with very small γj can bias the causal effect es-
timates (especially when the meta-analysis strategy is used). It can also increase the variance
of the estimator β̂ . See Section 3.4.2.

4. Selection bias: To avoid the weak instrument bias, the standard practice in MR is to only
use the genome-wide significant SNPs as instruments (e.g., as implemented in the TwoSam-
pleMR R package [28]). However, in many studies the same dataset is used for both selecting
SNPs and estimating γj , resulting in substantial selection bias even if the selection threshold
is very stringent.

Many previous works have considered one or some of these challenges. Bowden et al. [10]
proposed a modified Cochran’s Q statistic to detect the heterogeneity due to pleiotropy in-
stead of measurement error in γ̂j . Addressing the issue of bias due to pleiotropy has attracted
lots of attention in the summary-data MR literature [7, 8, 26, 34, 51, 52], but no solid statis-
tical underpinning has yet been given. Other methods with more rigorous statistical theory
require individual-level data [23, 40, 50]. The weak instrument problem has been thoroughly
studied in the econometrics literature (e.g., [6, 25, 49]), but all of this work operates in the
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individual-level data setting. Finally, the selection bias has largely been overlooked in prac-
tice; common wisdom has been that the selection biases the causal effects toward the null (so
it might be less serious) [27] and the bias is perhaps small when a stringent selection criterion
is used (in Section 7 we show this is not necessarily the case).

In this paper, we develop a novel approach to overcome all the aforementioned challenges
by adjusting the profile likelihood of the summary data. The measurement errors of γ̂j and �̂j

(challenge 1) are naturally incorporated in computing the profile score. To tackle invalid IVs
(challenge 2), we will consider three models for the GWAS summary data with increasing
complexity:

MODEL 1 (No pleiotropy). The linear model �j = β0γj is true for every j ∈ [p].

MODEL 2 (Systematic pleiotropy). Assume αj = �j − β0γj
i.i.d.∼ N(0, τ 2

0 ) for j ∈ [p]
and some small τ 2

0 .

MODEL 3 (Systematic and idiosyncratic pleitropy). Assume αj , j ∈ [p] are from a con-
taminated normal distribution: most αj are distributed as N(0, τ 2

0 ) but some |αj | may be
much larger.

The consideration of these three models is motivated by not only the theoretical models in
Section 2 but also characteristics observed in real data (Sections 3.5, 4.4 and 5.3) and recent
empirical evidence in genetics [12, 46].

The three models are considered in Sections 3 to 5, respectively. We will propose estima-
tors that are provably consistent and asymptotically normal in Models 1 and 2. We will then
derive an estimator that is robust to a small proportion of outliers in Model 3. We believe
Model 3 best explains the real data and the corresponding Robust Adjusted Profile Score
(RAPS) estimator is the clear winner in all the empirical examples.

Although weak IVs may bias the individual Wald’s ratio estimator (challenge 3), we will
show, both theoretically and empirically, that including additional weak IVs is usually helpful
for our new estimators when there are already strong IVs or many weak IVs. Finally, the
selection bias (challenge 4) is handled by requiring use of an independent dataset for IV
selection as we have done in Section 1.2. This might not be possible in all practical problems,
but failing to use a separate dataset for IV selection can lead to severe selection bias as
illustrated by an empirical example in Section 7.

The rest of the paper is organized as follows. In Section 2, we give theoretical justifications
of the model (1.1) for GWAS summary data. Then in Sections 3 to 5 we describe an adjusted
profile score approach of statistical inference in Models 1 to 3, respectively. The paper is
concluded with simulation examples in Section 6, another real data example in Section 7 and
more discussion in Section 8.

2. Statistical model for MR. In this section, we explain why the approximate linear
model (1.1) for GWAS summary data may hold in many MR problems. We will put structural
assumptions on the original data and show that (1.1) holds in a variety of scenarios. Owing
to this heuristic and the wide availability of GWAS summary datasets, we will focus on
statistical inference for summary-data MR after Section 2.

2.1. Validity of instrumental variables. In order to study the origin of the linear model
(1.1) for summary data and give a causal interpretation to the parameter β0, we must specify
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how the original data (X,Y,Z1, . . . ,Zp) are generated and how the summary statistics are
computed. Consider the following structural equation model [42] for the random variables:

X = g(Z1, . . . ,Zp,U,EX), and

Y = f (X,Z1, . . . ,Zp,U,EY ),
(2.1)

where U is the unmeasured confounder, EX and EY are independent random noises,
(EX,EY ) ⊥⊥ (Z1, . . . ,Zp,U) and EX ⊥⊥ EY . In two-sample MR, we observe nX i.i.d. re-
alizations of (X,Z1, . . . ,Zp) and independently nY i.i.d. realizations of (Y,Z1, . . . ,Zp). We
shall also assume that the SNPs Z1,Z2, . . . ,Zp are discrete random variables supported on
{0,1,2} and are mutually independent. To ensure the independence, in practice we only in-
clude SNPs with low pairwise LD score in our model by using standard genetics software
like LD clumping [43].

A variable Zj is called a valid IV if it satisfies the following three criteria:

1. Relevance: Zj is associated with the exposure X. Notice that a SNP that is correlated
(in genetics terminology, in LD) with the actual causal variant is also considered relevant and
does not affect the statistical analysis below.

2. Effective random assignment: Zj is independent of the unmeasured confounder U .
3. Exclusion restriction: Zj only affects the outcome Y through the exposure X. In other

words, the function f does not depend on Zj .

The causal model and the IV conditions are illustrated by a directed acyclic graph (DAG)
with a single instrument Z1 in Figure 2. Readers who are unfamiliar with this language may
find the tutorial by Baiocchi, Cheng and Small [3] helpful.

In Mendelian randomization, the first criterion—relevance—is easily satisfied by select-
ing SNPs that are significantly associated with X. Notice that the genetic instrument does
not need to be a causal SNP for the exposure. The first criterion is considered satisfied if the
SNP is correlated with the actual causal SNP [29]. For example, in Figure 2, Z1 would be
considered “relevant” even if it is not causal for X but it is correlated with Z̃1. Aside from
the effects of population stratification, the second independence to unmeasured confounder
assumption is usually easy to justify because most of the common confounders in epidemi-
ology are postnatal, which are independent of genetic variants governed by Mendel’s second
law of independent assortment [18, 20]. Empirically, there is generally a lack of confound-
ing of genetic variants with factors that confound exposures in conventional observational
epidemiological studies [19].

FIG. 2. Causal DAG and the three criteria for valid IV. The proposed IV Z1 can either be a causal variant for
X or correlated with a causal variant (Z̃1 in the figure). Z1 must be independent of any unmeasured confounder
U and cannot have any direct effect on Y or be correlated with another variant that has direct effect on Y .
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The main concern for Mendelian randomization is the possible violation of the third ex-
clusion restriction criterion, due to a genetic phenomenon called pleiotropy [18, 47], a.k.a.
the multifunction of genes. The exclusion restriction assumption does not hold if a SNP Zj

affects the outcome Y through multiple causal pathways and some do not involve the expo-
sure X. It is also violated if Zj is correlated with other variants (such as Z̃1 in Figure 2)
that affect Y through pathways that does not involve X. Pleiotropy is widely prevalent for
complex traits [48]. In fact, a “universal pleiotropy hypothesis” developed by Fisher [22] and
Wright [55] theorizes that every genetic mutation is capable of affecting essentially all traits.
Recent genetics studies have found strong evidence that there is an extremely large number
of causal variants with tiny effect sizes on many complex traits, which in part motivates our
random effects Model 2.

Another important concept is the strength of an IV, defined as its association with the
exposure X and usually measured by the F -statistic of an instrument-exposure regression.
Since we assume all the genetic instruments are independent, the strength of SNP j can be
assessed by comparing the statistic γ̂ 2

j /σ 2
Xj with the quantiles of χ2

1 (or equivalently F1,∞).
When only a few weak instruments are available (e.g., F -statistic less than 10), the usual
asymptotic inference is quite problematic [6]. In this paper, we primarily consider the setting
where there is at least one strong IV or many weak IVs.

2.2. Linear structural model. We are now ready to derive the linear model (1.1) for
GWAS summary data. Assuming all the IVs are valid, we start with the linear structural
model where functions f and g in (2.1) are linear in their arguments (see also Bowden et al.
[9]):

(2.2) X =
p∑

j=1

γjZj + ηXU + EX, Y = βX + ηY U + EY .

