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We follow a post hoc, “user-agnostic” approach to false discovery con-
trol in a large-scale multiple testing framework, as introduced by Genovese
and Wasserman [J. Amer. Statist. Assoc. 101 (2006) 1408-1417], Goeman
and Solari [Statist. Sci. 26 (2011) 584-597]: the statistical guarantee on the
number of correct rejections must hold for any set of candidate items, possi-
bly selected by the user after having seen the data. To this end, we introduce
a novel point of view based on a family of reference rejection sets and a suit-
able criterion, namely the joint familywise error rate over that family (JER
for short). First, we establish how to derive post hoc bounds from a given
JER control and analyze some general properties of this approach. We then
develop procedures for controlling the JER in the case where reference re-
gions are p-value level sets. These procedures adapt to dependencies and to
the unknown quantity of signal (via a step-down principle). We also show
interesting connections to confidence envelopes of Meinshausen [Scand. J.
Stat. 33 (2006) 227-237]; Genovese and Wasserman [J. Amer. Statist. Assoc.
101 (2006) 1408-1417], the closed testing based approach of Goeman and
Solari [Statist. Sci. 26 (2011) 584-597] and to the higher criticism of Donoho
and Jin [Ann. Statist. 32 (2004) 962-994]. Our theoretical statements are sup-
ported by numerical experiments.

1. Introduction. Large-scale multiple inference with a rigorous statistical guarantee has
become a topic of ever increasing relevance with the advent of very high-dimensional data
in numerous application areas. Classical multiple testing procedures prescribe a rejection set
based on the amount of false positives that the user might tolerate (e.g., false discovery rate
control at level 5%). However, if the result does not correspond to what the user expected,
they may tend to “snoop” in the data, possibly concentrating only on a set R of hypotheses
that appear promising to them. Even when motivated by plausible justifications, any such
approach will invalidate standard statistical guarantee because of the selection effect. This is
illustrated on Figure 1, where only “noisy” measurements have been generated: within the
selected set (in blue), 5 points stand out. However, this is only due to the selection effect:
the blue data set comes from a larger data set (green) where these 5 measures are just the 5
maximum (noisy) measurements. As a consequence, while building a statistical guarantee on
the selected set R, the overall size of the data set should be considered. This is the aim of the
so-called “post-selection” (or post hoc) inference.

A particular case of post hoc inference is faced when the selected set R is obtained by
a prespecified selection method, with a statistical guarantee holding either conditionally on
the selection (Belloni, Chernozhukov and Hansen (2014), Fithian, Sun and Taylor (2014),
Lee et al. (2016), Taylor and Tibshirani (2015)) or unconditionally (Benjamini and Yekutieli
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FI1G. 1. lllustration of the post hoc selection effect. Right: virtual data set with 1000 measurements. Left: data
set of 55 measurements selected from the right dataset. Measures have been generated as i.i.d. absolute values of

N, 1).

(2005)). Other approaches diminish the selection effect by using sample splitting; see, for
example, Biihlmann and Mandozzi (2014), Dezeure et al. (2015) and references therein.

However, in these approaches, since the selection step is fixed, this does not allow for
arbitrary “data snooping” or ad hoc selection rules often used in exploratory research. More
generally, elaborate selection rules possibly consisting in several stages and involving user-
fixed tuning constants are commonly used in a variety of contexts, for instance:

e in neural activity detection from brain imaging data, cluster-extent approaches (Woo, Kr-
ishnan and Wager (2014)) select voxels by a two-stage process, first building groups of
contiguous voxels whose activity levels all pass a user-defined threshold, then performing
a correction to select a subset of clusters. The second stage only ensures that each cluster
contains at least one truly active voxel, but there is no additional statistical guarantee about
the proportion of active voxels among the selected.

e in the context of gene or protein activity change detection, a two-sample rank test might
be used to detect activity changes, while requiring that the log-ratio of average observed
activities of the two samples (“fold change”) is larger than a certain user-specified level;
see Li (2012). In other words, for each hypothesis a statistic 77 is used for constructing a
standard test, but a different statistic 77 is used for screening, with the two statistics not
being independent.

A point of view argued in several papers in various statistical contexts (Bachoc, Prein-
erstorfer and Steinberger (2019), Berk et al. (2013), Goeman and Solari (2011)) is that in
absence of precise information of the user’s selection strategy, it is desirable to provide a
statistical guarantee simultaneously for any possible selected set. In this paper, we adopt this
view and focus on simultaneous upper bounds on the number of false positives on the se-
lected set, as proposed in the seminal papers Genovese and Wasserman (2006) and Goeman
and Solari (2011). More formally, our goal is to build a functional V () defined on all subsets
of hypotheses, such that the following uniform guarantee holds:

(1) P(VRC{l,...,m}:[HoNR|<V(R)) =1 —a,

where m is the number of null hypotheses to be tested (identified with their respective index)
and Ho C {1, ..., m} corresponds to the (unknown) set of true null hypotheses. This general
principle is “user-agnostic,” in the sense that the provided inference is “ready for any selected
set” (the “for all R” being inside the probability). Observe that a bound V (-) satisfying the
above guarantee can also inform the choice of the final rejected set R; for example, the
user is allowed to optimize some function of V (R), possibly subject to geometrical or data-
dependent constraints on R.

Note that providing such a bound V() is equivalent to build a uniform upper-bound on
the false discovery proportion (FDP) |Ho N R|/|R| by considering V (R)/|R|, which was the
initial formulation of Genovese and Wasserman (2006). Such confidence envelopes for the
FDP have also been considered in Genovese and Wasserman (2004), Section 6, as well as
Meinshausen and Biihimann (2005), Meinshausen (2006) when the coverage is restricted to
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selection sets R that are p-value level sets, that is, of the form R = {i : p; <}, for some
t €[0,1].

The main idea of our method is to build a reference family (Ry)1<k<xk of rejection sets for
which the guarantee (1) is ensured to hold (in restriction to that family) for some ¢y = V (Ry).
This will induce a post hoc bound, valid for any R, by an interpolation principle. Calibrat-
ing such a family brings new challenges, which can be formulated in terms of controlling a
multiple testing criterion that we call “joint (familywise) error rate” (JER for short). While
we formulate the latter in a very general way, let us first discuss as an introductive example
the situation where the reference family consists of p-value level sets Ry = {i : p; <t} and
{x =k — 1. In that case, the JER of T = (#x)1<k<k is related to the distribution of p.3),
the kth smallest value in the set {p;, i € Ho} as follows:

2) JER(T) = P(Elk e{l,...., K Amo}: pe:ry) < tk),

where my = |Hop| is the number of true null hypotheses. A general intuition is that the thresh-
old #; should be chosen as an appropriate quantile of the distribution of p(.%,), with some
extra slack to take into account for uniformity in k. We establish that if JER(7) < « holds,
then the functional

3) V(R) =k€{r1ninK}{ZIL{pi(X) > )4k — 1}, Rc{l,...,m}
""" i€ER

is a valid post hoc bound.

The threshold family # = ak/m, 1 <k < K = m, is referred to as the Simes family
throughout the paper. It satisfies JER(7) < o when the family of p-value is positive regres-
sion dependent on each element of the subset # (in short, PRDS), as defined in Benjamini
and Yekutieli (2001). The corresponding post hoc bound (3) is called the Simes post hoc
bound, and will be a baseline for our work.

The bound V (R) given by (3) has a simple graphical interpretation, based on the equiv-
alent expression' |R| — V(R) =min{u € {0,...,|R|}:Yv e {u+1,...,min(u + K, |R])} :
Pw:R) = ty—yu}. Two examples are displayed in Figure 2, for the Simes family, and another
family based on the quantiles of the Beta distribution. The latter will be one of the new
contributions of this paper; see Section 5.2. This already illustrates that an improvement is
achievable when the sorted p-value curve has a specific shape.

REMARK 1.1. Note that the simple version (2) of the JER control was already implic-
itly defined by Meinshausen (2006). Also, the bound (3) can be seen as an extension of the
“augmentation procedure” of van der Laan, Dudoit and Pollard (2004) and Genovese and
Wasserman (2006); see Section 2 of the present paper for a proof in a more general context.
Finally, the bound (3) and in particular the formula leading to the interpretation of Figure 2
turns out to coincide with the post hoc bound proposed in Goeman and Solari (2011) as a
“shortcut” of the closed testing bound in the specific context of local tests; see Section S-1.4
for more details.

The main contributions of the present work are the following:

e We introduce a general and flexible framework to build post hoc bounds from reference re-
jection families. The confidence coverage of such a post hoc bound is ensured by showing
that the reference family controls a JER criterion. We establish some fundamental proper-
ties of this method and of the resulting bounds (Section 2).

IThe idea for this formulation and the graphical presentation used in Figure 2 is due to J. Goeman.
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F1G. 2. Sorted p-values of a subset R of {1,...,m} (dots). Thresholds v € {u + 1,...,|R|} — ty—y, for
uelo,..., |R|} (in red for u = |R| — V(R), in light gray otherwise). The post hoc bound V (R) (3) corresponds
the length of the bold line on the X-axis. K =m, |R| =20, m =50, « = 0.5. For the balanced threshold (right),
the functional )() is defined in Section 5.2 (single step, independence).

e We develop JER controlling procedures of the more specific form given by (2), with adap-
tivity to known or unknown dependence and to the proportion of true null hypotheses
(Sections 3 to 5).

e We explore connections of our work to confidence envelopes (Genovese and Wasserman
(2004, 2006), Meinshausen (2006), Meinshausen and Biihlmann (2005)), closed testing
(Goeman and Solari (2011)) and higher criticism (Donoho and Jin (2004)) (supplementary
material).

e These procedures are implemented in an open-source R (R Core Team (2017)) package
(Blanchard, Neuvial and Roquain (2019)). This package was used to perform numerical
experiments (Section 6) to illustrate our theoretical statements.

The paper is organized as follows. In Section 2, we expose the general approach, with an
emphasis on the computability of the obtained bound. We propose a low-complexity conser-
vative proxy and analyze when it coincides with the optimal bound. In the following sec-
tions, we specifically focus on the JER control of the form (2), in some exemplary models
under known or unknown dependence structure. The models are presented in Section 3. In
Section 4, after briefly discussing the shortcomings of the basic JER control obtained using
the classical Simes inequality, we present improvements to this basic case by considering
more general threshold families called templates; incorporating adaptation to noise depen-
dence structure, and to the proportion of null hypotheses using a step-down principle. Two
specific examples of such templates combined with this improved methodology are devel-
oped in Section 5. In Section 6, we present the results of numerical simulations illustrating
and comparing the developed methods. We conclude with a discussion of various points in
Section 7. Due to space constraints, proofs as well as some additional results are postponed
to the supplementary material Blanchard, Neuvial and Roquain (2019). The sections of this
supplement are referred to with an additional symbol “S-" in the numbering.

2. JER control: Principle and properties. In this section, we introduce the framework
(Section 2.1) for post hoc multiple testing inference, and propose a general approach to tackle
this problem based on a reference family of rejection sets (Section 2.2). Proceeding from the
general to the particular, we first study and discuss some generic properties of this approach
(Section 2.3) before focusing on more specific choices for the reference family leading to
(2) and (3) (Section 2.4). Formal proofs for theoretical claims in this section are found in
Section S-7.1.
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2.1. Aim. Formally, let X denote observed data generated from a statistical model
(X,%, P), P € P, and assume we want to test a collection of null hypotheses Hy; C P
indexed by i e N, :={1, ..., m}. Forany P € P, we denote by Ho(P) the set of (indices of)
true null hypotheses satisfied by P, that is, Ho(P) = {i € N, : P € Hp;}, and by mo(P) its
cardinality (or Hg, mo for short). We denote by g = mqo/m the proportion of true nulls. We
also let H1(P) = N,,\Ho(P) be the set of (indices of) false nulls and m(P) = m — my(P)
its cardinality (or H, m for short).

Our main objective in this paper is to find a function V (X, R) (denoted by V (R) for short)
satisfying

(PH,) forall P e P, Px~p(VRCN,,

RNHy(P)| <V(R)>1—a.

If the above is satisfied, V (R) gives a level 1 — « confidence bound for the number of false
rejections in a set R of (indices of) rejected hypotheses that is uniformly valid over all possible
choices of R. Letting S(R) = |R| — V(R), the property (PHy) equivalently provides the
following simultaneous lower bound on |R N H(P)|, that is, evidence of signal in R:

forall P e P, Px~p(VR C Ny, [RNHI(P)| > S(R)>1—a.

As the the above bounds are uniformly valid over all possible choice of R, they will ap-
ply (with probability at least 1 — «) to any arbitrary data-dependent choice of R made by
the user, including choices made after looking at the value of the bound itself for different
candidates for R. For instance, R can be chosen as maximizing |R| among those R satis-
fying S (R) / |R| > 0.5 (more than half of signal in R with high probability). Obv1ously, the
theoretical guarantees for R also hold because the bounds are uniform in R C N,,,

2.2. General principle. The question of how to obtain a control of the general form
(PH,,) is statistical as well as computational in nature, since it is not practically feasible to
consider individually all 2" possibilities for candidate rejection sets R as soon as m exceeds
a couple of dozens. Provided that the statistical guarantee holds, we would ideally wish that
the bound V (R) is computable efficiently for any candidate R (or family thereof) suggested
by the user.

In this section, we consider a general approach to the problem based on a reference family
with a controlled Joint familywise Error Rate (JER). The basic argument is illustrated by
Figure 3. Imagine that a subset A of hypotheses is guaranteed to contain less than 5 true
nulls, that is, | A N Ho(P)| < 5. Then this also provides information on other subsets R C N,
with R # A. Namely, for any R C N,,,, |[RNH{(P)| = |R N A| — 5. Of course, while this
information is useful for R if |R N A| > 6, it is not if |[R N A| < 5 (nonpositive bound), as
in Figure 3. Next, if we want to improve the bound, we can consider another set B (here
including A) with the property |B N Ho(P)| <7 (say). In the situation pictured in Figure 3,
this ensures that R contains at least one element which is in /1 (P). Similarly, adding another
set C (here disjoint from A and B) with the property |C N Ho(P)| < 1 (say), ensures that R
contains at least two elements which are in H(P).