In this case, the GWAS summary statistics (γ̂j )j∈[p] and (�̂j )j∈[p] are usually computed from
simple linear regressions:

γ̂j = ĈovnX
(X,Zj )

ĈovnX
(Zj ,Zj )

, �̂j = ĈovnY
(Y,Zj )

ĈovnY
(Zj ,Zj )

.

Here, Ĉovn is the sample covariance operator with n i.i.d. samples. Using (2.2), it is easy to
show that γ̂j and �̂j converge to normal distributions centered at γj and �j = βγj .

However, γ̂j and γ̂k are not exactly uncorrelated when j �= k (same for �̂j and �̂k), even
if Zj and Zk are independent. After some simple algebra, one can show that

Cor2(γ̂j , γ̂k) = 4 · γ 2
j Var(Zj )

Var(X) − γ 2
j Var(Zj )

γ 2
k Var(Zk)

Var(X) − γ 2
k Var(Zk)

.

Notice that γ 2
j Var(Zj )/Var(X) is the proportion of variance of X explained by Zj . In the

genetic context, a single SNP usually has very small predictability of a complex trait [12,
31, 41, 46]. Therefore, the correlation between γ̂j and γ̂k (similarly �̂j and �̂k) is almost
negligible. In conclusion, the linear model (1.1) is approximately true when the phenotypes
are believed to be generated from a linear structural model.

To stick to the main statistical methodology, we postpone additional justifications of (1.1)
in nonlinear structural models to Appendix A. In Appendix A.1, we will investigate the case
where Y is binary and �̂j is obtained via logistic regression, as is very often the case in
applied MR investigations. In Appendix A.2, we will show the linearity between X and Z is
also not necessary.
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2.3. Violations of exclusion restriction. Equation (2.2) assumes that all the instruments
are valid. In reality, the exclusion restriction assumption is likely violated for many if not
most of the SNPs. To investigate its impact in the model for summary data, we consider the
following modification of the linear structural model (2.2):

(2.3) X =
p∑

j=1

γjZj + ηXU + EX, Y = βX +
p∑

j=1

αjZj + ηY U + EY .

The difference between (2.2) and (2.3) is that the SNPs are now allowed to directly affect Y

and the effect size of SNP Zj is αj . In this case, it is not difficult to see that the regression
coefficient �̂j estimates �j = αj + γjβ . This inspires our Models 2 and 3. In Model 2, we
assume the direct effects αj are normally distributed random effects. In Model 3, we further
require the statistical procedure to be robust against any extraordinarily large direct effects
αj . See Section 8 for more discussion on the assumptions on the pleiotropy effects.

3. No pleiotropy: A profile likelihood approach. We now consider Model 1, the case
with no pleiotropy effects.

3.1. Derivation of the profile likelihood. A good place to start is writing down the like-
lihood of GWAS summary data. Up to some additive constant, the log-likelihood function is
given by

(3.1) l(β, γ1, . . . , γp) = −1

2

[ p∑
j=1

(γ̂j − γj )
2

σ 2
Xj

+
p∑

j=1

(�̂j − γjβ)2

σ 2
Yj

]
.

Since we are only interested in estimating β0, the other parameters, namely γ := (γ1, . . . , γp),
are considered nuisance parameters. There are two ways to proceed from here. One is to
view γ as incidental parameters [39] and try to eliminate them from the likelihood. The other
approach is to assume the sequence γ1, γ2, . . . is generated from a fixed unknown distribution.
When p is large, it is possible to estimate the distribution of γ to improve the efficiency using
the second approach [38]. In this paper, we aim to develop a general method for summary-
data MR that can be used regardless of the number of SNPs being used, so we will take the
first approach.

The profile log-likelihood of β is given by profiling out γ in (3.1):

(3.2) l(β) = max
γ

l(β,γ ) = −1

2

p∑
j=1

(�̂j − βγ̂j )
2

σ 2
Xjβ

2 + σ 2
Yj

.

The maximum likelihood estimator of β is given by β̂ = arg maxβ l(β). It is also called a
Limited Information Maximum Likelihood (LIML) estimator in the IV literature, a method
due to Anderson and Rubin [2] with good consistency and efficiency properties. See also
Pacini and Windmeijer [40].

Equation (3.2) can be interpreted as a linear regression of �̂ on γ̂ , with the intercept of the
regression fixed to zero and the variance of each observation equaling to σ 2

Xjβ
2 + σ 2

Yj . There

is another meta-analysis interpretation. Let β̂j = �̂j /γ̂j be the individual Wald’s ratio, then
(3.2) can be rewritten as

(3.3) l(β) = −1

2

p∑
j=1

(β̂j − β)2

σ 2
Xjβ

2/γ̂ 2
j + σ 2

Yj /γ̂
2
j

.

This expression is also derived by Bowden et al. [10] by defining a generalized version of
Cochran’s Q statistic to test for the presence of pleiotropy that takes into account uncertainty
in γ̂j .
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3.2. Consistency and asymptotic normality. It is well known that the maximum likeli-
hood estimator can be inconsistent when there are many nuisance parameters in the problem
(e.g., [39]). Nevertheless, due to the connection with LIML, we expect and will prove below
that β̂ is consistent and asymptotically normal. However, we will also show that the profile
likelihood (3.2) can be information biased [37], meaning the profile likelihood ratio test does
not generally have a χ2

1 limiting distribution under the null.
A major distinction between our asymptotic setting and the classical errors-in-variables

regression setting is that our “predictors” γ̂j , j ∈ [p] can be individually weak. This can be
seen, for example, from the linear structural model (2.2) that

(3.4) Var(X) =
p∑

j=1

γ 2
j Var(Zj ) + η2

X Var(U) + Var(EX).

Note that Zj takes on the value 0, 1, 2 with probability p2
j , 2pj (1 −pj ), (1 −pj )

2 where pj

is the allele frequency of SNP j . For simplicity, we assume pj is bounded away from 0 and
1. In other words, only common genetic variants are used as IVs. Together with (3.4), this
implies that, if Var(X) exists, ‖γ ‖2 is bounded.

ASSUMPTION 2 (Collective IV strength is bounded). ‖γ ‖2
2 = O(1).

As a consequence, the average effect size is decreasing to 0,

1

p

p∑
j=1

|γj | ≤ ‖γ ‖2/
√

p → 0, when p → ∞.

This is clearly different from the usual linear regression setting where the “predictors” γ̂j

are viewed as random samples from a population. In the one-sample IV literature, this many
weak IV setting (p → ∞) has been considered by Bekker [5], Stock and Yogo [49], Hansen,
Hausman and Newey [25] among many others in econometrics.

Another difference between our asymptotic setting and the errors-in-variables regression is
that our measurement errors also converge to 0 as the sample size converges to infinity. Recall
that nX is the sample size of (X,Z1, . . . ,Zp) and nY is the sample size of (Y,Z1, . . . ,Zp).
We assume the following.

ASSUMPTION 3 (Variance of measurement error). Let n = min(nX,nY ). There exist
constants cσ , c′

σ such that cσ /n ≤ σ 2
Xj ≤ c′

σ /n and cσ /n ≤ σ 2
Yj ≤ c′

σ /n for all j ∈ [p].
We write a = O(b) if there exists a constant c > 0 such that |a| ≤ cb, and a = 
(b) if

there exists c > 0 such that c−1b ≤ |a| ≤ cb. In this notation, Assumption 3 assumes the
known variances σ 2

Xj and σ 2
Yj are 
(1/n).

In the linear structural model (2.2), Var(γ̂j ) ≤ Var(X)/[Var(Zj )/nX]. Thus Assumption 3
is satisfied when only common variants are used.

We are ready to state our first theoretical result.

THEOREM 3.1. In Model 1 and under Assumptions 1 to 3, if p/(n2‖γ ‖4
2) → 0, the max-

imum likelihood estimator β̂ is statistically consistent, that is, β̂
p→ β0.

A crucial quantity in Theorem 3.1 and the analysis below is the average strength of the
IVs, defined as

κ = 1

p

p∑
j=1

γ 2
j

σ 2
Xj

= 

(
n‖γ ‖2

2/p
)
.
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An unbiased estimator of κ is the average F -statistic minus 1,

κ̂ = 1

p

p∑
j=1

γ̂ 2
j

σ 2
Xj

− 1.