More generally, let us assume that we have at hand R = ((R1(X), {1(X)), ..., (Rg(X),
¢k (X))) a data-dependent collection of subsets Ry of N, and integer numbers ¢ (we will
often omit the dependence in X to ease notation), such that, with probability larger than 1 —«,
the set Ry (X) does not contain more than {x(X) elements of Ho(P), uniformly over k, that
is,

“) Forall P € P, JER(R, P) <,
where we have denoted

(5) JER(R, P) :=Px~p(3k € Ng : |Re(X) NHo| > (x(X)).
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FI1G. 3. Toy example: use of a reference family with three subsets A, B and C to build a post hoc bound on the
number of true positives in an arbitrary candidate rejection set R. In brackets, a known bound on the number of
false positives in each set.

We see ‘R as a reference family of rejection sets for which a statistical guarantee on the
number of false rejections is ensured, and based on which we will build a post hoc bound.
The cardinality (or size) K of the reference family is also allowed to be data-dependent in
the most general form, although this dependence is not acknowledged for in our notation for
simplicity.

How can we “interpolate” from the control on a reference family (4) to a control on all
possible rejection sets (PH,)? On the event where Yk € Ng, |Ri(X) N Ho| < & (X), the only
available information on the unknown subset 7 is that it is an element of the collection of
subsets

(6) A®R) ={ACN,, :Vk e Ng, [Re N A| < &)

As a result, the best we can do to bound |R N Hp| for any proposed rejection set R is a
worst-case bound under this constraint:

7 VE(R):= max |[RNA|, RCN,,.
(7N R (R) AeAéR)' | m

The next result formalizes the link between JER control and the associated post hoc bound.
It is a purely deterministic result, analyzing the information available under JER control.

PROPOSITION 2.1. Let R = (Ry, {i)keng be a collection of subsets R C Ny, and of
integers . Then for any A C N, the following statements are equivalent:

1. VkeNg:|RiNA|<; 2. Ae A(R);
3. VRCN,, |RNAI<VE(R): 4 |A|<V§i(A).

Furthermore, if a function V : P(N,,) — N satisfies that for any A C N, point 1 implies
point 3 (wherein Vg, is replaced by V), then for all R C Ny, it holds V§(R) < V(R).

Note that point 1 of the above proposition is the complement of the event appearing in (5)
((Rk, Cr)keny 1s a reference family and A is taken equal to H() while point 2 is the event
appearing in (1) (Vg is a post hoc bound). The last part of the proposition establishes the
optimality of Vi in this context.

An important problem is that V*(R) (we will sometimes drop the index R for simplicity)
can be hard to compute. In fact, the next proposition shows that it is, in full generality, an
NP-hard problem.

PROPOSITION 2.2.  The problem of computing Vg, (R) given any arbitrary reference fam-
ily R = (R, &) 1<k<k With Ry C Ny, &k € N), and R C Ny, is NP-hard.
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Naturally, Proposition 2.2 does not imply that computing the optimal bound V*(R) is
always infeasible: depending on the choice of the reference family, we might be in a particular
case where this can be done efficiently We will discuss precisely such a situation below when
the regions are nested.

2.3. A computable upper bound for V* and its properties. We introduce the following
coarser but simpler bound:

(8) Vx(R) := min (|R\Rk|+§k)/\|R|, R CN,,.
keNg

Given the reference family and R, the bound V is computable in time O(mK). The next
proposition is a counterpart of Proposition 2.1 for V.

PROPOSITION 2.3. Let R = (R, k)keng be a collection of subsets Ry C N,, and of
integers {i. Then for any A C N,,, the following statements are equivalent:

1. VkeNg:|RiNA| <& 2. VRCN,, |RNA|<Vx(R);
3. |A| < Vgr(A).
For all R C Ny, it holds Vg (R) < Vx(R).

Observe that V (R) is also nondecreasing in the sense that R C R’ implies V (R) < V(R).
We turn to studying further properties.

Self-consistency. Given some reference family R = (R, {x)1<k<k, on the large probability
event for which the control |R; N Ho(P)| < &k, 1 <k < K holds, Vg provides a bound for
| R, N Ho(P)| itself, namely

) Lk :=Vm(Rk)=jn;§n (IRk\Rj|+¢j) ARk, 1<k<K.
K

Obviously, £ < &, with a possible strict inequality. Nevertheless, the next proposition shows
that there is no advantage in “iterating” the post hoc bound V' with ¢ replaced by ¢, thus
showing a form of self-consistency of the bound V.

PROPOSITION 2.4.  For any reference family R = (R, {i)1<k<k , define (Zk)lskSK by
(9). Denoting R = (Rg, {k)1<k<k » we have

(10) Va(R) = min (R \ Re| + &) A IR =V&(R), RCN,,.
kENK

Optimality under nestedness assumption. In the sitﬂation where the sets (Ry)1<k<k are
nested, it holds that V = V*, that is, the formula for V provides a computationally efficient
way to compute the optimal bound in this case.

PROPOSITION 2.5. For any reference SJamily R = (Ry, {k)1<k<k such that Ry C Ry
whenever k < k', we have Vx(R) = Vi (R).

REMARK 2.6. The bound V (R) was introduced in Genovese and Wasserman (2006) in
the particular case K = 1, ¢; = 0, with a reference to the augmentation procedure of van
der Laan, Dudoit and Pollard (2004). The latter builds a k.-FWER controlling procedure by
adding k — 1 arbitrary hypotheses to the rejection set of a given FWER controlling procedure.
Genovese and Wasserman (2006), noting that fixing any single value of & is suboptimal in
terms of power, also put forward the principle of taking the minimum obtained for several
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values of k via a union bound principle. See an extended discussion on this point in Section S-
1.1. Also, since any one-element family is nested, Proposition 2.5 encompasses Theorem 5 of
Genovese and Wasserman (2006) (K = 1, {1 = 0), extending it to the case of a whole nested
reference family.

REMARK 2.7.  The results of the paper can equivalently be stated in terms of false pos-
itives using V, V* and V or in terms of true positives S, S* and S, where for any R € N,
S*(R) := |R| — V*(R) and S(R) := |R| — S(R). For simplicity, we have chosen to focus
onV.

2.4. From general reference families to specific instances.

Specific instances. We have developed post hoc bounds for reference families R in a very
general form. Specific cases can be considered, recovering in particular previous literature:

(A) & =k — 1 for all k: in this case, each individual rejection region Ry has controlled
k-FWER, and the control is uniform over the regions. In the standard case discussed in the
Introduction where these regions are p-value level sets Ry = {i : p; < 1}, nestedness holds,
and thus the bound V given by (8) is optimal by Proposition 2.5.

(B) ¢ = |Rk| — 1 for all k: adopting a different point of view, let us associate to each
R C N, the intersection hypothesis Ho g := ();cg Ho,i- In this view, each R corresponds
to a hypothesis rather than a collection of hypotheses. The statement (4) is interpreted as
saying that with high probability, each individual rejection region Ry contains at least one
true rejection. Consequently, rejecting all intersection hypotheses Ho g,, k =1, ..., K can
be done without committing any error. This corresponds to an overall FWER control over
this family of hypotheses.