In practice, we require the average F -statistic to be large (say > 100) when p is small, or
not too small (say > 3) when p is large. Thus the condition p/(n2‖γ ‖4

2) = 
(1/(pκ2)) → 0
in Theorem 3.1 is usually quite reasonable. In particular, since this condition only depends
on the average instrument strength κ , the estimator β̂ remains consistent even if a substantial
proportion of γj = 0 (e.g., if the selection step in Section 1.2 using BMI-FEM with less
stringent p-value threshold finds many false positives).

Next, we study the asymptotic normality of β̂ . Define the profile score to be the derivative
of the profile log-likelihood:

(3.5) ψ(β) := −l′(β) =
p∑

j=1

(�̂j − βγ̂j )(�̂jσ
2
Xjβ + γ̂j σ

2
Yj )

(σ 2
Xjβ

2 + σ 2
Yj )

2
.

The maximum likelihood estimator β̂ solves the estimating equation ψ(β̂) = 0, and we con-
sider the Taylor expansion around the truth β0:

(3.6) 0 = ψ(β̂) = ψ(β0) + ψ ′(β0)(β̂ − β0) + 1

2
ψ ′′(β̃)(β̂ − β0)

2,

where β̃ is between β̂ and β0. Since β̂ is statistically consistent, the last term on the right-
hand side of (3.6) can be proved to be negligible, and the asymptotic normality of β̂ can be

established by showing, for some appropriate V1 and V2, ψ(β0)
d→ N(0,V1) and ψ ′(β0)

p→
−V2. When V1 = V2, the profile likelihood/score is called information unbiased [37].

THEOREM 3.2. Under the assumptions in Theorem 3.1 and if at least one of the follow-
ing two conditions are true: (1) p → ∞ and ‖γ ‖3/‖γ ‖2 → 0; (2) κ → ∞; then we have

(3.7)
V2√
V1

(β̂ − β0)
d→ N(0,1),

where

V1 =
p∑

j=1

γ 2
j σ 2

Yj + �2
j σ

2
Xj + σ 2

Xjσ
2
Yj

(σ 2
Xjβ

2
0 + σ 2

Yj )
2

, V2 =
p∑

j=1

γ 2
j σ 2

Yj + �2
j σ

2
Xj

(σ 2
Xjβ

2
0 + σ 2

Yj )
2
.(3.8)

Notice that Theorem 3.2 is very general. It can be applied even in the extreme situation p

is fixed and κ → ∞ (a few strong IVs) or p → ∞ and κ → 0 (many very weak IVs). The
assumption ‖γ ‖3/‖γ ‖2 → 0 is used to verify a Lyapunov’s condition for a central limit theo-
rem. It essentially says the distribution of IV strengths is not too uneven and this assumption
can be further relaxed.

Using our rate assumption for the variances (Assumption 3), V2 = 
(n‖γ ‖2
2) = 
(pκ)

and V1 = V2 + 
(p). This suggests that the profile likelihood is information unbiased if
and only if κ → ∞. In general, the amount of information bias depends on the instrument
strength κ . As an example, suppose β0 = 0 and σ 2

Yj ≡ σ 2
Y1. Then by (3.7) and (3.8), Var(β̂) ≈

V1/V 2
2 = (1 + κ−1)/V2. Alternatively, if we make the simplifying assumption that σ 2

Yj /σ
2
Xj

does not depend on j , it is straightforward to show that

Var(β̂) ∝ 1 + κ−1

pκ
.
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This approximation can be used as a rule of thumb to select the optimal number of IVs.
In order to obtain standard error of β̂ , we must estimate V1 and V2 using the GWAS

summary data. We propose to replace γ 2
j and �2

j in (3.8) by their unbiased sample estimates,

γ̂ 2
j − σ 2

Xj and �̂2
j − σ 2

Yj :

V̂1 =
p∑

j=1

(γ̂ 2
j − σ 2

Xj )σ
2
Yj + (�̂2

j − σ 2
Yj )σ

2
Xj + σ 2

Xjσ
2
Yj

(σ 2
Xj β̂

2 + σ 2
Yj )

2
,

V̂2 =
p∑

j=1

(γ̂ 2
j − σ 2

Xj )σ
2
Yj + (�̂2

j − σ 2
Yj )σ

2
Xj

(σ 2
Xj β̂

2 + σ 2
Yj )

2
.

THEOREM 3.3. Under the same assumptions in Theorem 3.2, we have V̂1 = V1(1 +
op(1)), V̂2 = V2(1 + op(1)), and

(3.9)
V̂2√
V̂1

(β̂ − β0)
d→ N(0,1) as n → ∞.

3.3. Weak IV bias. As mentioned in Section 1.3, many existing statistical methods for
summary-data MR ignore the measurement error in γ̂j . We briefly describe the amount of bias
this may incur for the inverse variance weighted (IVW) estimator [13]. The IVW estimator
is equivalent to the maximum likelihood estimator (3.2) assuming σ 2

Xj = 0, which has an
explicit expression and can be approximated by

β̂IVW =
∑p

j=1 �̂j γ̂j∑p
j=1 γ̂ 2

j

≈ E[∑p
j=1 �̂j γ̂j ]

E[∑p
j=1 γ̂ 2

j ]

= β‖γ ‖2

‖γ ‖2 + ∑p
j=1 σ 2

Xj

≈ β

1 + (1/κ)
.

(3.10)

Thus the amount of bias for the IVW estimator crucially depends on the average IV strength
κ . In comparison, our consistency result (Theorem 3.1) only requires κ � 1/

√
p.

3.4. Practical issues. Next, we discuss several practical implications of the theoretical
results above.

3.4.1. Influence of a single IV. Under the assumptions in Theorem 3.2, (3.6) and (3.5)
lead to the following asymptotically linear form of β̂:

β̂ = 1 + op(1)

V2

p∑
j=1

(�̂j − β0γ̂j )(�̂jσ
2
Xjβ0 + γ̂j σ

2
Yj )

(σ 2
Xjβ

2
0 + σ 2

Yj )
2

.

The above equation characterizes the influence of a single IV on the estimator β̂ [24]. In-
tuitively, the IV Zj has large influence if it is strong or it has large residual �̂j − β0γ̂j .
Alternatively, we can measure the influence of a single IV by computing the leave-one-out
estimator β̂−j that maximizes the profile likelihood with all the SNPs except Zj . In prac-
tice, it is desirable to limit the influence of each SNP to make the estimator robust against
idiosyncratic pleiotropy (Model 3). This problem will be considered in Section 5.
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3.4.2. Selecting IVs. The formulas (3.7) and (3.8) suggest that using extremely weak in-
struments may deteriorate the efficiency. Consider the following example in which we have
a new instrument Zp+1 that is independent of X, so γp+1 = 0. When adding Zp+1 to the
analysis, V1 increases but V2 remains the same, thus the variance of β̂ becomes larger. Gen-
erally, this suggests that we should screen out extremely weak IVs to improve efficiency. To
avoid selection bias, we recommend to use two independent GWAS datasets in practice, one
to screen out weak IVs and perform LD clumping and one to estimate the SNP-exposure
effects γj unbiasedly.

3.4.3. Residual quantile-quantile plot. One way to check the modeling assumptions in
Assumption 1 and Model 1 is the residual Quantile–Quantile (Q–Q) plot, which plots the
quantiles of standardized residuals

t̂j = �̂j − β̂γ̂j√
β̂2σ 2

Xj + σ 2
Yj

against the quantiles of the standard normal distribution. This is reasonable because when
β̂ = β0, t̂j ∼ N(0,1) under Assumption 1 and Model 1. The Q–Q plot is helpful at identifying
IVs that do not satisfy the linear relation �j = β0γj , most likely due to genetic pleiotropy.

Besides the residual Q–Q plot, other diagnostic tools can be found in related works. Bow-
den et al. [10] considered using each SNP’s contribution to the generalized Q statistic to
assess whether it is an outlier. Bowden et al. [11] proposed a radial plot β̂j

√
wj versus

√
wj ,

where wj is the “weight” of the j th SNP in (3.3). Since these diagnostic methods are based
on the Wald ratio estimates β̂j , they can suffer from the weak instrument bias.

3.5. Example (continued). We conclude this section by applying the profile likelihood
or Profile Score (PS) estimator in the BMI-SBP example in Section 1.2. Here, we used 160
SNPs that have p-values ≤ 10−4 in the BMI-FEM dataset. The PS point estimate is 0.601
with standard error 0.054.

Figure 3 shows the Q–Q plot and the leave-one-out estimates discussed in Section 3.4.
The Q–Q plot clearly indicates the linear model Model 1 is not appropriate to describe the
summary data. Although the standardized residuals are roughly normally distributed, their
standard deviations are apparently larger than 1. This motivates the random pleiotropy effects
assumption in Model 2 which will be considered next.

FIG. 3. Diagnostic plots of the Profile Score (PS) estimator. Left panel is a Q–Q plot of the standardized resid-
uals against standard normal. Right panel is the leave-one-out estimates against instrument strength.
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4. Systematic pleiotropy: Adjusted profile score.

4.1. Failure of the profile likelihood. Next, we consider Model 2, where the deviation
from the linear relation �j = β0γj is described by a random effects model αj = �j −β0γj ∼
N(0, τ 2

0 ). The normality assumption is motivated by Figure 3 and does not appear to be very
consequential in the simulation studies. In this model, the variance of �̂ is essentially inflated
by an unknown additive constant τ 2

0 :

γ̂j ∼ N
(
γj , σ

2
Xj

)
, �̂j ∼ N

(
γjβ0, σ

2
Yj + τ 2

0
)
, j ∈ [p].

Similar to Section 3.1, the profile log-likelihood of (β, τ 2) is given by

l
(
β, τ 2) = −1

2

p∑
j=1

(�̂j − βγ̂j )
2

σ 2
Xjβ

2 + σ 2
Yj + τ 2

+ log
(
σ 2

Yj + τ 2)
,

and the corresponding profile score equations are

∂

∂β
l
(
β, τ 2) = 0,

∂

∂τ 2 l
(
β, τ 2) = 0.

It is straightforward to verify that the first estimating equation is unbiased, that is, it has
expectation 0 at (β0, τ

2
0 ). However, the other profile score is

(4.1)
∂

∂τ 2 l
(
β, τ 2) = 1

2

p∑
j=1

(�̂j − βγ̂j )
2

(σ 2
Xjβ

2 + σ 2
Yj + τ 2)2

− 1

σ 2
Yj + τ 2

.

It is easy to see that its expectation is not equal to 0 at the true value (β, τ 2) = (β0, τ
2
0 ). This

means the profile score is biased in Model 2, thus the corresponding maximum likelihood
estimator is not statistically consistent.

4.2. Adjusted profile score. The failure of maximizing the profile likelihood should not
be surprising, because it is well known that the maximum likelihood estimator can be biased
when there are many nuisance parameters [39]. There are many proposals to modify the
profile likelihood; see, for example, Barndorff-Nielsen [4], Cox and Reid [17]. Here, we take
the approach of McCullagh and Tibshirani [37] that directly modifies the profile score so
it has mean 0 at the true value. The Adjusted Profile Score (APS) is given by ψ(β, τ 2) =
(ψ1(β, τ 2),ψ2(β, τ 2)), where

ψ1
(
β, τ 2) = − ∂

∂β
l
(
β, τ 2)

=
p∑

j=1

(�̂j − βγ̂j )(�̂jσ
2
Xjβ + γ̂j (σ

2
Yj + τ 2))

(σ 2
Xjβ

2 + σ 2
Yj + τ 2)2

,

(4.2)

ψ2
(
β, τ 2) =

p∑
j=1

σ 2
Xj

(�̂j − βγ̂j )
2 − (σ 2

Xjβ
2 + σ 2

Yj + τ 2)

(σ 2
Xjβ

2 + σ 2
Yj + τ 2)2

.(4.3)

Compared to (4.1), we replaced (σ 2
Yj + τ 2)−1 by (σ 2

Xjβ
2 + σ 2

Yj + τ 2)−1, so each summand

in (4.3) has mean 0 at (β0, τ
2
0 ). We also weighted the IVs by σ 2

Xj in (4.3), which is useful in
the proof of statistical consistency.

Notice that both the denominators and numerators in ψ1 and ψ2 are polynomials of β and
τ 2. However, the denominators are of higher degrees. This implies that the APS estimating
equations always have diverging solutions: ψ(β, τ 2) → 0 if β → ±∞ or τ 2 → ∞. We define
the APS estimator (β̂, τ̂ 2) to be the nontrivial finite solution to ψ(β, τ 2) = 0 if it exists.
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4.3. Consistency and asymptotic normality. Because of the diverging solutions of the
APS equations, we need to impose some compactness constraints on the parameter space to
study the asymptotic property of (β̂, τ̂ 2):

ASSUMPTION 4. (β0,pτ 2
0 ) is in the interior of a bounded set B ⊂R×R

+.

The overdispersion parameter τ 2
0 is scaled up in Assumption 4 by p. This is motivated

by the linear structural model (2.3), where
∑2

j=1 τ 2
0 Var(Zj ) = 
(pτ 2

0 ) is the variance of Y

explained by the direct effects of Z. Thus it is reasonable to treat pτ 2
0 as a constant.

We also assume, in addition to Assumption 2, that the variance of X explained by the IVs
is nondiminishing.

ASSUMPTION 5. ‖γ ‖2 = 
(1).

THEOREM 4.1. In Model 2 and suppose Assumptions 1 and 3 to 5 hold, p → ∞ and
p/n2 → 0. Then with probability going to 1 there exists a solution of the APS equation such
that (β̂,pτ̂ 2) is in B. Furthermore, all solutions in B are statistically consistent, that is,

β̂
p→ β0 and pτ̂ 2 − pτ 2

0
p→ 0.

Next, we consider the asymptotic distribution of the APS estimator.

THEOREM 4.2. In Model 2 and under the assumptions in Theorem 4.1, if additionally
p = 
(n) and ‖γ ‖3/‖γ ‖2 → 0, then

(4.4)
(
Ṽ

−1
2 Ṽ 1Ṽ

−T

2
)1/2

(
β̂ − β0

τ̂ 2 − τ 2
0

)
d→ N(0, I 2),

where

Ṽ 1 =
p∑

j=1

1

(σ 2
Xjβ

2
0 + σ 2

Yj + τ 2
0 )2

((
γ 2
j + σ 2

Xj

)(
σ 2

Yj + τ 2
0
) + �2

j σ
2
Xj 0

0 2
(
σ 2

Xj

)2

)
,

Ṽ 2 =
p∑

j=1

1

(σ 2
Xjβ

2
0 + σ 2

Yj + τ 2
0 )2

(
γ 2
j

(
σ 2

Yj + τ 2
0
) + �2

j σ
2
Xj σ 2

Xjβ0

0 σ 2
Xj

)
.

Similar to Theorem 3.3, the information matrices Ṽ 1 and Ṽ 2 can be estimated by substi-
tuting γ 2

j by γ̂ 2
j − σ 2

Xj and �2
j by �̂2

j − σ 2
Yj − τ̂ 2. We omit the details for brevity.

4.4. Example (continued). We apply the APS estimator to the BMI-SBP example. Using
the same 160 SNPs in Section 3.5, the APS point estimate is β̂ = 0.301 (standard error 0.158)
and τ̂ 2 = 9.2 × 10−4 (standard error 1.7 × 10−4). Notice that the APS point estimate of β

is much smaller than the PS point estimate. One possible explanation of this phenomenon is
that the PS estimator tends to use a larger β to compensate for the overdispersion in Model 2
(the variance of �̂j − βγ̂j is β2σ 2

Xj + σ 2
Yj in Model 1 and β2σ 2

Xj + σ 2
Yj + τ 2

0 in Model 2).
Figure 4 shows the diagnostic plots of the APS estimator. Compared to the PS estimator

in Section 3.5, the overdispersion issue is much more benign. However, there is an outlier
which corresponds to the SNP rs11191593. It heavily biases the APS estimate too: when
excluding this SNP, the APS point estimate changes from 0.301 to almost 0.4 in the right
panel of Figure 4. The outlier might also inflate τ̂ 2 so the Q–Q plot looks a little underdis-
persed. These observations motivate the consideration of a robust modification of the APS in
the next section.
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FIG. 4. Diagnostic plots of the Adjusted Profile Score (APS) estimator. Left panel is a Q–Q plot of the standard-
ized residuals against standard normal. Right panel is the leave-one-out estimates against instrument strength.