From Section 3 onwards, we will focus on case (A) ({x = k — 1 and nestedness) and on
how to obtain JER control then. In situation (B), JER control can in particular be obtained by
defining a test for each local hypothesis Hy g, thus recovering the setting of Genovese and
Wasserman (2006), Goeman and Solari (2011); see Section S-1 for a more detailed discus-
sion.

References families of different types can be considered and be useful in other situations as
well. For instance, consider the setting where the reference regions Ry have little or no overlap
to each other. In such cases, the bound Vi is a poor proxy for Vi and other approximations
should be considered, as for example,

R\LKJRk

k=1

(11) ‘79%(1?)2:( > IRNRi A G+

kefl,...K}

)/\|R|, R CNy,.

It is not difficult to see that Vm(-) = Vg;’ft(-) when the reference sets Ry are disjoint. This
setting is in particular useful if the signal is spatially structured; see Durand et al. (2018) for a
detailed analysis of the JER approach in this case, and further corresponding developments.

Focus of the next sections. For the remainder of this paper, we focus on the common sit-
uation where a test statistic 7;(X) is available for each null hypothesis Hy ;, which in turn
is transformed into a p-value p;(X), for all i € N,,,, and we choose a reference family by
p-value thresholding:

(12) Re(X)={i eNy:pi(X) <t} kefl,....K},

where the 7, € R, 1 <k < K, are associated thresholds, possibly depending on X (K being
deterministic). We easily check that the simpler expressions (2) and (3) announced in the
Introduction hold in that context.
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3. Model assumptions. Properties of the p-value process (p;(X),i € N;,) depend on
the underlying model assumptions. In this paper, we distinguish between two general situa-
tions, depending on whether the dependence structure is known or not.

3.1. Location model. To give some intuition behind the general assumptions of the next
section, we start by considering a specific location model

(13) Xi=pi+e&, €Ny,

where the ¢; are identically distributed with a common known marginal distribution which
is assumed to be continuous, integrable and symmetric. We denote F(x) = P(g; > x),
x € R. We consider the one-sided (resp., two-sided) testing problem with null hypotheses
Hp;: “pni <07 (resp., Ho;:“p; = 07) versus the alternative hypotheses Hy ;:“w; > 0 (resp.,
Hi;i:*“n; #07) for all i € Ny,. Classical p-values are then given by p;(X) = F(X;) (resp.,
pi(X) =2F(|X;])). As many procedures of multiple testing theory, our results will rely on
the (joint) distribution of (p; (X));e,(p) Or some approximation/bound of it.

Known dependence. In the case where the (joint) distribution of ¢ is known, we can consider
“least favorable” p-values ¢;(X) = F(X; — u;) (¢; =2F (|X; — p;]). While the g; (X)’s are
not observed, they can be used purely as a technical device. Interestingly, these variables
satisfy the following pointwise property: for all i € Hy, p; (X) > g; (X), both in the one-sided
and two-sided case. In addition, their joint distribution, that is, v, = D((g; (X)) 1<i<m), 1S
assumed to be known. For instance, under independence of the ¢;’s, v,, = U (0, 1)®m,

Unknown dependence. 1In the case where the (joint) distribution of ¢ is unknown, so is v,
and the above least favorable p-values cannot be generated. In this situation, we focus on
the two-sided situation, and assume that we have at hand » i.i.d. copies (X; j);en, € R™,
J € N,, where each (X; j);en, follows the location model (13). The p-values are assumed
to be given by p;(X) = 5(|T(X,-,j, 1 <j=<n)|), where T(X;;,1 < j <n) is some statis-
tic, and the (known) function G is given by G(x) =P(|T(¢;,1 < j <n)| > x),x >0, forn
i.i.d. copies £;,1 < j <n of 1. Then, by a standard argument (see, e.g., Arlot, Blanchard
and Roquain (2010)), the joint distribution of (p;(X))ie7,(p) can be approximated by ran-
dom sign-flipping: let G = {—1, 1}"* denote the group of signs s € {—1, 1}" that acts on the
observed X in the following way:

(S.X)i’j =SjX,',j, i €Ny, jeN,.

Then, if i € Hg, by symmetry, the distribution of p;(X) is equal to the one of p;(s.X),
for some random sign s uniformly generated in G. As a consequence, the distribution of
(pi(s.X))ier,(p) conditionally on X can act as proxy for the distribution of (p; (X));e,(p)-
This “randomization property” will be formalized in detail in the next section.

Both known and unknown situations can be met in the simple Gaussian location model
for which ¢ ~ N (0, £) with some covariance matrix ¥ (assuming %;; = 1 for i € N,,, for
simplicity). On the one hand, the known dependence case corresponds to the case where X
is known (with v,, = A/ (0, X)). It can be met in practice in a standard Gaussian linear model
or in marginal regression; see Fan, Han and Gu (2012). On the other hand, the unknown
dependence case corresponds to the general situation where we have no information on X.
A suitable statistic is then T'(X; j, 1 < j <n)=n"123"_, X; ;, for which G (x) = 2P(Z >
x),x>0,Z~N(©,1).

Also, mainly for illustrative purposes, we will use throughout the paper the p-equi-
correlated covariance matrix for which %; ; = p for 1 <i # j < m, for some p € [0, 1]
(either known or not).
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3.2. General framework and assumptions. Now that we have a concrete example in
mind, we go beyond the location model by presenting general assumptions on the p-value
family (p; (X), i € Hop).

Known dependence. We assume that there exists a family of “least favorable” variables
(qi (X)) 1<i<m such that for all P € P,

Vi e Ho(P), pi(X) >qi(X) P-as.

(LeastFavor)
vm = D((¢i(X)),<;<,,) does notdepend on P.

While (LeastFavor) is satisfied in particular in the location model (with known dependence),
it encompasses some other models (e.g., scaling model).

Unknown dependence. A classical way to adapt to unknown dependence in a multiple test-
ing setting is to use resampling-based procedures, as introduced in Westfall and Young (1993)
and reviewed in Dudoit and van der Laan (2008) for instance. However, establishing a rigor-
ous nonasymptotic control is challenging and the seminal work of Romano and Wolf (2005)
has paved the way for this by using randomization strategies. We follow this approach by
assuming the existence of a finite transformation group G acting onto the observation set X,
Next, by denoting py,(x) the null p-value vector (p;(x));ex,(p) for x € X, we assume that
the joint distribution of the transformed null p-values is invariant under the action of any
g € G, that is,

(Rand) VPeP.VgeG. (o8 X)) geg ™ (Pro(8"-8-X))grcq

where g.X denotes X that has been transformed by g. This assumption has been intro-
duced in Hemerik and Goeman (2018) and is slightly weaker than the so-called random-
ization hypothesis of Romano and Wolf (2005). It is easy to check that (Rand) is satisfied
in the location model (with unknown dependence) for the above mentioned sign-flipping
group G = {—1, 1}, by using the symmetry of the noise. Assumption (Rand) is also met in
permutation-based two-sample multiple testing problems, as described in Section S-5.

4. Methodology for adaptive JER control.

4.1. Limitations of JER control based on Simes inequalities. A particular form of JER
control (2) may be obtained directly from the Simes inequality (Simes (1986)): denoting by
P(k:m) the kth smallest p-value,

k
(14) wap(ﬂke{l,...,m}:p(k;m)<a—> <a,
m

provided that the p-value family is PRDS. A straightforward consequence is that (2) is satis-
fied for the choice #, = ak/m, k € Nk, for any choice of K. This is described in more detail
in Section S-2. However, the corresponding reference family, called Simes reference family
in the sequel, suffers from several limitations, which are briefly described in the next two
paragraphs.