5. Idiosyncratic pleiotropy: Robustness to outliers. Next, we consider Model 3 with
idiosyncratic pleiotropy. As mentioned in Section 3.4.1, a single IV can have unbounded in-
fluence on the PS (and APS) estimators. When the IV Zj has other strong causal pathways,
its pleiotropy parameter αj can be much larger than what is predicted by the random ef-
fects model αj ∼ N(0, τ 2

0 ), leading to a biased estimate of the causal effect as illustrated in
Section 4.4. In this section, we propose a general method to robustify the APS to limit the
influence of outliers such as SNP rs11191593 in the example.

5.1. Robustify the adjusted profile score. Our approach is an application of the robust
regression techniques pioneered by Huber [30]. As mentioned in Section 3.1, the profile
likelihood (3.2) can be viewed as a linear regression of �̂j on γ̂j using the l2-loss. To limit
the influence of a single IV, we consider changing the l2-loss to a robust loss function. Two
celebrated examples are the Huber loss

ρhuber(r;k) =
{
r2/2, if |r| ≤ k,

k
(|r| − k/2

)
, otherwise,

and Tukey’s biweight loss

ρtukey(r;k) =
{

1 − (
1 − (r/k)2)3

, if |r| ≤ k,

1, otherwise.

This heuristic motivates the following modification of the profile log-likelihood when τ 2
0 = 0:

(5.1) lρ(β) := −
p∑

j=1

ρ

(
�̂j − βγ̂j√
σ 2

Xjβ
2 + σ 2

Yj

)
.

It is easy to see that lρ(β) reduces to the regular profile log-likelihood (3.2) if ρ(r) = r2/2.
When τ 2

0 > 0, we cannot directly use the profile score (∂/∂τ 2)l(β, τ 2) as discussed in
Section 4.1. This issue can be resolved using the APS approach in Section 4.2 by using ψ2
in (4.3). However, a single IV can still have unbounded influence in ψ2. We must further
robustify ψ2, which is analogous to estimating a scale parameter robustly.

Next, we briefly review the robust M-estimation of scale parameter. Consider repeated
measurements of a scale family with density f0(r/σ )/σ . Then a general way of robust esti-
mation of σ is to solve the following estimating equation [36], Section 2.5:

Ê
[
(R/σ) · ρ ′(R/σ)

] = δ,
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where Ê stands for the empirical average and δ = E[R · ρ ′(R)] for R ∼ f0.
Based on the above discussion, we propose the following Robust Adjusted Profile Score

(RAPS) estimator of β . Denote

tj
(
β, τ 2) = �̂j − βγ̂j√

σ 2
Xjβ

2 + σ 2
Yj + τ 2

.

Then the RAPS ψ (ρ) = (ψ
(ρ)
1 ,ψ

(ρ)
2 ) is given by

ψ
(ρ)
1

(
β, τ 2) =

p∑
j=1

ρ′(tj (
β, τ 2))

uj

(
β, τ 2)

,(5.2)

ψ
(ρ)
2

(
β, τ 2) =

p∑
j=1

σ 2
Xj

tj (β, τ 2) · ρ′(tj (β, τ 2)) − δ

σ 2
Xjβ

2 + σ 2
Yj + τ 2

,(5.3)

where ρ′(·) is the derivative of ρ(·), uj (β, τ 2) = −(∂/∂β)tj (β, τ 2) and δ = E[R · ρ′(R)]
for R ∼ N(0,1). Notice that ψ (ρ) reduces to the nonrobust APS ψ in (4.2) and (4.3) when
ρ(r) = r2/2 is the squared error loss. Finally, the RAPS estimator (β̂, τ̂ 2) is given by the
nontrivial finite solution of ψ (ρ)(β, τ 2) = 0.

5.2. Asymptotics. Because the RAPS estimator is the solution of a system of nonlinear
equations, its asymptotic behavior is very difficult to analyze. For instance, it is difficult to
establish statistical consistency because there could be multiple roots for the RAPS equations
in the population level. Thus β might not be globally identified. We can, nevertheless, verify
the local identifiability [45].

THEOREM 5.1 (Local identification of RAPS). In Model 2, E[ψ (ρ)(β0, τ
2
0 )] = 0 and

E[∇ψ (ρ)] has full rank.

In practice, we find that the RAPS estimating equation usually only has one finite solution.
To study the asymptotic normality of the RAPS estimator, we will assume (β̂,pτ̂ 2) is con-
sistent under Model 2. We further impose the following smoothness condition on the robust
loss function ρ.

ASSUMPTION 6. The first three derivatives of ρ(·) exist and are bounded.

THEOREM 5.2. In Model 2 and under the assumptions in Theorem 4.2, if additionally
we assume

1. the RAPS estimator is consistent: β̂ − β0
p→ 0, p(τ̂ 2 − τ 2

0 )
p→ 0,

2. Assumption 6 holds, and
3. ‖γ ‖3

3/‖γ ‖3
2 = O(p−1/2),

then

(5.4)
((

Ṽ
(ρ)

2
)−1

Ṽ
(ρ)

1
(
Ṽ

(ρ)

2
)−T )1/2

(
β̂ − β0

τ̂ 2 − τ 2
0

)
d→ N(0, I 2),

where

Ṽ
(ρ)

1 =
(
c1(Ṽ 1)11 0

0 c2(Ṽ 1)22

)
,

Ṽ
(ρ)

2 =
(
δ(Ṽ 2)11 δ(Ṽ 2)12

0
[
(δ + c3)/2

]
(Ṽ 2)22

)
,
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and the constants are: for R ∼ N(0,1), c1 = E[ρ′(R)2], c2 = Var(Rρ′(R))/2, c3 =
E[R2ρ′′(R)].

It is easy to verify that when ρ(r) = r2/2, δ = c1 = c2 = c3 = 1, so Ṽ
(ρ)

1 and Ṽ
(ρ)

2 reduce
to Ṽ 1 and Ṽ 2. In other words, the asymptotic variance formula in Theorem 5.2 is consis-
tent with the one in Theorem 4.2. However, additional technical assumptions are needed in
Theorem 5.2 to bound the higher-order terms in the Taylor expansion.

5.3. Example (continued). As before, we illustrate the RAPS estimator using the BMI-
SBP example. Using the Huber loss with k = 1.345 (corresponding to 95% asymptotic effi-
ciency in the simple location problem), the point estimate is β̂ = 0.378 (standard error 0.121),
τ̂ 2 = 4.7 × 10−4 (standard error 1.0 × 10−4). Using the Tukey loss with k = 4.685 (also cor-
responding to 95% asymptotic efficiency in the simple location problem), the point estimate
is β̂ = 0.402 (standard error 0.106), τ̂ 2 = 3.4 × 10−4 (standard error 7.8 × 10−5).

Figure 5 shows the diagnostic plots of the two RAPS estimators. Compared to Figure 4,
the robust loss functions limit the influence of the outlier (SNP rs11191593), and the
resulting β̂ becomes larger. In Figure 5b, the outlier’s influence is essentially zero because
the Tukey loss function is redescending. This shows the robustness of our RAPS estimator to
the idiosyncratic pleiotropy.

FIG. 5. Diagnostic plots of the Robust Adjusted Profile Score (RAPS) estimator. Left panels are Q–Q plots of the
standardized residuals against standard normal. Right panels are the leave-one-out estimates against instrument
strength.
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6. Simulation. Throughout the paper, all of our theoretical results are asymptotic. We
usually require both the sample size n and the number of IVs p to go to infinity (except for
Theorem 3.2 where finite p is allowed). We now assess if the asymptotic approximations are
reasonably accurate in practical situations, where p may range from tens to hundreds.

6.1. Simulating summary data directly from Assumption 1. To this end, we first created
simulated summary-data MR datasets that mimic the BMI-SBP example in Section 1.2. In
particular, we considered two scenarios: p = 25, which corresponds to using the selection
threshold 5 × 10−8 as described in Section 1.2, and p = 160, which corresponds to using
the threshold 1 × 10−4 as in Sections 3.5, 4.4 and 5.3. The model parameters are chosen as
follows: the variances of the measurement error, {(σ 2

Xj , σ
2
Yj )}j∈[p], are the same as those in

the BMI-SBP dataset. The true marginal IV-exposure effects, {γj }j∈[p], are chosen to be the
observed effects in the BMI-SBP dataset, and γ̂j is generated according to Assumption 1

by γ̂j
ind.∼ N(γj , σ

2
Xj ). The true marginal IV-outcome effects, {�j }j∈[p], are generated in six

different ways with β0 = 0.4:

1. �j = γjβ0;

2. �j = γjβ0 + αj , αj
i.i.d.∼ N(0, τ 2

0 ), where τ0 = 2 · (1/p)
∑p

j=1 σYj ;
3. �j is generated according to setup 2 above, except that α1 has mean 5 · τ0 (the IVs are

sorted so that the first IV has the largest |γj |/σXj ).

4. �j = γjβ0 + αj , αj
i.i.d.∼ τ0 · Lap(1), where Lap(1) is the Laplace (double exponential)

distribution with rate 1.
5. �j = γjβ0 + αj , αj = |γj |/(p−1 ∑p

j=1 |γj |) · N(0, τ 2
0 ).

6. �j is generated according to setup 2 above, except that for 10% randomly selected IVs,
their direct effects αj have mean 5 · τ0.

The first three setups correspond to Models 1 to 3, respectively, and the last three setups
violate our modeling assumptions and are used to assess the robustness of the procedures.

Finally, �̂j is generated according to Assumption 1 by �̂j
ind.∼ N(�j , σ

2
Yj ).

We applied six methods to the simulated data (10,000 replications in each setting). The first
three are existing methods to benchmark our performance: the inverse variance weighting
(IVW) estimator [13], MR-Egger regression [7] and the weighted median estimator [8]. The
next three methods are proposed in this paper: the profile score (PS) estimator in Section 3,
the adjusted profile score (APS) estimator in Section 4, and the robust adjusted profile score
(RAPS) estimator in Section 5 with Tukey’s loss function (k = 4.685).

The simulation results are reported in Table 1 for p = 25 and Table 2 for p = 160. Here is
a summary of the results:

1. In setup 1, the PS estimator has the smallest root-median square error (RMSE) and the
shortest confidence interval (CI) with the desired coverage rate. The IVW estimator performs
very well when p = 25 but has considerable bias and less than nominal coverage when p =
160. The APS and RAPS estimators have slightly longer CI than PS. The MR-Egger and
weighted median estimators are less accurate than the other methods.

2. In setup 2, the PS estimator, as well as the weighted median, have substantial bias
and perform poorly. The APS estimator is overall the best with very small bias and desired
coverage, followed very closely by RAPS. The IVW and MR-Egger estimators also perform
quite well, though their relative biases are more than 10% when p = 160.

3. In setup 3, all estimators besides RAPS have very large bias and poor CI coverage. The
RMSE of the RAPS estimator is slightly larger than the RMSE in Model 2, and the coverage
of RAPS is slightly below the nominal rate.
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TABLE 1
Simulation results for p = 25. The summary statistics reported are: bias divided by β0, root-median-square error

(RMSE) divided by β0, length of the confidence interval (CI) divided by β0 and the coverage rate of the CI
(nominal rate is 95%), all in %

Setup Method Bias % RMSE % CI Len. % Cover. %

1 IVW −2.9 12.7 73.8 95.4
Egger −7.4 24.4 142.3 95.3
W. Median −5.2 17.0 105.5 96.5
PS −0.1 12.7 74.9 95.1
APS −0.4 12.7 76.8 96.0
RAPS −0.4 13.0 79.0 96.1

2 IVW −3.0 29.3 167.9 93.3
Egger −8.2 59.7 319.2 92.1
W. Median −12.8 39.9 121.4 70.6
PS 14.7 36.1 71.4 49.2
APS −0.2 28.8 165.4 93.4
RAPS −0.1 30.1 170.2 93.1

3 IVW −115.5 115.2 225.6 48.1
Egger −264.2 262.8 409.1 25.5
W. Median −80.7 79.5 151.4 47.3
PS −122.3 121.3 66.1 6.9
APS −86.2 85.6 207.0 65.0
RAPS −11.6 40.6 168.7 84.3

4 IVW −5.1 25.1 159.5 96.0
Egger −54.5 58.8 300.9 90.0
W. Median −22.5 26.0 113.2 83.8
PS 13.4 31.2 71.7 55.9
APS 4.0 25.6 158.4 96.1
RAPS 2.6 20.3 117.5 93.3

5 IVW −2.4 48.2 169.7 76.3
Egger −8.2 98.0 321.0 72.9
W. Median −24.4 60.4 136.7 56.0
PS 15.8 57.2 71.6 33.0
APS 0.9 46.8 183.0 81.1
RAPS 1.5 44.9 169.0 78.3

6 IVW −8.1 64.2 382.8 94.8
Egger −102.2 134.8 723.7 90.7
W. Median −30.8 50.3 130.6 63.1
PS 200.2 309.6 82.1 4.1
APS 13.7 62.1 327.1 92.8
RAPS 12.3 50.3 298.2 85.4

4. In setup 4, the direct effects αj are distributed as Laplace instead of normal. The RAPS
estimator has the smallest bias and RMSE, though the coverage is slightly below the nominal
level.

5. In setup 5, the variance of αj is proportional to |γj |. In this case, APS and RAPS are
approximately unbiased but the coverage is significantly lower than 95%.

6. In setup 6, 10% of the IVs have very large but roughly balanced pleiotropy effects αj .
All estimators are biased in this case. The RAPS estimator has the smallest RMSE but the
CI coverage is slightly below 95%. The IVW and APS estimators have slightly larger RMSE
and the CI has the desired coverage rate.
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TABLE 2
Simulation results for p = 160. The summary statistics reported are: bias divided by β0, root-median-square

error (RMSE) divided by β0, length of the confidence interval (CI) divided by β0 and the coverage rate of the CI
(nominal rate is 95%), all in %

Setup Method Bias % RMSE % CI Len. % Cover. %

1 IVW −11.1 12.2 51.0 87.0
Egger −10.1 15.2 79.9 92.6
W. Median −12.6 15.6 84.3 93.9
PS 0.1 9.6 57.0 95.2
APS −0.4 9.5 58.3 95.8
RAPS −0.5 9.8 59.9 95.8

2 IVW −11.6 23.2 122.5 92.6
Egger −10.8 34.9 191.5 93.6
W. Median −25.7 34.3 105.5 68.9
PS 119.2 119.8 51.0 6.2
APS −0.4 23.0 134.8 95.1
RAPS −0.4 23.8 138.7 95.1

3 IVW −70.1 69.9 131.3 44.7
Egger −125.5 125.6 203.8 32.3
W. Median −65.0 65.0 111.5 41.5
PS 4.1 77.9 44.6 15.5
APS −47.9 48.3 139.3 73.2
RAPS −3.9 27.4 137.9 90.6

4 IVW −11.9 20.5 121.5 94.7
Egger −13.6 31.5 189.5 94.7
W. Median −24.1 24.8 93.9 80.2
PS 134.7 114.3 51.4 7.1
APS 4.8 20.8 133.6 96.5
RAPS 4.3 16.1 91.3 93.6

5 IVW −11.0 53.9 139.7 62.2
Egger −9.8 92.5 217.7 56.9
W. Median −56.0 63.7 125.2 49.3
PS −819.8 244.0 57.8 4.7
APS −0.3 55.3 170.7 71.6
RAPS 1.5 48.6 120.4 59.8

6 IVW −12.7 47.2 278.8 95.0
Egger −16.4 74.2 435.3 94.9
W. Median −34.9 43.6 115.2 63.1
PS >999.9 >999.9 >999.9 12.8
APS 13.6 50.2 291.2 95.2
RAPS 10.8 42.7 258.4 91.2

Finally, we briefly remark on the bias of IVW and other existing estimators. In Section 3.3,
we have derived that the IVW estimator is biased toward 0 and the relative bias is approxi-
mately 1/κ . The average instrument strength κ in the two settings are κ = 33.1 (p = 25) and
κ = 9.1 (p = 160). The simulation results for setup 1 in Tables 1 and 2 almost exactly match
the prediction from our approximation formula (3.10).

Overall, the RAPS estimator is the clear winner in this simulation: when there is no id-
iosyncratic outlier (setups 1 and 2), it behaves almost as well as the best performer; when
there is an idiosyncratic outlier (setup 3), it still has very small bias and close-to-nominal
coverage; when our modeling assumptions are not satisfied (setups 4, 5, 6), it still has the
smallest bias and RMSE, though the CI may fail to cover β0 at the nominal rate.