Sharpness and conservativeness. We carried out a simulation study in the Gaussian equi-
correlated model where the one-sided test statistics follow the distribution N (0, £) with
Y;i=1and X;; = p for i # j, for some p > 0. This p-value family is PRDS. We consider a
white setting (mo = m = 1000). In Table 1, we quantify the conservativeness of JER control
in this model as the ratio of the JER actually achieved (estimated from 1000 simulations)
to the target JER level o (for @ = 0.2). While the JER actually achieved by the Simes ref-
erence family is o for p = 0 (a consequence of the sharpness of the Simes inequality under
independence), it is less than «/2 for p = 0.4.
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TABLE 1

Conservativeness of JER control based on Simes inequality in the Gaussian equi-correlated model. Here,
mg=m = 1000 and o« = 0.2

Equi-correlation level: p 0 0.1 0.2 0.4 0.8
Achieved JER xa ™! 1.00 0.89 0.73 0.46 0.39

Unbalancedness. Let us consider a “favorable” case for the Simes procedure, for which the
p-values are i.i.d. uniform on (0, 1). In this case, the Simes inequality (14) is an equality.
However, we argue that the errors in the event described in (14) are not balanced w.r.t. the
parameter k. As an illustration, P(p(1.m) < a/m) =1 — (1 — 2)™ = a + o(«), hence the
probability of the event in (14) is already almost exhausted for k = 1. More generally, some
values of the function k — P(p.m) < ak/m) are given in Table 2 for m = 1000, where
DPem) ~ Beta(k,m + 1 — k). As a consequence, the Simes family seems to favor some of
the k’s when controlling the JER. In addition, the structure of this unbalancedness is some-
what arbitrary, and imposed to the user of the procedure, which may be undesirable. This
phenomenon is quantified more formally in Section S-3.3; see (S-14).

In order to address these limitations, we aim in the rest of Section 4 at building a
thresholding-based reference family R for which the quantity JER(R, P) is as close as pos-
sible to «, for a wide spectrum of distributions P. To this end, we combine two approaches:

e incorporating the dependence structure of the noise (either known or unknown);
e using a step-down algorithm to adapt to the unknown set H.

4.2. Threshold templates. We start with considering a reference family R, of the form
(12), parametrized by A € [0, 1] and itself based on a parametrized family of thresholds # (1)
which we call template. The second step will be to to choose A = A(«) so that the JER control
(4) is satisfied, which we call A-calibration.

DEFINITION 4.1. A one-parameter threshold template (simply referred to as template
in the sequel for short) is a family of functions #; (1), A € [0, 1], 1 <k < K, such that K €
{1,...,m}andforallk € {1, ..., K}, #:(0) = 0 and #(-) is nondecreasing and left continuous
on [0, 1]. The parameter K is called the size of the template.

In general, a template is allowed to depend on the observation X. For a given template
and fixed A, we refer to 7 (1), 1 < k < K, as thresholds and denote by R, the associated
reference family given by (12). Several choices of template are possible as we will see in
Section 5. Here, we work with a generic, fixed template #;(A), A € [0,1], 1 <k < K. We
denote the generalized inverse of #;(-) by tk_l(y) =max{x € [0,1] : tx(x) < y}, for any y €
R U {—o00, +00}.

TABLE 2
P(p(k:m) < ak/m) when p .,y ~ Beta(k,m + 1 — k), m = 1000 and o = 0.05

k 1 2 5 10 100

P(p(m) < ak/m) 4.9 x 1072 4.7 x 1073 6.6 x 1076 1.6 x 10710 5.8 x 1073
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Since #(-) is monotonic, for any p-value family {p;,i € N,,}, we have # (1) > p.n,) if
and only if A > 7~ ! (Pk:11,))- Hence, in view of (2), we obtain

JER(R;, P) =IPXNP(E|/€ e{l,...,K Amg}: Dk:Hy) < lk()\,))

=Px~p(kef{l,....,K Amo}: 1, (Puny) < 1)

This proves the following result.

LEMMA 4.2. Consider a general p-value model and any (possibly data-dependent) tem-
plate ty (L), A €[0,1], 1 <k < K. Then, for any A € [0, 1], the error rate (5) of the reference
Sfamily R, given by (12) can be written as follows: for any P € P,

(15) JER(R,, P) =Pxp( _min {17 (g (X))} < 1),

1<k<K Armg

4.3. Single-step and step-down procedures by A-calibration. The JER control (4) can
now be achieved by choosing A in an appropriate way.

DEFINITION 4.3. Given a threshold template # (1), A € [0, 1], 1 <k < K, a (possibly
data-dependent) functional A(«, A), o« € (0, 1), A C N,,, is called a A-calibration if it is non-
increasing in A, that is,

(16) Vo€ (0,1),YA, A" C{l,....m} with A C A" A(c, A') <A@, A),
and satisfies Vo € (0, 1), VP € P,

- -
(17) PX~P(1§kI;1}{HAmO{tk (Plero Py (X))} < Aler, HO(P))> <a.

Two examples of possible A-calibrations will be provided in Sections 4.4 and 4.5. In the
remainder of Section 4.2, we consider that some A-calibration is given.

The dependence of the calibration on the set A adds extra flexibility which will allow us to
apply a step-down principle and get a more accurate procedure. A consequence of Lemma 4.2
is that the procedure R« 7,) has a controlled JER (given a template and a calibration),
in other words taking A = H provides an “oracle” calibration, but since H is unknown,
A(a, Ho) cannot be used. However, a consequence of (16) is that A («, Ny, ) < A(«, Ho), so that
A(a, N;,;) can be used as a (single-step) conservative substitute for A(c, Ho). This provides
the following result.

PROPOSITION 4.4. In the framework of Lemma 4.2, consider A(a) = L(«, Ny,) for some
A-calibration as in Definition 4.3. Then the procedure R ) controls the JER criterion at
level « in the sense of (4).

Above, the fact that A(«, N,,;) is smaller than A(«, Hg) induces a loss in the JER control.
This loss can sometimes be substantial, as illustrated with numerical experiments in Sec-
tion 6; this effect is further studied theoretically in Section S-3.2. This loss can be reduced by
using A(c, A), where A is the output of the the following step-down algorithm.

While the update of AY) only depends on (-) in Algorithm 1, A may depend on all the
t¢’s through the functional A(w, -). The following result is proved in Section S-7.2.

PROPOSITION 4.5.  In the framework of Lemma 4.2, consider any A-calibration as in
Definition 4.3 and compute A by Algorithm 1. Then the procedure R, ,, ) controls the JER
at level o in the sense of (4).

REMARK 4.6. When we choose K =1, Algorithm 1 reduces to the usual FWER con-
trolling step-down algorithm (see, e.g., Romano and Wolf (2005)).
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Algorithm 1: General step-down algorithm

J<0;
AO N,
repeat
J<Jj+1;
Aj < A, AUTDY
AV —{i eNy @ pi(X) = 11(A))) 5
until AV = AU
return A();

4.4. Valid A-calibration for known dependence. Let us focus on the situation where the
dependence is known; see Section 3.2. The template is assumed to be deterministic in this
section. Assumption (LeastFavor) (with v, defined therein) and Lemma 4.2 thus give
(18) JERRy, P) < Py, min {17 (queng)} < ),

1<k<KArmg

which provides the following valid A-calibration: for all A C {1, ..., m},

— . ; —1
(19) Ao, A) = max{k >0: Py, (1gkr§11<nA|A|{t" (quea)} <2) < a}.
Property (16) can be easily checked. Note that A(«, -) depends on v, and on the template,
although it is not explicit from the notation for short. We have proved the following result.

THEOREM 4.7 (A-calibration for known dependence). Consider any p-value family sat-
isfying (LeastFavor), a deterministic template and the associated reference family R, Then
the (deterministic) functional A(-, -) defined by (19) is a A-calibration in the sense of Defini-
tion 4.3, and thus R, N,,) and R, , 3y both control the JER at level «.

4.5. Valid )-calibration for unknown dependence. Let us consider now the case where
the dependence is unknown; see Section 3.2. The template is still assumed to be deterministic
in this section. We use the notation defined therein and in particular assumption (Rand). Let
us consider a (random) B-tuple (g1, g2, ..., gp) of G (for some B > 2), where g is the
identity element of G and g3, ..., gp have been drawn (independently of the other variables)
as i.i.d. variables, each being uniformly distributed on G.

Let us consider some template #(-), 1 < k < K, and, for short, denote for all A C
N, V(X,A) = minlgksKMM{tk_l(p(k;A)(X))}. Now introduce the (data-dependent) A-
calibration

B
(20) Mo, A)=max{rA>0:B7' > 1{W(g;.X,A) <A} <af.
j=1
In practice, we can compute this functional easily as A(a, A) = V(o8 +1) Where Y1) <
W) < --- < Y¥(p) denote the ordered sample (W (g;.X, A),1 < j < B). Then the following
result holds and is proved in Section S-7.2.

THEOREM 4.8 (A-calibration for unknown dependence).  Consider any p-value family
satisfying (Rand), a deterministic template and the associated reference family R).. Then the
(data-dependent) functional \(-, -) defined by (20) is a A-calibration in the sense of Defini-
tion 4.3 and Ry (a,N,,) and R, , z) both control the JER at level a.
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A related idea has been proposed independently by Hemerik, Solari and Goeman (2019)
to build confidence envelopes for the false discovery proportion.

5. Application: Two examples of template-based reference families. In this section,
we apply the methodology presented in the previous section for two particular instances of
templates. Throughout this section, the A-calibration functional A(x, A) is either given by
(19) (known dependence) or by (20) (unknown dependence).

5.1. Linear template. Motivated by the Simes inequality (see (14)), we define the linear
template (of size K) by

21 tkL()»)z)\k/m, Ael0,1],1 <k <K.

Hence we have (tkL Yy =14 (%u) which corresponds to a specific A-calibration denoted
by AL (a, A). For each K, this gives rise to two new reference families:

e The single-step linear reference family (of size K ), denoted SR”, is given by Rl = (RIL (X)),
..s RE(X)), where

k
(22) R,f(X):{ieNm:p,-<AL(a,Nm)—}, 1<k <K.
m

e The step-down linear reference family (of size K), denoted SRL-%4, is given by RE-Sd =
(RE(X), ..., RS (X)), where

.k
(23) R,f’Sd(X):{ieNm:p,-<AL(a,A)—}, 1<k<K,
m

where A is derived from Algorithm 1, used with A(-) = AL (:) and £;(-) = tlL(-).

Theorems 4.7 and 4.8 ensure that the reference families %% and S%-%¢ control the JER at
level « both in the known and unknown dependence case.

There exists also distribution free calibrations of the type A(a) = /¢y, that are valid under
arbitrary dependence. First, the Hommel bound corresponding to ¢, = >_7_; 1/i (see Sec-
tion S-2.1). Second, a union bound argument can be used to give ¢,, = K, as suggested in
Genovese and Wasserman (2006) (see the sentence before equation (24) therein). By contrast,
the advantage of our proposed A-calibrations is their adaptivity to the dependence structure.
The magnitude of AL (x, N,,) is studied numerically in Section S-3.1 in the case of known
dependence, while the numerical experiments in Section 6 illustrate the sharpness of the as-
sociated JER control.

5.2. Balanced template. Considering a linear template is not always appropriate: as men-
tioned in Section 4.1, under independence and K = m, the Simes reference family suffers
from a kind of unbalancedness. Ideally, a balanced reference family Rj; would have the
property that P(|Rx N Ho| > k) is a constant not depending on k =1, ..., K. While strict
balancedness seems out of reach, since these probabilities depend on Hp, we can ensure
balancedness under the full null configuration (N,, = #() by calibrating the template as a
quantile at a common level for all £, as follows. For each k € N,,, let us define

Fr(x) = Pq~vm (Q(k:m) <Xx) (known dep.),
B

Fy(x)= B! Z {pa:m)(gj-X) <x} (unknown dep.), x €011

j=1
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The balanced template (of size K) is then given by
(24) B = Fk_l()») =min{x € [0, 1]: Fx(x) > 1} withke{l,...,K}.

From an intuitive point of view, for each k, the threshold t,f (A) corresponds to a procedure
controlling the k-FWER at level A. It is straightforward to check that t,f () fulfills the re-
quirements of Definition 4.1 while (t,ﬁ9 )~l(x) = Fi(x) for all x € [0, 1]. This corresponds to
a specific A-calibration denoted by A8 («, A). For each K, this gives rise to two new reference
families:

e The single-step balanced reference family (of size K), denoted 2, is given by R =
(RE(X), ..., RE(X)), where

(25) REX)=lieNy:pi <tP(1 8@ Ny)}, 1<k<K.

e The step-down balanced reference family (of size K), denoted R5%4, is given by B34 =
(RES4(X), ..., RE* (X)), where

(26) REMNX)={i eNy:pi <t (1B (2, A)}, 1<k<K,

where A is derived from Algorithm 1, used with A(-) =A% (-) and £, (-) =15 (.).

We give in section Section S-6 a detailed construction of the reference families )&% and SR5-54,
Theorem 4.7 ensures that both of these reference families control the JER at level « in the
case of a known dependence.

However, for unknown dependence, Theorem 4.8 cannot be directly applied to the bal-
anced template. Indeed, although this is not acknowledged by the notation for simplicity, Fg,
and thus t,f (A) depends on the observation X. Our proof does not generalize easily to such a
data-dependent rejection template, although the numerical experiments of Section 6 suggest
that the JER control is also valid in that situation.

REMARK 5.1. The step-down refinement can be substantial for a balanced template, as
illustrated in the numerical experiments of Section 6, and further discussed in Section §-3.2.

REMARK 5.2. Under independence, the balanced template t,f (-) corresponds to using
quantiles of a Beta distribution, which was proposed in Genovese and Wasserman (2006).
However, these authors address uniformity with respect to k through a union bound argument,
which corresponds to divide the confidence level by the family cardinal K, while our A-

calibration method divides the level by a factor at most (logm)!/#; see Lemma S-3.1.