1762 Q. ZHAO ET AL.

6.2. Simulating from real genotypes. As pointed out by an anonymous reviewer, the
marginal GWAS coefficients might not perfectly follow the distributional assumptions in As-
sumption 1. In fact, in Section 2.2 we already showed that even in linear structural models the
marginal coefficients have small but nonzero covariances. As a proof of concept, we perform
another simulation study using real genotypes from the 1000 Genomes Project [1].

In total, the 1000 Genomes Project phase 1 dataset contains the genotypes of 1092 individ-
uals. We simulated the exposure X and outcome Y according to the linear structural equation
model (2.3) using the entire 10th chromosome as Z (containing 1,882,663 genetic variants).
100 random entries of γ are set to be nonzero and follow the Laplace distribution with rate 1.
The unmeasured confounder U is simulated from the standard normal distribution and the pa-
rameters were set to ηX = 3, ηY = 5. The noise variables were simulated from EX ∼ N(0,32)

and EY ∼ N(0,52). The direct effects α had pα random nonzero entries that were simulated
from the Laplace distribution with rate rα . In total, we considered five settings:

1. β = 0, pα = 0;
2. β = 0, pα = 200, rα = 0.5;
3. β = 1, pα = 0;
4. β = 1, pα = 200, rα = 0.5;
5. β = 1, pα = 200, rα = 1.5.

In this dataset, 368,977 variants have minor allele frequency greater 5% and are considered
as potential instrumental variables. We used 292, 400 and 400 individuals (random partition)
as the selection, exposure and outcome data and obtained GWAS summary data by running
marginal linear regressions. We simulated Y using one of the five settings described above.
After LD clumping (p-value ≤ 5×10−3), 121 independent variants were selected as IVs, and
we applied existing and our methods to these 121 SNPs. To provide a more comprehensive
comparison, we also applied two classical IV estimator, two-stage least squares (2SLS) and
limited information maximum likelihood (LIML), to the outcome sample of 400 individuals.
For the LIML estimator, we computed the standard error using the “many weak IV asymp-
totics” [25]. Note that 2SLS and LIML cannot be computed using just the GWAS summary
data and they assume all the IVs are valid.

We used 5000 replications to obtain the same performance metrics in Section 6.1, which
are reported in Table 3. Overall, our estimators (in particular, APS and RAPS) are unbiased
and maintain the nominal CI coverage rate in all 5 settings. The three existing estimators—
IVW, MR-Egger and weighted median—are heavily biased toward 0 when β �= 0. Also, no-
tice that their RMSE and CI length are (abnormally) smaller than the RMSE and CI length
of the “oracle” LIML estimator that uses individual genotypes. The 2SLS estimator is also
heavily biased by weak instruments.

Although the simulation results in Table 3 are encouraging, we want to point out that
the sample size and simulation parameters we used might be quite different from actual MR
studies. The pleiotropy models (parametrized by pα and rα) being tested here are also limited.
Nonetheless, this simulation shows that using the statistical framework developed in this
paper, it is possible to obtain summary-data MR estimators that perform almost as well as the
“oracle” LIML estimator that uses individual data.

7. Comparison in real data examples.

7.1. In the BMI-SBP example. Table 4 briefly summarize the results using different esti-
mators in this and previous papers for the BMI-SBP example introduced in Section 1.2. Since
the ground truth is unknown, we do not know which estimate is closer to the truth. Neverthe-
less, we can still make three remarks. First, the point estimates varied considerably between
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TABLE 3
Results for the numerical simulation using real genotypes. The performance metrics reported are: bias (median
β̂ minus β), root-median-square error (RMSE), median length of the confidence interval (CI) and the coverage

rate of the CI (nominal rate is 95%)

Setup Method Bias RMSE CI Len. Coverage %

1 IVW 0.00 0.08 0.42 93.1
Egger 0.00 0.11 0.62 95.1
W. Median 0.00 0.12 0.74 96.8
PS 0.01 0.26 1.42 92.9
APS 0.01 0.23 1.61 98.9
RAPS 0.00 0.23 1.76 98.2
2SLS −0.46 0.46 0.41 0.9
LIML 0.00 0.26 1.40 94.5

2 IVW −0.02 0.08 0.45 94.0
Egger −0.02 0.11 0.65 95.4
W. Median −0.04 0.12 0.78 97.2
PS −0.06 0.29 1.42 89.2
APS −0.05 0.25 1.67 98.6
RAPS −0.05 0.25 1.82 97.5
2SLS −0.47 0.47 0.43 1.1
LIML 0.02 0.28 1.56 95.4

3 IVW −0.63 0.63 0.43 0.1
Egger −0.45 0.45 0.61 21.1
W. Median −0.64 0.64 0.76 8.7
PS 0.08 0.22 1.35 96.9
APS 0.02 0.22 1.78 97.6
RAPS 0.01 0.22 1.87 93.1
2SLS −0.46 0.46 0.41 1.2
LIML −0.01 0.26 1.41 94.8

4 IVW −0.65 0.65 0.46 0.2
Egger −0.47 0.47 0.65 22.4
W. Median −0.61 0.61 0.79 13.6
PS 0.13 0.26 1.39 95.1
APS 0.01 0.25 1.86 96.6
RAPS −0.01 0.24 1.95 92.2
2SLS −0.46 0.46 0.43 1.4
LIML 0.03 0.28 1.57 95.4

5 IVW −0.68 0.68 0.62 0.9
Egger −0.50 0.50 0.90 40.4
W. Median −0.44 0.44 0.97 57.0
PS 0.41 0.49 1.72 87.3
APS 0.01 0.37 2.40 96.8
RAPS −0.04 0.33 2.48 94.8
2SLS −0.47 0.47 0.57 10.4
LIML 0.23 0.51 2.93 97.9

the methods, so the choice of estimator may make a difference in practice. Second, the PS,
IVW and MR-Egger point estimates changed substantially when all 160 SNPs were used in-
stead of just the 25 strongest ones, whereas the RAPS estimators and the weighted median
were more stable. Finally, all the standard errors are computed under the modeling assump-
tions each method makes, thus they may not be directly comparable. For example, in theory
the RAPS estimators are less efficient than the APS estimator in Model 2, but their standard
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TABLE 4
Comparison of results in the BMI-SBP example

p = 25 p = 160

Method β̂ SE β̂ SE

PS 0.367 0.075 0.601 0.054
APS 0.364 0.133 0.301 0.158
RAPS (Huber) 0.354 0.131 0.378 0.121
RAPS (Tukey) 0.361 0.133 0.402 0.106

IVW 0.332 0.140 0.514 0.102
MR-Egger 0.647 0.283 0.472 0.176
Weighted median 0.516 0.125 0.514 0.102

errors are indeed smaller in Table 4. This should not be too surprising because Model 2 does
not hold in this example as illustrated in Section 4.4.

7.2. An illustration of weak IV bias and selection bias. Finally, we consider another real
data validation example, which shall be referred to as the BMI-BMI example. In this example,
both the “exposure” and the “outcome” are BMI. Although there is no “causal” effect of BMI
on itself, Model 1 for GWAS summary data should technically hold with β0 = 1. Therefore,
this is a rare scenario where we know the truth in real data. Since there are many SNPs that
are only weakly associated with BMI, this example also offers a good opportunity to probe
the issue of weak instrument bias and the efficiency gain by including many weak IVs. The
downside is that this example does not test the methods’ robustness to pleiotropy because the
exposure and outcome are the same trait.

We obtained three GWAS datasets for this example:

BMI-GIANT: full dataset from the GIANT consortium [35] (i.e., combining BMI-FEM
and BMI-MAL), used to select SNPs.
BMI-UKBB-1: half of the UKBB data, used as the “exposure.”
BMI-UKBB-2: another half of UKBB data, used as the “outcome.”

We applied in total six methods. Four have been previously developed: besides the three
estimators considered in Section 6, we also included the weighted mode estimator of Hartwig,
Davey Smith and Bowden [26]. We use the implementation in the TwoSampleMR software
package [28] for the existing methods. The last two methods were the PS and RAPS estima-
tors developed in this paper (APS performs similar to PS and RAPS and is omitted).

The results are reported in Table 5. Overall, the PS and RAPS estimators provided very
accurate estimate of β0 = 1. PS has the smallest standard error because there is no pleiotropy
at all in this example. When there is pleiotropy (as expected in most real studies), PS can
perform poorly as demonstrated in Section 6. All the existing methods are biased especially
when there are many weak IVs.