REMARK 5.3. By considering the two-sample setting with unknown dependency struc-
ture (see Section S-5) our balanced procedure is related to the work of Meinshausen
(2006), where permutations are used to build FDP confidence envelopes. However, there
appears to be a gap in the theoretical analysis justifying the validity of such an ap-
proach (Theorem 1 of Meinshausen (2006), more specifically equation (12) therein), which
seems to have been overlooked so far. The reason is similar to the one making our proof
not cover the case of a data-dependent template (X, )): the fact that for all A and
g € G, (t(g.X. M 1=k=k = (e(X, ) 1=k=k and (pi(g-X))iery ~ (pi(X)ien,, does not
imply (in general) equality of the joint distributions ((#x(X, A))1<k<k, (pi(X))ien,) and
k(8- X, )1 <k =k » (i (8-X))ieny)-
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6. Numerical experiments. We report numerical experiments performed in the two-
sided location model (13) described in Section 3.1 in the case of an unknown dependence.
The observations (X; j)ien, € R", j € N, are distributed as p-equi-correlated, and the test
statistics for i € N,, is T(X; j, 1 < j <n) = n—1/2 2?21 X, j. We use sign-flipping (as de-
scribed in that section) to approximate the joint distribution of the test statistics under the null.
The location parameter is set to u; = n~V2@1{i € H1}, where & > 0 quantifies the signal-
to-noise ratio (SNR). We have also performed experiments in the same model but assuming
known dependence, in order to illustrate Theorem 4.7. The results of these experiments are
quite similar to those reported here for unknown dependence.

6.1. JER control. The target JER level is set to o = 0.25, and the simulation param-
eters are: m = n = 1000, p € {0,0.2,0.4}, mg € {0.8,0.9,0.99} (corresponding to m €
{200, 100, 10}) and & € {0,1,2,3,4,5}. For each setting, we report the empirical JER
achieved, that is, the proportion of simulation runs (out of a total of 10,000 runs) for which
|Rx(X) N Ho(P)| > k for at least one k € {1, ..., K}. The results are summarized by Fig-
ure 4 for the linear template, and by Figure 5 for the balanced template. Each figure is a
matrix of panels, where each row corresponds to one value of the sparsity parameter 7o, and
each column corresponds to one value of the equi-correlation parameter p. In each panel, the
empirical JER achieved by several procedures is displayed as a function of the signal-to-noise
ratio parameter t. The target JER level « is represented by a horizontal dashed line, and for
the linear template, the level mpo is represented by a horizontal dotted line. In both figures,
each color corresponds to a different A-calibration:

single-step Step down  Oracle
M@ N MaA) i@, Ho)

Additionally, for the linear template, “Simes” corresponds to A = « (no A-calibration).
Figure 4 illustrates that the JER is controlled at the target level « in all situations for the
linear template, which is expected according to Proposition 4.8. Oracle calibration yields
exact JER control, up to sampling fluctuations. As discussed in Section 4.1, the Simes ref-
erence family with parameter « yields JER equal to oo under independence (p = 0), while
it is more conservative under positive dependence p > 0. Single-step A-calibration addresses

2
o
Il
o
0.15 o
o . .
L Linear family
2 0.10- -o- Oracle
8 Simes
E_ Single Step
e -e- Step down
LW 2- )
o
Il
o
0.15- ©
0.10-
0 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5

FI1G. 4. JER control based on the linear template for equi-correlated test statistics.
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FI1G. 5. JER control based on the balanced template for equi-correlated test statistics, with K =m and K = 10.

this conservativeness by adapting to the (unknown) dependence: it yields JER control at mwgo
in all settings considered. Finally, as the signal-to-noise ratio [t gets larger, the step-down A-
calibration yields a JER closer to the nominal level & in nonsparse situations (g € {0.8, 0.9}).
In a sparse situation (719 = 0.99), corresponding to m| = 10, the single-step procedure is al-
ready quite sharp and essentially indistinguishable from its Oracle counterpart, so we decided
to omit this setting from Figure 4.

The results for the balanced template are summarized by Figure 5. First, the JER is em-
pirically controlled at the target level « in all situations. This is worth noting because as
discussed in the preceding section, our results do not cover the case of unknown dependence
for the balanced template. Looking at the (brown) curves corresponding to K = m, single-
step A-calibration leads to a much more conservative JER control than for the linear template,
especially under independence or for small values of p, even when g is close to one. For
example, when g = 0.99 (m = 10 out of m = 1000), the JER achieved by the single-step
A-calibration of the balanced family is of the order of «/2(<K mpar). When the signal-to-noise
ratio is large, our proposed step-down adjustment catches up with the target JER level. This
effect is further discussed and formalized in Section S-3.2.

Interestingly, the JER control offered by the balanced family with K = 10 (green curves in
Figure 5) is much less conservative than with K = m, even for the single-step A-calibration.
The magnitude of the A-adjustment is further discussed in Section S-3.1, and the question of
how to choose K is discussed in Section 7.1.

Additional numerical experiments. The experiments reported here are carried out only in
the equi-correlated setting and assuming that the mean signal under the alternative is con-
stant: p; = @ for all i € H1. We have performed other experiments, where w; is uniformly
distributed between O and i, and/or where the test statistics have a Toeplitz covariance, for
which %; ; =i — j1?, where 6 € {—2, —1, —0.5, —0.2} controls the range of dependency.
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The results obtained for both types of signals and for both types of dependency are qualita-
tively similar, so we have only reported the results for the parameter combination: constant
signal/equi-correlated dependency.

6.2. Power. Inthe preceding section, the quality of a JER controlling procedure is quanti-
fied by the tightness of its JER control. We now compare some JER controlling procedures in
terms of power. This comparison is made under independence for simplicity. We focus on the
step-down linear reference family (23) with K = m, and the step-down balanced reference
family (26) with K € {10, 2m, m}. We consider a notion of power, referred to as “averaged
power,” that takes into account the amplitude of the lower bound Ss(-). Let us define for
some selected set R C N,,, (possibly data dependent),

Sn(R)
IRNH1(P)]

where we recall that Sz (R) = |R| — V(R). The following selected sets R C N,, are con-
sidered:

27) Pow(fﬁ,P,R):E( ‘|RHH1(P)| >o),

(a) R =N,,. In this case, the averaged power Pow(*R, P, R) measures the (relative) per-
formance of S(N,,) as an estimator of m1(P) = |H1(P)|;

(b) Ro={i € N, : pi <0.05}, and R is a random selection of half of the items of Ry.
Each hypothesis is given a selection probability proportional to the rank of its p-value;

(c) Same as (b) with Rg corresponding to the rejections of the BH procedure at level 0.05.

In (b)—(c) above, the sets R are thought to be typical possible choices for the user. We chose to
give nonuniform selection probabilities in order to favor sets enriched in lower p-values. The
parameter 7y is taken in the range 7o € {0.8, 0.9, 0.99}. We set & = /—41log(1 — 7o) in order
to specifically focus on situations where the signal strength lies just above the estimation
boundary, which would correspond to & = v/—2log(1 — mp); see Donoho and Jin (2004).

The results are displayed in Figure 6. The average power of the Simes family (light green)
and of the reference families obtained by single-step and step-down A-calibration of the linear
template (dark green) are almost identical. This is consistent with the results displayed in
the first column of Figure 4, where the three families achieve very similar JER levels for
n < /—4log(l — mp); this value of 1t is shown by a dashed gray vertical line. Overall, the
averaged power obtained from the balanced template is substantially larger than the averaged
power obtained from the linear template. While neither template uniformly dominates the
other one, the only situation where the linear template is more powerful is under the most
sparse scenario (g = 0.99), for the two user-defined rejection sets (b) and (c). In particular,
the first row of panels in Figure 6 indicates that, except for a very low target JER (o <
0.02), the bound Sg;(N,,) obtained from the balanced template provides a better estimator of
m1(P) = |H1(P)| than the linear template. These experiments also show that, as expected,
the choice of K can improve the performance of the balanced procedure. Some suggestions
for choosing K are discussed below.

7. Discussion.

7.1. Choosing the size K. While the choice K = m seems a priori natural, we have
shown throughout this paper that it induces some conservativeness (via the A-calibration):
choosing a smaller value for K can yield a tighter post hoc bound. This effect is particularly
marked in the case of the balanced template when p-values are close to independent (see Fig-
ure 5). The choice of K is therefore quite important in practice. We underline the following
plausible scenarios:
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e if the user has an a priori maximum amount of tolerated false discoveries, then K can be set
taken equal to that value. This comes from the following fact: let Ko € N and assume R =
(Ri (X)) 1<i<k s a reference family (using {; =i — 1) satisfying JER control. Consider
any set R C N,, such that Vi(R) < Ko < K. Then we have Vix(R) = Vm(KO)(R), where
R(Ko) = (Ri (X))1<i<kq+1. In words, if the user is only interested in rejected sets R where
the bound on the number of false positives is less than Ky, then the family size K can
safely be taken equal to Kg + 1.

e if the user has some upper bound 7| on the number of false hypotheses as prior infor-
mation, it seems reasonable to take Ky = m| above (a larger number of false discoveries
would mean that more than 50% of the hypotheses in the rejected set are false discoveries).
The case K = 2m considered in our numerical experiments can be interpreted as such a
scenario (assuming a known prior rough upper bound m| = 2m ).

Designing a theoretically founded data-dependent choice of K is an interesting direction for
future efforts. Let us also mention that an alternative to the choice of K is to introduce some
smooth decay in the violation probability P(|Rx| > k) as k grows.

7.2. Step-down algorithm. The principle of the step-down Algorithm 1 is to approach the
oracle value A(o, Ho) by iterative approximations A(«, A\). Here, the template # (-) is fixed
once for all. A seemingly natural extension is to allow the template #;(-, A) to also depend
on subsets A C N, and to apply the step-down algorithm to the template as well as A, that is,
consider at each step (-, A), then apply the A-calibration step. For instance, for the balanced
rejection template, one could define t,f (A, A) as the A-quantile of gx.4. From a theoretical
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point of view, however, it turns out that the corresponding combined threshold (depending on
Ho both through 7, and A) loses the monotonicity property with respect to Hp. Hence, our
current proof does not extend to that situation and we do not know if the corresponding JER
is controlled at level . This is an interesting (but challenging) issue.

7.3. Choice of the reference family. In the general setting presented in Section 2, al-
though the aim is to obtain a uniform guarantee for any possible rejected set, a tradeoff is
implicitly present in the choice of the reference family. The post hoc bounds (7), (8) can be
understood as interpolation bounds relating an arbitrary R to sets of the reference family R,
so that generally speaking they will be more accurate for rejection sets that are “well ap-
proximated” by sets of the reference family. From the definition of the JER control (4), it
is clear that there is a tradeoff between the cardinality of the reference family and the con-
servativeness of the bound, which requires a uniform control over the family. Depending on
the specific application, reference families corresponding to different expected tradeoffs can
be considered. In the running example considered in this paper, the choice of K (discussed
above) represents precisely such a tradeoff; so does the choice of the template, as we have
already argued. Adequate choice of reference families for specific applications and goals, and
an appropriate notion of which sets well approximated by the reference family, remains an
important avenue to explore. The specific case of a spatially-structured signal is studied in
Durand et al. (2018).

7.4. Principled use of user-agnostic bounds and admissible sets. 'This point stems from
an insightful remark by an anonymous reviewer. If there are no constraints on the rejected set
R selected by the user, and a post hoc bound V() is available, it seems sensible to require
that one should not be able to add hypotheses to the rejected set without increase of the bound
on false discoveries, nor exclude hypotheses from it without decrease of the bound on true
discoveries; otherwise, the choice of R would obviously be suboptimal given the information
given by the bound. Formally, call R admissible with respect to bound V (-) if

(i) VR"2 R, V(R') > V(R);
(i) VR'C R, S(R") < S(R).

We leave to the reader to check the following result: the only sets admissible with respect
to Vg (of (8)) belong to the reference family. (In particular, for nested reference families,
only the reference sets are admissible with respect to the optimal post hoc bound Vi;.) This
property emphasizes the role played by the choice of reference family—while also putting
into question to allow rejection sets not belonging to it in the first place. Concerning this
last point, we argue that additional constraints (sometimes only implicitly defined by the
selection procedure used) often restrict the rejection sets under consideration of the user
(this is the case in the two exemplary applications mentioned in the Introduction). In such a
situation, the reference sets might not satisfy the constraints, which justifies the interest of a
bound for more general Rs. One may in this case adapt the above definition of admissible sets
by restricting comparisons to sets satisfying the constraints; which sets are then admissible
would have to be investigated in specific situations.

In any case, introducing flexibility in the bound to allow for arbitrary rejection sets should
not be interpreted as absolving the user of any responsibility: they should still expose the
selection protocol they used—even if only heuristically motivated—in a convincing manner.

7.5. Optimality in detection power. Numerical experiments of Section 6.2 show that,
while the balanced post hoc bound seems to improve over the Simes bound in many cases,
neither bound uniformly outperforms the other in terms of averaged power (27). By contrast,
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consider the detection power, defined as the probability that the bound, applied to the entire
set of hypotheses N,,, is nontrivial and indicates at least a nonnull hypothesis (see (S-15)).
We show in Section S-4 that the Simes post hoc bound is always more conservative than the
balanced one in a certain asymptotic regime. In a nutshell, the reason is that the balanced post
hoc bound is related to the higher criticism method described in Donoho and Jin (2004) (op-
timal for detection), while the Simes post hoc bound is related to the Benjamini-Hochberg
procedure of Benjamini and Hochberg (1995) (suboptimal for detection). While the detection
power is certainly a somewhat coarse way to measure the quality of a post hoc bound, this
once more underlines the potential advantage of the balanced bound over the Simes one. It
is also of interest to note that while providing much more detailed information than mere
detection, the post hoc bound retains optimal detection power in the considered setting.

7.6. Further perspective. In recent work of Katsevich and Ramdas (2018), false positive
bounds are established uniformly over paths of rejection sets induced by several standard
multiple testing procedures. Interestingly, they proved that the price to pay for this uniformity
is generally quite low. This can be fruitfully combined to the bounds in the current paper to
obtain user-agnostic bounds (note that the rejection paths are usually naturally nested).
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