In Table 6, we illustrate the danger of selection bias. In this example, we discard the BMI-
GIANT dataset and use BMI-UKBB-1 for both selection and inference (estimating γj ). The
estimators are biased toward 0 in almost all cases, even if we only use the genome-wide
significant p-value threshold 10−9 or 10−8. This is because the assumption γ̂j ∼ N(γj , σ

2
Xj )

is violated. In fact, due to selection bias, the selected γ̂j are stochastically larger than their
mean γj (if γj > 0). Compared with other methods, the MR-Egger regression seems to be
less affected by the selection bias.
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TABLE 5
Results of the BMI-BMI example. The true β0 should be 1. We considered 8 selection thresholds psel from

1 × 10−9 to 1 × 10−2. The mean and median of the F -statistics γ̂ 2
j /σ 2

Xj are reported. In each setting, we report
the point estimate and the standard error of all the methods

psel # SNPs Mean F IVW W. Median W. Mode

1e−9 48 78.6 0.983 (0.026) 0.945 (0.039) 0.941 (0.042)
1e−8 58 69.2 0.983 (0.024) 0.945 (0.039) 0.939 (0.044)
1e−7 84 55.0 0.988 (0.024) 0.945 (0.036) 0.933 (0.041)
1e−6 126 44.1 0.986 (0.022) 0.944 (0.034) 0.931 (0.038)
1e−5 186 34.3 0.986 (0.019) 0.943 (0.033) 0.928 (0.039)
1e−4 287 26.1 0.981 (0.017) 0.941 (0.031) 0.929 (0.035)
1e−3 474 18.8 0.955 (0.015) 0.903 (0.027) 0.917 (0.231)
1e−2 812 12.7 0.928 (0.014) 0.879 (0.023) 0.739 (7.130)

psel # SNPs Median F Egger PS RAPS

1e−9 48 51.8 0.926 (0.055) 0.999 (0.023) 0.998 (0.026)
1e−8 58 42.0 0.928 (0.050) 0.999 (0.023) 0.998 (0.025)
1e−7 84 32.1 0.905 (0.048) 1.012 (0.021) 1.004 (0.025)
1e−6 126 27.4 0.881 (0.043) 1.017 (0.019) 1.009 (0.023)
1e−5 186 21.0 0.874 (0.036) 1.020 (0.018) 1.013 (0.020)
1e−4 287 15.8 0.921 (0.031) 1.023 (0.017) 1.018 (0.018)
1e−3 474 10.8 0.913 (0.027) 1.010 (0.016) 1.006 (0.016)
1e−2 812 5.6 0.909 (0.022) 1.010 (0.015) 1.005 (0.015)

8. Discussion. In this paper, we have proposed a systematic approach for two-sample
summary-data Mendelian randomization based on modifying the profile score function. By
considering increasingly more complex models, we arrived at the Robust Adjusted Profile

TABLE 6
Illustration of selection bias. The same BMI-UKBB-1 dataset is used for both selecting SNPs and estimating the

SNP-exposure effects γj . All estimators are biased (true β0 = 1) due to not accounting for selection bias

psel # SNPs Mean F IVW W. Median W. Mode

1e−9 110 68.63 0.851 (0.02) 0.83 (0.025) 0.896 (0.046)

1e−8 168 57.00 0.823 (0.017) 0.8 (0.022) 0.885 (0.053)

1e−7 228 50.08 0.799 (0.016) 0.768 (0.019) 0.886 (0.058)

1e−6 305 43.92 0.761 (0.015) 0.736 (0.019) 0.865 (0.079)

1e−5 443 36.98 0.721 (0.013) 0.667 (0.016) 0.824 (0.12)

1e−4 652 30.68 0.678 (0.012) 0.616 (0.015) 0.593 (0.122)

1e−3 929 25.36 0.629 (0.011) 0.57 (0.014) 0.576 (0.096)

1e−2 1289 20.70 0.592 (0.01) 0.528 (0.013) 0.554 (0.093)

psel # SNPs Median F Egger PS RAPS

1e−9 110 49.20 1.071 (0.051) 0.871 (0.015) 0.862 (0.021)

1e−8 168 41.12 1.018 (0.046) 0.848 (0.014) 0.831 (0.018)

1e−7 228 37.12 1.016 (0.043) 0.824 (0.012) 0.803 (0.016)

1e−6 305 33.68 1.006 (0.041) 0.793 (0.011) 0.763 (0.016)

1e−5 443 28.74 0.957 (0.037) 0.762 (0.01) 0.716 (0.015)

1e−4 652 23.23 0.89 (0.033) 0.724 (0.009) 0.66 (0.014)

1e−3 929 19.12 0.823 (0.03) 0.687 (0.008) 0.594 (0.013)

1e−2 1289 15.26 0.749 (0.025) 0.657 (0.008) 0.541 (0.012)
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Score (RAPS) estimator which is robust to both systematic and idiosyncratic pleiotropy and
performed excellently in all the numerical examples. Thus we recommend to routinely use
the RAPS estimator in practice, especially if the exposure and the outcome are both complex
traits.

Our theoretical and empirical results advocate for a new design of two-sample MR. Instead
of using just a few strong SNPs (those with large |γ̂j |/σXj ), we find that adding many (poten-
tially hundreds of) weak SNPs usually substantially decreases the variance of the estimator.
This is not feasible with existing methods for MR because they usually require the instru-
ments to be strong. An additional advantage of using many weak instruments is that outliers
in the sense of Model 3 are more easily detected, so the results are generally more robust to
pleiotropy. There is one caveat: selection bias is more significant for weaker instruments, so
a sample-splitting design (such as the one in Section 1.2) should be used.

In Models 2 and 3, we have assumed that the pleiotropy effects are completely independent
and normally or nearly normally distributed. We view this assumption as an approximate
modeling assumption rather than the precise data generating mechanism. It is motivated by
the real data (Section 3.5) and seems to fit the data very well (Section 5.3). It is a special
instance of the INstrument Strength Independent of Direct Effect (INSIDE) assumption [9]
that is common in the summary-data MR literature. Apart from normality, two other implicit
but key assumptions we made are:

1. The pleiotropy effects αj are additive rather than multiplicative (the variance of αj is
proportional to σYj ) [7]. Multiplicative random effects model are easier to fit especially if the
measurement error in γ̂j is ignored; however, it is quite unrealistic because αj is a population
quantity and thus is unlikely to be dependent on a sample quantity (for example, σYj may vary
due to missing data). In contrast, the additive model is well motivated by the linear structural
model in 2.3.

2. The pleiotropy effects αj have mean 0. In comparison, the MR-Egger regression [7]
assumes αj has an unknown mean μ and refers to the case μ �= 0 as “directional pleiotropy.”
We have not seen strong evidence of “directional pleiotropy” in real datasets, and, more
importantly, assuming μ �= 0 implies that there is a “special” allele coding so that αj ∼
N(μ, τ 2). It is thus impossible to obtain estimators of β that are invariant to allele recoding
without completely reformulating the MR-Egger model. For further details, see Bowden et
al. [11].

There are many technical challenges in the development of this paper. Due to the nature of
the many weak IV problem, the asymptotics we considered are quite different from the classi-
cal measurement error literature. In Section 3, we showed the profile likelihood is information
biased when there are many weak IVs, and in Section 4.1 we showed the profile likelihood is
biased when there is overdispersion caused by systematic pleiotropy. This issue is solved by
adjusting the profile score, but the proof of the consistency of the APS estimator is nontrivial.
Consistency of the the RAPS estimator is even more challenging and still open because the
estimating equations may have multiple roots, although we found its practical performance is
usually quite benign. A possible solution is to initialize by another robust and consistent esti-
mator (similar to the MM-estimation in robust regression, see Yohai [56]). However, we are
not aware of any other provably robust and consistent estimator in our setting, and deriving
such estimator is beyond the scope of this paper.

Software and reproducibility. R code for the methods proposed in this paper can be
found in the package mr.raps that is publicly available at https://github.com/qingyuanzhao/
mr.raps and can be directly called from TwoSampleMR. Numerical examples can be repro-
duced by running examples in the R package.

https://github.com/qingyuanzhao/mr.raps
https://github.com/qingyuanzhao/mr.raps
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference in two-sample summary-data mendelian ran-
domization using robust adjusted profile score” (DOI: 10.1214/19-AOS1866SUPP; .pdf).
In this supplement, we provide additional justifications of the linear model for GWAS sum-
mary data and detailed proof for the theoretical results.
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